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The mode of reproduction has been 
predicted to affect the prolifera-

tion of transposable elements (TEs). A 
population that switches from sexual to 
asexual reproduction could either accu-
mulate TEs because purifying selection 
becomes less efficient, or a decrease in 
TE load because the opportunity for 
horizontal transmission is reduced. A 
third possibility is that the mechanism 
that induces asexual reproduction affects 
TE dynamics as a side effect. We propose 
two such mechanisms that might explain 
recently described patterns of TE abun-
dance in sexual and asexual lineages of 
the parasitoid wasp Leptopilina clavipes. 
Asexual reproduction in this species is 
induced by endosymbiotic Wolbachia 
bacteria. In order to achieve partheno-
genesis in its host, Wolbachia might 
remove methylation or interfere with 
Argonaute proteins. Both methylation 
and Argonaute proteins are known to 
control TE activity in other species. By 
interfering with either, Wolbachia might 
therefore secondarily hamper the control 
of specific TEs.

The relationship between mode of repro-
duction and transposable element (TE) 
dynamics has been the topic of consid-
erable debate (summarized in ref. 1). 
On the one hand, purifying selection is 
expected to be less efficient in asexual 
compared with sexual taxa, leading to an 
accumulation of TE copies in asexuals. 
On the other hand, sex allows horizontal 
transmission of TEs and will facilitate the 
spread of TEs. Which of these driving 
factors, if any, will be most important is 

currently an unresolved question. Recent 
advances in DNA sequencing technol-
ogy now allow us to address this ques-
tion on a genome-wide scale. In a recent 
paper published in Molecular Ecology, we 
quantified TE loads in sexual and asexual 
lineages of the parasitoid wasp Leptopilina 
clavipes.2 Parthenogenesis in this species 
is induced by endosymbiotic Wolbachia 
bacteria, that are thought to have infected 
L. clavipes several thousand years ago.3 
Uninfected lineages reproduce sexually. 
The results of our study were inconsis-
tent with models that predict increases4 
or decreases5 in TE load in asexuals com-
pared with sexuals, regardless of TE type. 
Instead, we found markedly different pat-
terns between the various types of TEs. 
Loads of DNA transposons were higher 
in asexuals, while there was no differ-
ence between sexuals and asexuals for 
LTR and LINE-like TEs, except for one 
or a few gypsy-like LTR elements. The 
reasons for these patterns have already 
been the subject of some speculation.1,2 
Here, we elaborate on the possibility that 
TE dynamics are affected by Wolbachia. 
More precisely, we suggest that in order 
to induce parthenogenesis, Wolbachia has 
to interfere with host cellular processes, 
which secondarily also interferes with 
the control of TE activity. While these 
suggestions are purely speculative at this 
moment, we discuss them here because 
we believe that such processes could be of 
widespread importance.

We suggest two ways in which 
Wolbachia-induced manipulation of the 
host reproductive machinery could inter-
fere with the repression of particular TE 
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A second way in which Wolbachia-
induced manipulation of the host could 
lead to proliferation of TEs is by disturb-
ing normal patterns of DNA methyla-
tion. To make unfertilized eggs develop 
as females, it is not enough for Wolbachia 
to cause diplodization of the gametes as 
described above. Wolbachia also has to 
prevent diploid zygotes from developing 
as diploid males. To do so, Wolbachia has 
to manipulate the host’s sex determination 
mechanism. Several sex determination 
mechanisms are known in hymenop-
tera11 and it is currently unknown which 
of these applies to L. clavipes. However, 
since strong inbreeding does not result in 
diploid males in L. clavipes (Kraaijeveld, 
personal observation), sex determination 
is unlikely to be based on allelic differ-
ences at one or a few genetic loci as in 
for example the honey bee Apis melifera. 
We therefore assume that sex determina-
tion in L. clavipes is most likely similar 
to that described for another parasitoid 

Argonaute family show arrest during early 
meiosis.8

In addition to their role in cell cycle 
regulation, Argonaute proteins play an 
important role in the control of TE activ-
ity, through a mechanism known as the 
ping-pong model.9,10 Briefly, Argonaute 
proteins form a complex with short anti-
sense sequences transcribed from defective 
TEs. These target full-length TE tran-
scripts (Fig. 1A), which they then degrade, 
resulting in new short sense TE fragments 
that can bind to other Argonaute proteins. 
These in turn target antisense transcripts 
from the defective TEs, resulting in more 
antisense bait, and so on. If Wolbachia 
would interfere with the abundance or 
functioning of Argonaute proteins as 
suggested above, it would automatically 
hamper the Argonaute-driven capturing 
and degradation of TE mRNA (Fig. 1B). 
These TE transcripts are then left free 
to be reverse transcribed into cDNA and 
pasted back into the genome.

types. These mechanisms are illustrated in 
Figures 1 and 2.

First, Wolbachia might interfere with 
the normal functioning of proteins from 
the Argonaute family (Fig. 1). Argonaute-
like proteins are involved in many cellu-
lar processes, including cell division and 
gametogenesis.6 In order for Wolbachia to 
make unfertilized L. clavipes eggs develop 
as females, it has to ensure that these 
become diploid. It does so by prevent-
ing chromosome segregation at the first 
mitotic division after meiosis.7 Thus, in 
gametes infected by Wolbachia, the chro-
mosomes duplicate, condense, but then 
enter G1 without completing mitosis or 
cytokinesis. The molecular mechanism 
through which Wolbachia achieves this 
effect is currently unknown. However, 
one way for Wolbachia to prevent the 
chromosomes from separating after 
duplication might be to interfere with 
Argonaute proteins. In mice for example, 
mutants defective for a protein from the 
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Figure 1. (A) Cartoon of a normal dividing cell with meotic/mitotic spindle at the top. Complexes of Argonaute proteins (green) and antisense TE 
fragments capture and destroy TE mRNAs. (B) Dividing cell infected with Wolbachia. Wolbachia (brown) associate with microtubuli (top) and capture 
Argonaute proteins (green). TE derived mRNAs are left to insert back into the host genome.
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post-transcriptionally contains compo-
nents that are important in a wide variety 
of cellular processes. Other mechanisms 
that control TEs may similarly have other 
functions in host cells. It follows that 
interference of methylation, Argonaute 
proteins or other mechanisms by endo-
symbiotic bacteria or other environmental 
factors would disrupt multiple processes at 
once, including TE control.
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male germline and remove silencing of 
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Methylation is a common way of 
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If Wolbachia removes methylation marks 
in a non-specific manner to induce female 
development of the zygote, it may also 
demethylate nearby TEs, thereby reacti-
vating them (Fig. 2).

Whether either of the above mecha-
nisms actually operates in the L. clavipes-
Wolbachia system is at this stage unknown. 
We made a start testing the methylation 
hypothesis by checking for methylation 
of gypsy in sexual and asexual L. clavipes. 
We found that gypsy was not methylated 
in either,2 suggesting that hypothesis 2 
cannot account for the high copy num-
ber of gypsy in asexual L. clavipes. We 
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the ping-pong model for controlling TEs 
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Figure 2. Cartoon of chromosomal region in female germline. (A) The sex determination gene 
tra is methylated as well as a nearby gypsy element. (B) In order to induce female development, 
Wolbachia produces a demethylase that removes methyl groups. (C) In the absence of methyla-
tion, both tra and gypsy can be transcribed.
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