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Abstract Primary ciliary dyskinesia (PCD) is a rare genetic
disorder caused by the impaired functioning of ciliated
cells. Its diagnosis is based on the analysis of the structure
and functioning of cilia present in the respiratory epithelium
(RE) of the patient. Abnormalities of cilia caused by
hereditary mutations closely resemble and often overlap
with defects induced by the environmental factors. As a
result, proper diagnosis of PCD is difficult and may require
repeated sampling of patients’ tissue, which is not always
possible. The culturing of differentiated cells and tissues
derived from the human RE seems to be the best way to
diagnose PCD, to study genotype–phenotype relations of
genes involved in ciliary dysfunction, as well as other
aspects related to the functioning of the RE. In this review,
different methods of culturing differentiated cells and
tissues derived from the human RE, along with their
potential and limitations, are summarized. Several consid-
erations with respect to the factors influencing the process
of in vitro differentiation (cell-to-cell interactions, medium
composition, cell-support substrate) are also discussed.
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Primary ciliary dyskinesia

Impaired functioning of cilia has been implicated in
numerous human hereditary diseases, collectively referred
to as ciliopathies. Their classification reflects the physio-
logical role of different types of cilia involved, with the two
main classes being motile cilia and sensory cilia (Badano et
al. 2006). The human disorders due to the dysfunction of
motile cilia are best exemplified by primary ciliary
dyskinesia (PCD).

PCD is a rare genetic disease (with a prevalence of
1:16,000 to 1:20,000 live births), characterized by recurrent
respiratory airways infections, sinusitis, otitis media, bron-
chiectasis, and male subfertility (Afzelius 1998; Schidlow
1994; Escudier et al. 2009). In about 50% of cases, PCD is
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also associated with situs inversus—a mirror image
arrangement of the internal body organs (Kartagener’s
syndrome [KS]) (Afzelius 1998). The respiratory symp-
toms, which are the primary cause for PCD patients’
presentation to the physician, reflect the impairment of
mucociliary clearance caused by the dysfunction of motile
cilia in the respiratory epithelium (RE). Subfertility in PCD
patients is due to the dysfunction of flagella in spermatozoa
and of cilia in the epithelium lining of the oviducts.
Randomization of the organ symmetry in KS is caused by
the impaired motility of the cilia present in the embryonic
node, during the early phase of development (Geremek and
Witt 2004).

Proper diagnosis of PCD, especially in patients without
situs inversus, is often impeded by the fact that aberrant
ciliary function (with clinical manifestation similar to PCD)
can also result from non-hereditary mucosal injuries, due to
inflammation, bacterial or viral infections, allergies, and
smoking (Escudier et al. 2009). Such acquired cilia
alterations are transient and collectively named secondary
ciliary dyskinesia (SCD) (Jorissen et al. 1997). Clinically,
SCD symptoms are similar or even indistinguishable from
those of PCD; furthermore, PCD-caused inflammation
leads to further, secondary changes of the ciliary function.
This superimposition of the genetic and environmental
defects can heavily perturb and obstruct the differential
diagnosis of PCD versus SCD.

In the majority of cases, the inherited dysfunction of
cilia in PCD is caused by aberrations in the ultrastructure
of these organelles. A large diversity of ultrastructural
defects reflects the complicated architecture of the cilium
(Fig. 1).

Ultrastructural and functional defects in PCD

Ultrastructural defects of the ciliary architecture can be
identified by transmission electron microscopy (TEM). The
most frequently observed defects (70–80%) involve the
lack or shortening of outer (ODA) and/or inner (IDA)
dynein arms (Noone et al. 2004) (Fig. 1, Table 1). Aberrant
number and/or localization of the central or peripheral
microtubules (MTs) form the other major class of ciliary
defects (Table 1). While several different aberrations can be
found in a single patient, the defects are often not present in
all of the examined cilia; furthermore, some patients do not
have any recognizable ultrastructural defects at all (Jorissen
et al. 1997; Herzon and Murphy 1980; Greenstone et al.
1983; Escudier et al. 2009; Conraads et al. 1992).

It is important to realize that not all of the structural changes
observed in TEM represent generic defects. Some of them
may result from the inappropriate preparation of a specimen
(for example, dynein arms, especially IDA, are hard to
observe in TEM specimens of low quality). Other changes,
like the absence of a central MT pair, may not reflect any
abnormality, but just the normal architecture of the proximal
part of the cilium (at the level of the transition zone), where the
central pair is not present (Fig. 1). What is more, abnormal-
ities of the ciliary ultrastructure are not solely restricted to
PCD patients. MT defects or swollen cilia are frequently
found in patients with different respiratory-tract pathologies
(such as cystic fibrosis, bronchial asthma, and bronchitis)
(Afzelius 1981). Similarly, discordant orientation of neigh-
boring cilia can occur not only as a primary (genetic) defect,
but also secondary to an infection (Rutland and de Iongh
1990). In addition, even in non-PCD individuals, up to 10%

Fig. 1 Schematic representation of the ciliary architecture. a
Arrangement of microtubules (MTs) in different sections of the
cilium. The main body of the organelle, the axoneme, is built of nine
peripheral microtubular doublets, organized symmetrically around the
central pair of MTs. The arrangement of MTs is different in the
proximal parts of the cilium, with the central pair missing in the
transition zone and in the anchoring basal body (kinetosome); in
addition, in the basal body, peripheral MT doublets are replaced with
triplets. b MTs and associated elements in the section of axoneme.

Axonemal MTs are associated with a variety of proteins, which form
specific elements of the ciliary ultrastructure, periodically arranged
along the axoneme length. Dynein arms, outer (ODA) and inner
(IDA), are composed of several types of axonemal dynein chains—
light, intermediate, and heavy. The heavy dynein chains act as ATP-
dependent molecular motor complexes, which generate the ciliary
movement. Nexin bridges and radial spokes, each composed of a large
number of different protein chains, connect the neighboring peripheral
doublets to the central MT pair, stabilizing the ciliary ultrastructure
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of cilia may display secondary defects of the ciliary
ultrastructure (Afzelius 1981; Wisseman et al. 1981; Small-
man and Gregory 1986; Pifferi et al. 2001).

Ultrastructural defects of the internal ciliary anatomy can
have various functional consequences, from a reduced
ciliary beat frequency (CBF; below the normal range of
11–16 Hz) (Bush et al. 2007), to different changes in the
pattern of ciliary movement. Nearly 20 various erratic beat
patterns have been described so far (Chilvers et al. 2003);
many of these patterns can be ascribed to a specific defect
of the ciliary architecture (Afzelius 1979; Schidlow 1994).

Absence of the dynein arms, the most severe defect,
causes an eggbeater-like rotation of the cilium or movement
of only the distal part of the axoneme, and a reduced CBF.
Defects of radial spokes result in the increased axonemal
flexibility, leading to a corkscrew rotational beat. Lack of
the central MT doublet causes a shift from the whip-like to
rotational beating, while transposition defects cause an
increased rigidity of the proximal parts of cilia, resulting in
a grabbing-like motion of their distal parts. In some cases,
cilia with the normal internal architecture only quiver. On
the other hand, cilia with the discordant orientation of the
central MT pairs have an apparently normal beat pattern,
but their beating is not synchronized (Castleman et al.
2009).

Mutations in PCD

Full characterization and understanding of the hereditary
defects of the ciliary structure and function require
identification of the causative mutations. In some cases, it
is possible to link the ultrastructural and/or functional
defects with the underlying protein defect(s) (Table 2). For

example, lack of the dynein arms is often the result of
mutations in the dynein chains (Morillas et al. 2007), while
abnormal localization of MTs may reflect mutations in
radial spoke proteins (Castleman et al. 2009) (Table 2). In
addition, defects in the ciliary ultrastructure can also be due
to the mutations in proteins not directly involved in the
structure, but only implicated in the assembly of the ciliary
elements (Omran et al. 2008) (Table 2). The cases of
immotile cilia with normal ultrastructure illustrate the
problems in linking the ciliary defect with the mutation in
one of the ∼200 polypeptides that constitute the cilium
(Meeks and Bush 2000). Full classification, linking the
molecular defect with the ultrastructural impairment, and,
further, with the deficiency in the ciliary motility, is far
from being complete. This would require knowledge of the
mutations in the respective genes, but, so far, the genetics
of PCD is not fully explained, due to the high genetic
heterogeneity of the disease (Geremek and Witt 2004).
Numerous linkage studies have indicated several genetic
regions potentially involved in PCD pathogenesis (Geremek
and Witt 2004; Blouin et al. 2000; Meeks and Bush 2000;
Jeganathan et al. 2004).

To date, only a few genes are confirmed to be directly
associated with PCD pathogenesis (Escudier et al. 2009).
Mutations in two of them, DNAI1 (9p13.3) and DNAH5
(5p15.2), are responsible for PCD in 30–40% of the
affected families (Morillas et al. 2007). Both genes encode
axonemal dyneins, intermediate chain 1 and heavy chain 5,
respectively. Mutations in the genes which encode other
proteins involved in the ciliary ultrastructure (DNAH11,
DNAI2, TXNDC3, RSPH9, RSPH4A) or in the assembly of
axoneme (KTU) were reported only in single PCD families
(Escudier et al. 2009; Morillas et al. 2007). The genes
responsible for the remaining ∼60% of PCD cases remain to
be identified. In addition, mutations in the known PCD genes
are characterized by the very high allelic heterogeneity—to
date, approximately 80 mutations were found in DNH5 and
about 20 in DNAI1 (Pennarun et al. 1999; Guichard et al.
2001; Zariwala et al. 2001, 2006; Olbrich et al. 2006; Hornef
et al. 2006; Failly et al. 2008, 2009; Zietkiewicz et al. in
press). In summary, the analysis of the genetic background of
PCD is difficult, and often inconclusive, due to the extensive
genetic and allelic heterogeneity of the disease.

Diagnostic problems

In light of the genetic heterogeneity of PCD, the practical
diagnostic methods have to rely on the analysis of both
ciliary structure and function. As detailed above, the most
serious problem is that the primary and secondary defects
largely overlap. The ambiguous relation between the
ultrastructural defect, ciliary beat pattern, and clinical
phenotype is the reason why the TEM assessment, although

Table 1 Spectrum of the ultrastructural ciliary defects found in
primary ciliary dyskinesia (PCD)

Ultrastructural
element

Defect

Dynein arms Lack or reduction of outer dynein arms

Lack or reduction of inner dynein arms

Lack or reduction of outer and inner dynein arms

Microtubules
(MT)

Defects in peripheral MT number or structure

Transposition, e.g., one or more peripheral MT
doublets in the center of the cilium replace
the central pair

Discordant orientation of the central pair
in adjacent cilia

Whole cilium Swollen cilia

Compound cilia

Complete lack of cilia
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widely accepted as a diagnostic tool, does not always allow
for firm PCD diagnosis and discrimination between PCD
and SCD. Similarly, a singular observation of the abnormal
CBF or beat pattern in the material obtained from the patient
also does not provide an ultimate proof that the disease is
attributable to the genetic rather than environmental causes.

To differentiate congenital genetic defects from acquired
abnormalities that are focal and transient, the presence of
the defect should be demonstrated in different areas of the
respiratory tract and in specimens sampled at different
times (Pifferi et al. 2001); it requires repeated sampling of
the mucosa from the patient. Alternatively, a similar effect
can be achieved through culturing the respiratory epithelial
cells in vitro, to allow the regeneration of the cilia in a
controlled environment, free of the agents inducing SCD.

In vitro cell cultures of the ciliated cells from the RE

The culturing of differentiated cells and tissues derived
from the human RE seems to be the best solution both for
the differential diagnosis of PCD and SCD and for studies
of genotype–phenotype relations in genes involved in the
ciliary dysfunction. In addition, it may also be used for the
research on ciliogenesis, in studies on drug development
and administration, and on the influence of pollutants and
pathogens on the functioning of the RE (Jorissen et al.
1991; Dimova et al. 2005; Wilson et al. 1992).

Source tissues

The informed choice of the source tissue used to initiate pri-
mary cultures of the ciliated cells requires good knowledge of

the localization and structure of the RE (Fig. 2a). Basement
membrane composed of several types of extracellular matrix
(ECM) molecules (Fanucchi et al. 1999), together with the
RE, forms the continuous layer of mucous membranes
(mucosa), which line the main conducting airways from the
nasal cavity, through the trachea down to the bronchial tree.

The RE is composed of four types of cells: ciliated
columnar cells with hundreds of cilia on their apical side,
non-ciliated columnar cells with microvilli, mucous-
producing goblet cells, and, the least numerous, small basal
cells (Fig. 2b) (Schmidt et al. 1998; Crystal et al. 2008;
Jones 2001). While the arrangement of cell nuclei in the RE
suggests its multi-layered organization, all four cell types
grow in one layer, contacting the basement membrane; the
RE is, therefore, often referred to as pseudostratified
epithelium (Schmidt et al. 1998).

Basal cells, which rest in the deeper layers of the RE and
do not reach the airway lumen (Crystal et al. 2008), are
anchored to the basement membrane by the use of hemi-
desmosomes. Goblet and columnar (ciliated and non-
ciliated) cells contact the basement membrane only by
cell-adhesion molecules (Mygind and Dahl 1998), but they
also form tight contacts with the adjacent basal cells
(Mygind and Dahl 1998).

Basal cells are the stem cells of the pseudostratified zone
(Crystal et al. 2008), and they are responsible for the growth
of the RE and its regeneration after injury (Rock et al. 2009).
Although basal cells have the highest division potential,
columnar cells can also divide (Randell 2006). In addition,
columnar cells can ‘transdifferentiate’ into all of the
remaining cell types without dividing themselves (Randell
2006). The relative contribution of goblet and ciliary cells in
the composition of healthy pseudostratified epithelium is not

Table 2 Ciliary phenotypes associated with mutation in the known PCD genes

Genes Encoded protein Ultrastructural defect Defect of function References

DNAI1 Dynein intermediate chain 1 Lack of ODA Immotile cilia Pennarun et al. 1999; Guichard et
al. 2001; Zariwala et al. 2001,
2006; Failly et al. 2008

DNAH5 Dynein heavy chain 5 Lack of ODA Immotile cilia Olbrich et al. 2006; Hornef et al.
2006; Failly et al. 2009

DNAH11 Dynein heavy chain 11 No defect Reduced bending capacity,
hyperkinetic beat

Bartoloni et al. 2002; Schwabe et
al. 2008

X-linked
RPGR

Retinitis pigmentosa guanosine
triphosphatase regulator

Complex defect (dynein
arms, central MT)

Immotile and motile cilia Moore et al. 2006

TXNDC3 Thioredoxin–nucleoside
diphosphate kinase

Partial lack of ODA Partially immotile cilia Duriez et al. 2007

DNAI2 Dynein intermediate chain 2 Lack of ODA Not known Loges et al. 2008

RSPH9 Radial spoke protein Lack of central MT pair Immotile cilia Castleman et al. 2009

RSPH4A Radial spoke protein Lack of central MT pair Immotile cilia Castleman et al. 2009

KTU Kintoun—involved in the
preassembly of dynein arm
complexes

Partial or full lack of
ODA and IDA

Immotile Omran et al. 2008
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uniform; for example, goblet cells are especially frequent in
the regions of high air flow (Schmidt et al. 1998).

Pseudostratified RE specimens for initiating primary
cultures can be theoretically collected from any segment of
the conducting airways, but not all of the segments are equally
accessible and useful. Bronchial biopsies are relatively hard to
obtain (surgical intervention is necessary) and often contam-
inated with infectious agents (Wu et al. 1985). Nasal polyps,
the most frequently exploited, easily accessible abundant
source of the respiratory tissue, show defects in ion transport
(increased Na+ absorption and Cl− permeability) and cannot
be used for studies of drug permeation and metabolism in
nasal epithelium (Schmidt et al. 1998). Normal epithelial
tissue collected from the nasal cavity allows overcoming of
the above-mentioned restrictions.

In the nose, the pseudostratified RE occupies the central
part of the nasal cavity, bordered by the squamous and
transitional epithelium in the nasal anterior, and by the
olfactory epithelium in the upper part of the cavity (Mygind
and Dahl 1998) (Fig. 1a inset). The tissue in the central part
of the nasal cavity expresses important features of the lower
airway RE, and is relatively easily accessible, allowing
sampling to be performed in the ambulatory settings.

There are three different groups of techniques used for the
sampling of the nasal epithelium: traumatic methods, atrau-
matic methods, and postmortem biopsies (Schmidt et al.
1998). Traumatic methods include surgical biopsy, surgical
removal of nasal polyps (polypectomy), or nasal turbinates
(turbinectomy), as well as plastic surgery (face reconstruc-
tion). The biggest advantage of these methods is the usually
high amount of harvested cells (Schmidt et al. 1998). This is
reflected in the literature, where most of the primary epithelial
cell cultures are started by the use of traumatic techniques.
The main disadvantage is that these techniques require at
least local anesthesia, and that collecting samples from the
same area of the nose can rarely be repeated (Schmidt et al.
1998). Postmortem biopsies are similar to the traumatic
methods in their advantages and shortcomings. They provide
a high harvest of epithelial cells, but repeated sampling is not
possible. In addition, artifacts caused by medication, stress,
and variable ischemia time can exist (Schmidt et al. 1998).

In contrast, atraumatic sampling techniques do not
require anesthesia and they offer the possibility to repeat
the tissue sampling (Bridges et al. 1991a, b). In addition,
material can be sampled from a precise area of the nasal
cavity (Schmidt et al. 1998). Among many methods of

Fig. 2 The pseudostratified res-
piratory epithelium (RE).
a Localization in human
airways; inset shows localization
in the nasal cavity and the
dashed lines encircle areas
where the pseudostratified RE
is localized. b Structure of
the pseudostratified RE
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atraumatic sampling described in the literature (Schmidt et
al. 1998), only nasal scraping (using a small curette) and
brushing (using a small cytobrush) give the yield of
epithelial cells high enough to start a primary cell culture
(Bridges et al. 1991b; Lopez-Souza et al. 2003). Specimens
collected by these methods usually include only the
epithelium, without the deeper layers of the mucosa.
Importantly, atraumatic methods provide nasal epithelium,
without the ion transport abnormalities typical for nasal
polyps (Bernstein and Yankaskas 1994; Schmidt et al. 1998).

Mucociliary phenotype in the in vitro cultures of RE cells

The primary goal of in vitro cell culture systems is to
achieve differentiated morphology and biochemical fea-
tures, resembling original tissue as closely as possible
(Dimova et al. 2005). This can mean maintaining the
differentiated state of the source cells or reconstituting the
differentiated state in the cells following their in vitro
proliferation; the latter is especially important if the culture
is to be used in the differential diagnosis of PCD and SCD.

The history of development of culturing methods that
would allow achieving the expression of typical functions of
the RE, such as barrier formation, metabolic capacity,
vectorial transport of solutes, as well as mucus production
and ciliary activity, shows that it was not an easy task (Dimova
et al. 2005). One of the important issues to start with was that
lifespan of differentiated cells in cultures of nasal RE cells
which in the beginning was only a few days. Initial culture
conditions were optimized for cell attachment, proliferation,
and further subculturing. As a consequence, freshly seeded
mucociliary-differentiated cells would lose their cilia and
secretory granules within a few days (Bernacki et al. 1999).
At the same time, newly proliferated cells followed the
pathway of squamous differentiation, which is induced in
vivo under conditions of chemical or mechanical injury or
vitamin A deprivation (Rearick and Jetten 1989). In effect, a
stratified epithelium was formed, with the top layer of
squamous, flattened cells and without any ciliated or secretory
cells (Rearick and Jetten 1989). The retention of the
mucociliary phenotype lasted slightly longer in explant
outgrowth cultures (see below), presumably due to the
supportive influence of non-epithelial cell types (Agu et al.
1999; Dimova et al. 2005; Neugebauer et al. 2003).

With time, conditions of long-term cultures were
established, supporting both cell proliferation and muco-
ciliary differentiation of newly formed cells, together with
the retention of the pseudostratified phenotype. A success
in mucociliary differentiation was achieved using a number
of different methods (Chevillard et al. 1991, 1993; de Jong
et al. 1994; Neugebauer et al. 2003; Jorissen et al. 1989).
The direction and extent of the differentiation depended on the
culturing system and many other factors described below.

Culture systems

There are two basic approaches to establishing the culture
of differentiated RE cells: explant growth cultures and
cultures of dissociated tissues (Table 3).

Explant outgrowth cultures were one of the first systems
developed. Small specimens of tissue (biopsies) were
cultured on uncoated (Steele and Arnold 1985) or coated
plastic supports (collagen, ECM molecules, etc.) (Wiesel et al.
1983). Sometimes, also a fibroblast feeder layer was used
(de Jong et al. 1993). The most promising aspect of this
system was its high reproducibility. Explants could be serially
replated up to seven times and, after the removal of the
explant, cultures retained ciliary activity (Wiesel et al. 1983).
Although high levels of cell differentiation were achieved
(Chevillard et al. 1991), the results of the experiments were
not easy to predict and to interpret, due to the presence of
non-epithelial cell types in explants. Another disadvantage
was the longer time needed to establish the cell culture,
compared with the cultures starting from dissociated cells
(Dimova et al. 2005). The use of explant outgrowth cultures
became, therefore, less popular; presently, this approach is
most often used in studies on the immune response to
pathogens and allergens (Ooi et al. 2007; Liu et al. 2007), and
on the epithelial barrier function in allergic rhinitis.

Another effective approach to culturing differentiated RE
cells is based on use of dissociated tissue samples (Table 3).
Digestion of a sample with a protease (pronase) at a low
temperature has proven to be one of the most efficient ways
to isolate a pure population of epithelial cells, and dispose of
non-epithelial cells (Dimova et al. 2005; Schmidt et al. 1998;
Wu et al. 1985). Dissociated cells also allow a faster
establishment of the culture (Dimova et al. 2005). The
system underwent a long evolution since the first reports in
the 1980s. The conditions of pronase digestion were
optimized, together with other techniques reducing the
fibroblast contamination (serum-free media, preplating of
the dissociated cells mixture on plastic supports), and cell
cluster formation (filtering the cell suspension through filters
or sieves) (reviewed in Dimova et al. 2005). Of note, in
contrast to solid-tissue samples, samples collected by nasal

Table 3 Culture systems

Explant growth

Dissociated tissue

Adherent:

• Submersion

• Air–liquid interface (ALI)

Suspension

Sequential:

• Submersion monolayer followed by suspension
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scraping or brushing techniques do not require additional
digestion. The collected cells are already present in the form
of mucosal sheets, single cells, and cell clusters, similarly to
tissue samples which were digested with protease but not
sieve-filtered (Bridges et al. 1991b; Neugebauer et al. 2003).

There are many types of cultures in which the dissociated
RE cells are used (Table 3). They include adherent culture
(which can be further divided into submersion and air–liquid
interface [ALI]), suspension culture, and sequential submer-
sion monolayer-suspension culture (Gray et al. 1996; de
Jong et al. 1994; Jorissen et al. 1989; Bridges et al. 1991b).

In the adherent cultures, dissociated epithelial cells were
originally seeded in plastic uncoated vessels (Gray et al.
1996) or on a layer of fibroblast feeder cells (Claass et al.
1991; de Jong et al. 1993; Wu et al. 1985). Later, it was
found that the adhesion and proliferation of epithelial cells
were better promoted by the use of different growth
supports/matrix (plastic dishes, floating gel, semipermeable
membranes), and vessel/membrane coating with ECM
molecules (collagen type I, laminin, etc.), better mimicking
the composition of basement membrane, which supports the
RE in the in vivo setting (Neugebauer et al. 2003) (Table 4).

Finally, the submersion method used in most of the
adherent cultures was found to have inhibitory effects on
the process of mucociliary differentiation; differentiated
cells were losing cilia and proliferated cells remained
undifferentiated (Bernacki et al. 1999), probably due to
the lack of signals such as air interface or contact with
ECM molecules, which induce cell polarization.

A better degree of differentiation was obtained in
suspension cultures (Table 3). When epithelial cells
collected by nasal brushing were cultured in the form of
polarized multicellular spheroids, with only minimal adher-
ence of epithelial cells to the support, cells retained the
ciliated phenotype for over 14 days (Bridges et al. 1991b).
After a longer culture time (21 days) in a similar setting
(nasal brushing without cell dissociation), the de novo
formation of cilia could be observed (Pifferi et al. 2009).

An important modification of the adherent cultures is the
use of the ALI (Table 3). In this method, adherent cells

growing on inserts with porous bottoms are fed only from
their basolateral side, and their apical surface has contact with
the air, reflecting the in vivo situation in the RE (de Jong et al.
1993; Wu et al. 1986). Such polarization of the cell layer
allows much higher levels of differentiation than a typical
submersion feeding system (Whitcutt et al. 1988; Kondo et
al. 1991, 1993). The ALI is now a widely recognized “gold
standard” for culturing RE cells. Due to the presence of a
permeable insert supporting adherent cells, ALI systems are
especially useful for measuring the transport and metabolism
of drugs across the cell layer and within the cells (Schmidt et
al. 1998; Dimova et al. 2005). The drawback of this method
is a rather short time for which the layer of differentiated
cells is available: in some cases, cells started to detach from
the culture vessels already ∼14 days after reaching conflu-
ence (Werner and Kissel 1995).

The long life of a differentiated culture is the main
advantage of the sequential monolayer-suspension culture
method (Jorissen and Bessems 1995) (Table 3). During the
first phase, the source cells are cultured as an adherent layer
in culture vessels coated with collagen type I gel. When cells
reach confluency (the time depends on the seeding density),
the monolayer is detached from the vessel by use of a
collagenase, mechanically fragmented, and transferred into
the suspension culture. During the next week, suspended cells
are mechanically rotated, in order to promote the formation of
closed spheroids from monolayer fragments. Cells in the
spheroids are well differentiated and cilia are developed at
this stage. Then, ciliated spheroids can be cultured in a
stationary incubator, for up to 7 months (Jorissen et al. 1989).
The main disadvantage of the sequential method is that it is
time-consuming and rather costly.

Factors influencing differentiation in vitro

Mucociliary differentiation has been demonstrated in many
different culture systems, but it remains a difficult task,
with only a few laboratories having achieved success in this
field (Bridges et al. 1991b; Chevillard et al. 1993). The
broad range of conditions reported for the successful in

Cell support material Coating

Uncoated plastic Collagen type I

Membranes Rat tail collagen

Polyester Calf-skin collagen

Polyethylene terephthalate Bovine dermal collagen (Vitrogen 100)

Hydrophilic polytetrafluoroethylene Bovine placental collagen

Polycarbonate Collagen type IV

Mixed cellulose esters Human placental collagen

Collagen membranes CD-24 Mixtures:

Hyaluronate derivatives Collagen type IV:laminin:heparan sulfate proteoglycan

Table 4 Cell supports, mem-
branes, and coatings used in
cultures of differentiated
respiratory epithelium (RE)
cells
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vitro culturing of the mucociliary tissue reflects the
complexity of the mucociliary differentiation in vivo (see
Dimova et al. 2005; Wu et al. 1985). Factors to be
considered cover different levels of the culturing procedure,
and include: processing of the source tissue or cells,
seeding density, confluence and cell differentiation status,
type of cellular support used (membrane versus cell culture
vessel, ECM molecules used for coating), medium compo-
sition, feeding regimen, culture time, and number of
passages. None of these factors alone appear indispensable
or sufficient to direct the differentiation of respiratory cells
in vitro.

Among a variety of aspects involved in mucociliary
differentiation, the cell-to-cell interactions seem to be one
of the most important. In vitro, these interactions depend on
several conditions, like the processing of the source tissue,
seeding density, the presence of cell support, coating
vessels with ECM molecules, and the number of passages.
The processing of the source tissue (i.e., inoculating culture
with non-dissociated versus dissociated cells) appears to
have the most immediate consequences. Undisrupted cell
contacts are present in suspension cultures inoculated with
undigested mucosal sheets (collected by nasal brushing).
Mucociliary phenotype in these cultures directly reflects the
differentiation status of the source tissue. In contrast, in
cultures inoculated with dissociated cells, high seeding
density is required for the promotion of cell proliferation and
adhesion, which accelerates cellular confluence (Neugebauer
et al. 2003; Kowalski et al. 1998).

Once the culture reaches confluence, epithelial cells are
forced to change shape, increasing contact with their
neighbors. This results in a better transduction of the
differentiation signals, which prompt polarization of the cell
layer, formation of tight junctions on the lateral sides of the
cells, and, finally, the growth of microvilli and cilia on the
apical cell surfaces (Neugebauer et al. 2003). However, the
successful cell differentiation can proceed in vitro only in
the presence of medium containing a balanced composition
of factors that facilitate both cellular proliferation and
differentiation.

The intact network of cell-to-cell interactions together
with the proper medium composition are sometimes
sufficient to maintain or induce cell differentiation, as
evidenced by the success of suspension cultures initiated
from mucosal sheets (Bridges et al. 1991b; Neugebauer et
al. 2003). In cultures initiated from dissociated cells, the
development of cell-to-cell interactions is required for
proper polarization of the cell layer and for the further
differentiation process. Following the initial orientation of
the apical and basal surfaces of the cells, further steps of the
differentiation occur, ending in the formation of typical
secretory or columnar (ciliated or non-ciliated) RE cells
(Crystal et al. 2008). The polarization and differentiation

processes can be promoted by additional external signals,
such as a specific type of culture (suspension or ALI culture
described above), special cell support (culture matrix or
vessel coating), or the composition of medium supplements
(reviewed in Schmidt et al. 1998; Dimova et al. 2005).

ECM molecules, constituents of the basement mem-
brane in RE, are naturally involved in the RE cell
proliferation, migration, and differentiation. They are also
essential for the development of a successful culture of
human RE cells. Different ECM molecules have been used
for that purpose (Table 4), but collagen seems to be the
most promising. Coating of the culture vessels with
collagen (especially type I), as opposed to laminin,
fibronectin, and polylysine (Table 4), has been reported to
positively influence attachment, growth (Wu et al. 1985),
and differentiation (Neugebauer et al. 2003) of the RE cells
in culture.

In submerged cultures, the effect of collagen coating
depends on its physical structure. RE cells grown on a
derivatized collagen showed better differentiated phenotype
(monolayer with columnar/cuboidal morphology), com-
pared to cells grown on a fibrillar or polymerized collagen,
which promoted squamous and multilayered phenotype
(Agu et al. 2001). In cultures grown on porous membranes
(submerged and ALI), the effects of collagen coating are
not so obvious/straightforward. Some investigators reported
the improvement of cell attachment efficiency, cell prolif-
eration, and differentiation (Yankaskas et al. 1985; Clark et
al. 1995), while others reported no influence (Werner and
Kissel 1995) or even negative effects on cell growth (Wu et
al. 1985). These contradictory results suggest that other
factors, such as media composition and possibly the source
of the cells, are important for the full expression of the
ECM influence.

Media composition strongly influences the viability,
proliferation, and differentiation of any cultured cell type,
including RE cells. In the absence of a proper medium,
efficient mucociliary differentiation is not achieved even in,
otherwise most favorable, ALI cultures. Conversely, a
proper medium composition can be sufficient to induce
ciliogenesis even in cultures grown in suspension or in the
absence of coating with ECM molecules (Neugebauer et al.
2003) (Table 5). Successful in vitro ciliogenesis/differentia-
tion can occur in both simple (only 2–3 supplements)
(Werner and Kissel 1995; Agu et al. 2001) and more
complicated media (Wu et al. 1985) (Table 5). For a detailed
review of different media components and their influence on
cell growth and differentiation, see Dimova et al. (2005).

Already the early studies had shown that serum-
supplemented media, most suitable for the culture of
bronchial cells, would limit the cell proliferation and
lifespan of tracheal and nasal epithelial cells (Masui et al.
1986). Serum was also shown to induce squamous cell
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differentiation and to impair ion transport in respiratory
epithelial cells (Van Scott et al. 1988). This inhibition was
later shown to be due to the presence of a transforming
growth factor β in the blood-derived serum (Masui et al.
1986). With time, the composition of serum-free hormone-
supplemented media was optimized to enhance growth and
to prolong the lifespan of cultured respiratory epithelial
cells (Lechner and LaVeck 1985; Wu et al. 1985). Serum
replacements such as UltroSer G, formulated to support the
growth of airway epithelial cells, are now commercially
available. The most frequently used serum-free media are:
DMEM, F12, and BEGM (Agu et al. 2001; Dimova et al.
2005; Jorissen et al. 1989; Schmidt et al. 1998) (Table 5),
and, although rather seldom, sometimes also, RPMI 1640
was used (Wiesel et al. 1983) (Table 5). The media are
often complemented with antibiotics and fungicides (e.g.,
penicillin, streptomycin, gentamicin, amphotericin B), in
order to reduce microbial and yeast contamination, which is
typical for the tissues exposed to the external environment
(Jorissen and Willems 2000; Werner and Kissel 1995;
Yankaskas et al. 1985; Yoon et al. 2000) (Table 5).

A broad range of supplements can be added to the culture
media to promote better attachment, growth, and differentia-
tion of RE cells: insulin, hydrocortisone, epithelial growth
factor (EGF), epinephrine, triiodothyronine, bovine pituitary
extract, endothelial cell growth supplement, transferring
ethanolamine, phosphoethanolamine, retinoic acid and its
derivatives, and cholera toxin (Bridges et al. 1991b; Jorissen
et al. 1989; Lechner and LaVeck 1985; Sachs et al. 2003;
Werner and Kissel 1995; Yankaskas et al. 1985) (Table 5).
Insulin is considered to be the most important supplement
promoting cell growth (Gray et al. 1996; Lechner and
LaVeck 1985; Wu et al. 1986), but for the majority of media
components, the physiological importance is either not yet
precisely defined or depends on the culture method used.
Sometimes, the components are added just in order to follow
previously described methods which have been optimized
experimentally in cells from other species. As a conse-
quence, the composition of culture media and supplements is
very variable and, in many cases, gives contradictory results.

The action of some supplements may depend on the
presence and concentration of other media components.

Table 5 Examples of methods successfully used for culturing differentiated epithelial respiratory cells

Author Wiesel et al.
1983

Neugebauer et al. 2003 Agu et al. 2001 Jorissen et al. 1991 Bridges et al.
1991a, b

Culture type Explant
outgrowth

Submerged Suspension ALI Sequential Suspension

Tissue source Nasal polyps Inferior turbinates Inferior turbinates Nasal polyps or
turbinates

Nasal polyps Bilateral nasal
brushing

Dissociation Mechanical
fragmentation

0.01% pronase, 18–
22 h at 4°C

0.01% pronase, 18–22
h at 4°C

0.2% pronase, 16–20
h at 4°C

0.1% pronase,
16–24 h at 4°C

No dissociation

Support Endothelial cell-
produced
ECM matrix

Plastic dishes coated
with mixture of
collagen IV:
laminin:heparan
sulfate
proteoglycan
(5:2:2)

Uncoated plastic
flasks

Cell vessels uncoated or
coated with different
forms of collagen I

0.2% rat tail collagen
gel

Seeding
density

5–7 explants per
35-mm dish

N/A N/A 106 cells/cm2 Less than 103

cells/cm 2
N/A

Medium and
supplements

RPMI 1640,
25% FCS

DMEM/F12 (3:1),
INS (1 μg/ml), TR
(1 μg/ml), HC
(0.5 μg/ml), EGF
(10 ng/ml), RA
(10 ng/ml), L-
glutamine
(3.2 mM), and
1.25% (v/v) AA

DMEM/F12 (3:1),
INS (1 μg/ml), TR
(1 μg/ml), HC
(0.5 μg/ml), EGF
(10 ng/ml), RA
(10 ng/ml), L-
glutamine
(3.2 mM), and
1.25% (v/v) AA

First day: DMEM/F12
(1:1), 5% FCS

Later: DMEM/F12 (1:1),
2% UltroSer G, CT
(10 ng/ml), strep
(50 μg/ml), pen
(50 ng/ml)

Monolayer: DMEM/
F12 (1:1), 2%
UltroSer G, pen
(50 μg/ml), strep
(50 mg/ml)

Suspension: DMEM/
F12 (1:1), 10%
NuSerum, pen (50 μg/
ml), strep (50 mg/ml)

F12 with INS (2μg/
ml), HC (100
nM), CT (10 ng/
ml), T3 (2 nM),
EGCS (4 ug/ml),
EGF (12.5 ng/ml)

Culture time 14 days 5–6 weeks, up to
14 weeks

At least 7 weeks 12 days Up to 28 weeks Up to 14 days

Differentiation
status

Ciliary activity,
cells cuboidal,
flat, closely
packed

Densely packed,
cuboidal cells with
small apical
surface, microvilli
and/or cilia

Cells columnar/
cuboidal, densely
packed, bearing
cilia and/or
microvilli

Derivatized collagen I:
monolayer with
columnar/cuboidal
ciliated and non-
ciliated cells

In suspension, cells
cuboidal to columnar,
microvilli and cilia, no
goblet cells visible

Polarized cells:
microvilli/cilia
visible

DMEM, Dulbecco’s Modified Eagle’s Medium; F12, Ham’s F12 Medium; INS, insulin; TR, transferrin; HC, hydrocortisone, EGF, epithelial
growth factor; RA, retinoic acid; CT, cholera toxin; pen, penicillin; strep, streptomycin; AA, antibiotic–antimycotic solution
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Retinol is considered to be an important factor in
maintaining the proliferation and differentiation of RE
cultures. Its action is highly dependent on the calcium level
(Sachs et al. 2003; Wu et al. 1985) and on specific cellular
support (Rearick and Jetten 1989). On the other hand, high
calcium level combined with high EGF level is known to
suppress mucociliary differentiation and promote the
transition of cultured human respiratory cells towards
squamous epithelium (Sachs et al. 2003; Van Scott et al.
1988). Therefore, for in vitro mucociliary differentiation of
the human respiratory epithelial cells, it is suggested to use
media containing a high concentration of Ca ions (∼1 mM),
high retinoic acid, and low EGF (Sachs et al. 2003). In
addition, it is recommended to use collagen matrices
(coating, gel, membranes), as they help to express the
secretory phenotype in retinoic acid containing cultures
(Rearick and Jetten 1989).

The effects of many supplements are not consistent or
well-pronounced; their use can depend on the cell origin
(species), culture method used, and the scientific goal of the
study. For example, insulin, cholera toxin, and bovine
pituitary extract were considered to be essential for cell
growth in some cases (Wu et al. 1985), while in other
settings, sustained cell proliferation was observed only if
insulin, EGF, hydrocortisone, ethanolamine, and phosphoe-
thanolamine were present (Lechner and LaVeck 1985). In
addition, the optimal concentrations of supplements can
differ depending on a specific type of culture; for example,
it has been observed that EGF concentrations required for
growth and mucociliary differentiation in ALI cultures are
much lower compared to those in submerged cell culture
type (Schmidt et al. 1998; Dimova et al. 2005).

Conclusions

Differentiated cultures of the respiratory epithelium (RE)
cells offer an important augmentation of the experimental
toolbox in the diagnosis and analysis of the molecular basis
of primary ciliary dyskinesia (PCD). Due to the process of
de novo mucociliary differentiation in the absence of
harmful environmental factors, the cultures permit the
exclusion of any acquired changes in the ciliary architecture
and, in consequence, the reliable differential diagnosis of
PCD versus secondary ciliary dyskinesia (SCD). By
providing the tissue required for the simultaneous analysis
of the ciliary ultrastructure and function, the cultures allow
deeper characterization of the genotype–phenotype relation-
ships in the ciliary protein mutants.

Several types of successful culture systems of differen-
tiated RE cells have been reported to date, and each of them
has its advantages and disadvantages. The existing systems
are generally no superior to each other, and still require

better definition and standardization. Still, a specific cell
culture system has to be selected depending on the specific
application or the scientific goal of the study. Although
differentiated cultures of respiratory epithelial cells permit
the diagnosis of PCD and/or SCD, the same cultures are not
always suitable for the simultaneous research on transport,
metabolism, toxicity, and mucociliary differentiation.
Therefore, the evolution of a perfect in vitro cell system
that would allow separate studying of all of the important
processes and cell types of the airway epithelium still
remains a goal for the future.
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