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ABSTRACT: Low-cost potentiometric and spectrophotometric procedures for
cephalothin (CPI) determination in pure and biological fluids were investigated.
The potentiometric technique is created through titration of CPI with an aqueous
medium of 0.1 M NaOH at an ionic strength of μ = 0.3 M sodium chloride and
room temperature by a combined glass pH electrode. Using the standard addition
method, we found that the detection and quantitative limits were 0.042 mg/mL,
with the standard deviation SD = 0.011, correlation coefficient R = 0.9880 (n =
5), and linear concentration ranges from 0.042 to 0.82 mg/mL. This technique
was utilized to assess CPI in pure solutions, urine, and serum with suitable results.
No interference was exposed in the presence of public components of the samples
under study. Recovery of CPI for pure and biological fluids is in the range of
98.2−101%. Also, the spectrophotometric method has been performed through
the formation of the Prussian Blue (PB) complex. The reaction between the
acidic hydrolysis product of CPI (T = 60 °C) and the mixture of Fe3+ with hexacyanoferrate (III) ions (HCF(III)) was detected for
the spectrophotometric determination of the drug. The maximum absorbance of the formed complex was measured at λ = 283 nm
with 2.0 × 103 L mol−1 cm−1 molar absorptivity. Reaction states have been advanced to acquire the PB complex of great sensitivity
and longer stability. In optimal states, the absorbent of the PB compound was attained to grow linearly with the increase in the
concentration of CPI, which agrees with the correlation coefficient values. The detection and quantitative limits were 0.000036 and
0.0012 mg/mL, respectively, with the standard deviation, SD = 0.0005, correlation coefficient, R = 0.9955 (n = 5), and the linearity
range of the calibration plot 0.0005−0.02 mg/mL CPI. The planned technique was positively utilized for the detection of CPI in
both urine and serum models. The results fit well with the data found from the potentiometric method.

1. INTRODUCTION
As shown in Figure 1, cephalothin (CPI) is an antibiotic that is
used to modify a few bacterial infections. It is the first group of

cephalosporin and is the greatest efficient cephalosporin versus
resistant microorganisms. A review of analytical techniques for
sodium cephalothin was conducted.1,2

While reviewing the literature, several methods to determine
the CPI either in pure, pharmaceutical, or biological fluids were
revealed. These methods include chemiluminescence,3 chroma-
tography,4−9 potentiometry,10 differential pulse polarogra-
phy,11−13 micellar electrokinetic capillary chromatography,14

and stripping voltammetric procedures.15 Stripping voltamme-
try was advanced to adjust CPI activity. This technique is
established on the adsorptive deposition of CPI at the electrode
and then scans in a negative sweep. The applicability of this
method was confirmed by resolving CPI in therapeutic
preparations and biotic liquids such as serum and urine. The
conformation of a pseudopotential-determination phase de-
signed for the CPI-selective electrode has been governed and the
basic electrode factors are measured.1 Spectrophotometric,16

first-derivative spectrophotometry,17 and fluorimetry18 proce-
dures were found in the literature for CPI determination. A
stability-signifying gradient reversed-phase liquid chromatog-
raphy procedure has been advanced for the quantifiable resolve
of CPI, an antimicrobial compound, in the attendance of its
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Figure 1. Structure of the CPI.
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impurities and degradation products produced from the
required degradation investigation.1

Although these analytical methods are more sensitive and
accurate, they are high-cost and time-consuming and require
complex procedures for sample preparation and analysis
protocols. Thus, the use of potentiometric and spectrophoto-
metric procedures to analyze binary and trinary complexes
formed between metals and biological and pharmacological
compounds has attracted a lot of interest in analytical
chemistry.19−25 In biological fluids, the presence of certain
ions is thought to have a major impact on the pharmacological
actions of some chemical substances.26

The potentiometric technique has been employed greatly in
various branches of liquid chemistry; it is by far the greatest
precise and broadly appropriate procedure currently existing for
ionic balances.27−33 As an analytical application of potentio-
metric studies, the equivalence point of the produced titration
curves was identified using a Gran plot.34 Sundry applications of
the Gran plot have been published in the literature.27,30,33,35 For
this purpose, the purpose of this work was to grow, for the first
time, a potentiometric technique for direct analysis of CPI based
on a potentiometric titration of the drug in aquatic solutions
with NaOH solution by means of a combined glass electrode.
Also, we state here that the formation and use of the Prussian

Blue (PB) complex in the growth of spectrophotometry
technique for the assessment of cefuroxime, cefotaxime, and
ceftriaxone in dosage forms have been advanced and proven.
The procedure is built on the creation of the PB complex. The
reaction among the acid hydrolysis product of the CPI at 60 °C
among the combination of Fe3+ and HCF(III) ions was
estimated for the spectrophotometric assessment of the CPI.
Therefore, we will use this method for the analysis of CPI in
pure, urine, and serum trials.

2. EXPERIMENTAL SECTION
2.1. Reagents and Instruments. Cephalothin sodium salt

was obtained from Sigma-Aldrich (Steinheim, Germany) and
used without further refinement. Standard solutions were
prepared daily by dissolving an appropriate quantity of CPI in
bidistilled water. From this solution, a series of dilutions were
prepared in water to gain a range of suitable concentrations. All
other solutions were able to be obtained via bidistilled water and
analytical reagents. Urine and serum samples used in the current
analysis were pooled from healthy volunteers.
pH experiments were performed on a pH-meter model

(JENWAY) via a combined glass electrode (Precise 0.01 pH
unit). Spectrophotometric assessments were operated using the
single beam spectrophotometer model JENWAY 6305 by using
1 cm quartz cells.

2.2. Methods. 2.2.1. Preparation of Sample Solutions.
2.2.1.1. Pure Form. A standard solution (25 mL) of CPI (1 ×
10−2 M) (ionic strength adjusted to 0.3 M with NaCl) was
prepared by the suitable dilution of the stock solution with
doubly distilled water. Then, an aliquot of 15mL of CPI solution
was transferred to a thermostatic glass cell (25 ± 0.1 °C) and
then potentiometrically titrated with a standard solution of
NaOH (I = 0.3 M). The same procedures were carried out in
other biological samples.

2.2.1.2. Spiked Urine. In a test tube, 1 mL of the standard
solution of the drug in methylene chloride (0.0003−0.0008 mg
mL−1) was pipetted and evaporated until dryness in a water bath.
Onemilliliter of urine sample from healthy volunteers was added
and shaken well on a vortex. The spiked urine was extracted
twice 4 mL each in the methylene chloride, and the total extract
was collected in a 10−mL standardized flask and evaporated
until dryness in a water bath. The flask was cooled, and the
technique was completed at the same described for CPI
determination in the pure form under the conventional assay
methods.

2.2.1.3. Spiked Serum.Onemilliliter of human serum sample
from healthy volunteers was diluted to 10 mL via the
recommended medium. Various concentrations from CPI
were added, and the process was done as described in the
pure form using the entire universal assay techniques.

2.2.2. Potentiometric Measurements.A solution of 25mL of
1× 10−2MCPI (I is adapted to 0.3M byNaCl) was prepared by
appropriate dilution with doubly distilled water. After that, 15
mL of CPI was transferred to a thermostatic cell (25 ± 0.1 °C)
and then titrated by a standard solution of NaOH (I = 0.3 M).
The same procedures were carried out in other biological
samples.

2.2.3. Spectrophotometric Measurements. 2.2.3.1. Absorp-
tion Spectra. The chromogenic reagent was prepared as earlier
stated36 by mixing 1 mL of 0.02 M FeCl3 (0.02 M) and 0.25 mL
of HCF (III) (0.008 M) and made up to 10 mL, and the
absorption spectra were determined. An aliquot of CPI was
mixed with 2 mL of hydrochloric acid (0.1 M) in a tube, and the
solution was heated to 60 °C for 20 min. The mixture was
allowed to cool, and 1 mL of 0.02 M ferric chloride and 0.25 mL
of HCF (III) of 0.008 M were added and the mixture was made
up to 10 mL with distilled water. An intense blue color was
formed after 20 min, and absorption λmax was determined. The
proposed spectrophotometric method was made on the aliquot
part of the resultant solutions.

2.2.3.2. Calibration Curve. A 0.1 mg/mL portion of the
standard solution of CPI was transferred to a 10 mL volumetric
flask having 2 mL of hydrochloric acid (0.1M). The mixture was
put in a thermostat and adjusted to 60 °C for 20 min, and the

Figure 2.Representative potentiometric titration curve of CPI (pure): (a) blank titration curve, (b) 1st derived curve and (c) 2nd derived of curve, μ =
0.3 M NaCl at room temperature.
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chromogenic substances were added as depicted above. The
absorbance was judged at λmax = 283 nm wavelength against
blank after 20 min. The calibration plots were depicted, and the
quantity of CPI present in the sample solution was calculated.

2.2.4. Statistical Analysis. Gran Plot was created, and the
limit of detection (LOD), the limit of quantitation (LOQ), and
the standard deviation (SD) were computed using the standard
addition method. Previously, Microsoft Excel and the standard
addition method were successfully applied for the same
purpose.19,27,30,33

3. RESULTS
3.1. Potentiometric Determination of CPI. As shown in

Figure 2, curve (a) displays the curve with only one inflection. In

the planned procedure, change at the titration endpoint was
distinct and adequate to give a potentiometric titration curve of
suitable shape for a precise and reproducible endpoint. Curve
(b) displays the first derivative of the potentiometric titration
curve by a combined glass pH-electrode, and curve (c)
represents the second derivative.

3.2. Effect of Ionic Strength on CPI Determination. As
shown in Table 1, different ionic strength ranges from 0.05 to
0.75 M NaCl via the potentiometric method. We noticed that
the highest and best recovery percent was 100.2 ± 0.11

(enclosed 100%) at 0.3 M NaCl. Thus, 0.3 M ionic strength can
be used for CPI determination in pure and biological fluids.

3.3. Determination of CPI in the Pure Form. Table 2
indicates that the range of recovery for pure CPI using the
potentiometric method is linear from 95.3−103.2% and was
obtained under optimized conditions (I = 0.3 M NaCl). The
percentage recoveries were present to be accurate to 100%, with
a standard deviation range, SD (n = 5), of 0.2−0.3 and a
confidence range of 0.14−0.23 at a 95% confidence level. The
method was validated as guidelines for linearity, precision,
accuracy, LOD, LOQ, and robustness.37 These results point to
the precision and accuracy of the technique.
Detection limits are calculated as 3σ/b and the quantitative

limits are also computed as 10σ/b.37 Wherever b is the slope and
σ = SD (standard deviation), CPI can be detected from 0.042
mg/mL, and the correlation coefficient was R = 0.9880 (n = 5)
with standard deviation (SD = 0.11). Linear concentration
ranging from 0.042 to 0.81 mg/mL can be determined
successfully, as shown in Figure 3.

3.4. Analytical Application. 3.4.1. In Spiked Urine
Sample. As shown in Figure 4, curves a, b, and c are
representative titration curves with only one variety point, the
first, and second derivative of the potentiometric curve,
respectively.
Figure 5 and Table 3 show that the range of recovery for

spiked urine samples using the potentiometric method is linear
from 96.6 to 104.4%, which were found under adjusted
conditions (I = 0.3 M NaCl). The percentage recoveries were
noticed to be close to 100%, with a standard deviation range, SD
(n = 5), of 0.13−0.32. These results opinion out the precision
and accuracy of the technique.

3.4.2. In Spiked Serum Sample. Figure 6 and Table 4 reveal
that the recovery range for spiked serum samples by the
proposed method is linear from 97.5 to 102% and were gathered
under optimized conditions (I = 0.3 M NaCl). The percentage
recovery appeared to be close to 100%, with a standard deviation
range, SD (n = 5), of 0.1−0.33. These results indicated the
precision and accuracy of the technique.

3.4.3. Spectrophotometric Measurements. Figure 7a shows
the UV spectra of the Fe (III) with HCF (III) in the presence of
HCl, which did not show a robust absorption in theUV region of
the spectrum. Then, during the addition of the CPI hydrolysis
product, the absorption band at λmax = 283 nm appeared, which
indicates the formation of the PB complex, as shown in Figure
7b. This complex has been used to detect CPI. The method is
based on the formation of the PB complex.

Table 1. Ionic Strength Effect on the Detection of CPI by the
Potentiometric Technique at 25 ± 0.1 °C

ionic strength (M) add (CPI) (mg) found (mg) recovery ± SD (%)

0.05 10.46 9.06 86.6 ± 0.12
0.1 10.46 9.76 93.3 ± 0.15
0.3 10.46 10.48 100.2 ± 0.11
0.5 10.46 11.15 106.5 ± 0.2
0.75 10.46 12.0 114.7 ± 0.24

Table 2. Recovery Range for CPI in Pure Forms

add pure
(mg/mL)

found
(mg/mL)

recovery
(%)

SD
(n = 5)

confidence
(α = 0.05)

0.04184 0.0399 95.3 0.20 0.14
0.16736 0.1631 97.4 0.18 0.16
0.29288 0.2871 98.0 0.14 0.13
0.37656 0.374 99.3 0.11 0.21
0.5684 0.576 101.3 0.22 0.19
0.8116 0.838 103.2 0.30 0.23

Figure 3. Linearity range of CPI at 0.3 M NaCl and room temperature.
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Figure 4. pH−metric titration curve of CPI in spiked urine sample: (a) blank titration curve, (b) 1st derived curve and (c) 2nd derived of curve, μ = 0.3
M NaCl and at 25 ± 0.1 °C.

Figure 5. Relation between the recovery and the concentration of CPI in spiked urine sample at μ = 0.3 M NaCl and 25 ± 0.1 °C.

Table 3. Recovery Data for Potentiometric Determination of
CPI in the Spiked Urine Sample at μ = 0.3 NaCl and 25 ± 0.1
°C

add pure
(mg)

found
(mg)

recovery
(%)

SD
(n = 5)

confidence
(α = 0.05)

1.046 1.011 96.6 0.32 0.17
2.092 2.092 98.3 0.16 0.13
4.18 4.253 101.6 0.21 0.21
6.27 6.55 104.4 0.13 0.26

Figure 6. Linearity range of CPI in spiked serum sample, μ = 0.3 M NaCl at 25 ± 0.1 °C.

Table 4. Recovery Data for Potentiometric Detection of CPI
in the Spiked Serum Sample at 25 ± 0.1 °C

add pure
(mg)

found
(mg)

recovery
(%)

SD
(n = 5)

confidence
(α = 0.05)

1.046 1.02 97.5 0.16 0.14
3.13 3.075 98.2 0.23 0.23
5.23 5.16 98.6 0.33 0.20
7.30 7.25 99.3 0.10 0.11
10.0 10.20 102.0 0.22 0.31
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Figure 7. UV spectra of (a) chromogenic substance [FeClO4 + HCF (III)]; and (b) a + CPI hydrolysis product.

Figure 8. Concentration influence of HCl used for hydrolysis of CPI over a period of 20 min at temperature 60 °C on the absorption of PB complex.

Figure 9. Time effect study on 2 ppm of CPI (pure) absorption pH = 1 and λmax = 283 nm.

Figure 10. Influence of acidic hydrolysis temperature over a period of 20 min acid hydrolysis on the absorbance of PB complex associated with the
hydrolysis of 2 ppm of CPI.
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The effect of the several concentrations of HCl used in the
acid hydrolysis step of CPI is revealed in Figure 8. Maximum
absorbance was gained at 0.1 M HCl. Therefore, this

concentration was selected for extra study. Also, the influence
of time and temperature of hydrolysis of CPI displayed in

Figure 11. Effect of concentration of Fe (III) on absorbance of 2 ppm of CPI (pure), at λmax = 283 nm, pH = 1 and temperature 60 °C.

Figure 12. Effect of concentration of HCF (III) on absorbance of 2 ppm of CPI (pure), at λmax = 283 nm, pH = 1, and temperature 60 °C.

Figure 13. Effect study of wavelength on absorbance of 20 ppm of CPI (pure).

Figure 14. Effect study of pH on 20 ppm of CPI (pure) at λmax = 283 nm.
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Figures 9 and 10 shows that hydrolysis is complete at 60 °C after
20 min.
The influence of the reagent concentration on the color

strength of the complex was examined. As explained in Figures
11 and 12, it was observed that 0.04 M FeCl3 and 0.01 M HCF
(III) were suitable for great color advancement.
The addition of HCF(III) as a predicted oxidation product

did not considerably change the oxidation rates. The acquired
oxidation products were recognized by using spot testing and
Fourier transform infrared spectra. Also, the wavelength effect
and pH on the absorbance of the hydrolysis product of CPI are
investigated, as shown in Figures 13 and 14. The maximum
absorbance was attained at λmax = 283 nm and pH = 1.0.

4. DISCUSSION
The planned technique was successfully applied for CPI
detection in spiked urine and serum samples. To detect the

utility of the planned technique, the effects of the additives and
excipients, which regularly accompany CPI in the pure form
such as NaCl and sodium acetate and (D (+) lactose
monohydrate, were examined in a concentration range of 100
periods developed compared to that of CPI. No interference was
noticed in the investigated concentration range.

The reaction between the acidic hydrolysis product of CPI
with a mixture of Fe3+ and HCF (III) ions was evaluated for the
spectrophotometric determination of CPI. The β−lactam ring
present in this drug molecule has been shown to be enormously
liable to nucleophilic attack in the presence of acid and alkali or
even neutral molecules. Several methods for quantitative
estimation of β−lactam antibiotics have been based on the
measurement of the color reaction of their degradation products
and are used as well-accepted methods. This property has been
exploited in the present investigation.36,38

The complex has a λmax = 283 nm and molar absorption of 2.0
× 10−3 L mol−1 cm−1. Different experiments were performed to
obtain the optimum conditions. Between the mineral acids, the
purpose of adding HCl to the reaction mixture is to act as a
catalyst and speed up the reaction. It is a strong acid that can help
break down the reactants and facilitate the formation of the
products. Therefore, HCl was displayed to offer good intensity
color and rapidity reaction.39 It was also taken that an extreme
absorbance of the PB complex was achieved at 20min. The color
was steady for up to 40min at the optimal conditions selected for
the reaction.
Fawzy et al.40 stated that the kinetics and mechanistic aspects

of the oxidation of two β−lactam antibiotics, ampicillin and
flucloxacillin, by alkaline HCF (III) were examined using
spectrophotometry at a fixed temperature. The oxidation
reactions showed a 1:4 (drug: HCF(III)) stoichiometry. The
reaction kinetics were found to follow the first-order depend-
ence for the oxidant and fractional first-order dependence for the
drug and [OH−]. The enhancement of the ionic strength and
dielectric constant was found to increase the oxidation rates.
Free radical tests of the reactions showed positive results. As
revealed in Figure 15, a linearity range was created at absorbance
(λmax = 283 nm) of the PB complex and CPI concentration
ranging from 0.002−0.02 mg/mL through correlation coef-
ficient R2 = 0.9942 and standard deviation (n = 5) SD = 0.0015.

Figure 15. Linearity range for spectrophotometric determination of CPI (pure), at pH = 1 and λmax = 283 nm using the standard addition method.

Table 5. Recovery Range of Spectrophotometric
Determination of CPI (pure) at pH = 1 and (λ = 283 nm)
Using the Standard Addition Method

add (mg) found (mg) recovery (%) SD (n = 5) confidence (α = 0.05)

0.05 0.0483 96.6 0.21 0.18
0.1 0.0981 98.1 0.17 0.14
0.15 0.1462 97.4 0.15 0.13
0.25 0.2485 99.4 0.11 0.09
0.35 0.355 101.4 0.24 0.21

Table 6. Comparative Analysis between Potentiometric and Spectrophotometric Data of CPI in Pure, Spiked Urine, and Serum
Trialsa

regression equation
LR × 10−3

(mg/mL) n R2
DL × 10−3

(mg/mL)
QL × 10−3

(mg/mL) SD

CPI (pure) y = 10.15 × + 95.2 0.042−0.82 5 0.9880 0.042 0.05 0.11
(y = 0.0041 × + 0.002) (0.5−20.0) (5) (0.9955) (0.36) (1.20) (0.0005)

CPI in the spiked urine sample y = 0.166 × + 93.6 1.05−10.0 5 0.9923 1.01 1.05 0.32
(y = 0.0309 × + 0.0412) (1.7−15.0) (5) (0.9891) (0.97) (3.20) (0.01)

CPI in the spiked serum sample y = 9.33 × + 97.02 0.05−0.35 5 0.9856 0.05 1.02 0.16
(y = 0.0019 × + 0.5702) (1.0−8.0) (5) (0.9929) (0.31) (1.05) (0.0002)

aWhere data between brackets () are from the spectrophotometric method, LR, linearity range; DL, detection limit; QL, quantification limit.
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CPI was detected by the proposed procedure in the pure form.
Table 5 summarizes the results found for CPI, showing that the
recovery is good. The recovery percent of the method ranged
from 96.6 to 101.4%, via standard deviations varying from 0.11
to 0.24 and confidence limits from 0.18 to 0.21. The results
attained via the suggested technique were located to be in good
agreement with those achieved in the potentiometric manner
(95.3−103.2%, SD = 0.2−0.3). Also, the results achieved by the
proposed approaches were created to be in good agreement with
those observed in a spectrofluorimetric manner (98.7± 1.3%).36

Regression considerations of the Beer’s law plot indicate great
correlation, and the estimated detection and quantification limit
specify the great precision of the planned technique (Table 6).
The registered drugs including CPI were evaluated by the

planned technique. Five repeats, determinations were kept out
and the results acquired, as shown in Figure 15, seem to be
greatly reasonable. The proposed technique is easy, precise,
exact, and cheap. The components occupied are cheaper and
instantly available, and the equipment is resourceful and
adaptable. The technique is mentioned for the tedious analysis
of the CPI in pure, urine, and serum samples, as displayed in
Table 6.

5. CONCLUSIONS
Cephalothin was determined via the proposed techniques in
pure, urine, and serum samples. The results acquired for
cephalothin showing recovery are satisfactory. The recovery
percentage of the two techniques ranged from 96.6 to 101.4%,
with standard deviation varying from 0.001 to 0.01 and
confidence limits from 0.02 to 0.11, respectively. The results
achieved by our method were created to be in appropriate
agreement with those observed via the spectrofluorimetric
technique (98.7 ± 1.3%). Compared with several previously
existing procedures for the estimation of cephalothin, which
require a special instrument, reagent, and experience, our
procedures revealed the advantage of simple processes, fast
response, little cost, and adequate precision in the analysis of
cephalothin in pure and biotic samples (urine and serum).
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