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Glaucoma is a common ocular neurodegenerative disease characterized by the
progressive loss of retinal ganglion cells and their axons. It is the most common
cause of irreversible blindness. With an increasing number of glaucoma patients and
disease progression despite treatment, it is paramount to develop new and effective
therapeutics. Emerging new candidates are the receptor agonists of the incretin
hormone glucagon-like-peptide-1 (GLP-1), originally used for the treatment of diabetes.
GLP-1 receptor (GLP-1R) agonists have shown neuroprotective effects in preclinical
and clinical studies on neurodegenerative diseases in both the brain (e.g., Alzheimer’s
disease, Parkinson’s disease, stroke and diabetic neuropathy) and the eye (e.g., diabetic
retinopathy and AMD). However, there are currently very few studies investigating
the protective effects of GLP-1R agonists in the treatment of specifically glaucoma.
Based on a literature search on PubMed, the Cochrane Library, and ClinicalTrials.gov,
this review aims to summarize current clinical literature on GLP-1 receptor agonists
in the treatment of neurodegenerative diseases to elucidate their potential in future
anti-glaucomatous treatment strategies.

Keywords: glaucoma, GLP-1 receptor agonists, antidiabtics, ophthalmology, neuroprotection, neurodegenerative
diseases

INTRODUCTION

Glaucoma is one of the most common neurodegenerative eye diseases and the leading cause of
irreversible blindness. It is estimated to affect∼112 million people worldwide by 2040 (Tham et al.,
2014). Glaucoma is characterized by the progressive and irreversible loss of retinal ganglion cells,
the output neurons of the retina. There are three primary risk factors for glaucoma; increasing
age, genetic risk and elevated intraocular pressure (IOP). Elevated IOP is strongly associated
with disease progression in ∼60% of patients, but all available anti-glaucomatous therapies
(pharmacological and surgical) exclusively target IOP (Kolko, 2015, 2017; Kolko et al., 2015;
Kalouda et al., 2017; Quigley, 2019). The number of glaucoma cases associated with an actually
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elevated IOP varies significantly across glaucoma subtypes, and
many glaucoma patients progress to blindness despite low IOPs
and/or are refractory to IOP-lowering treatments (Dielemans
et al., 1994; Heijl et al., 2002; Topouzis and Anastasopoulos, 2007;
Cedrone et al., 2008; Peters et al., 2013; Ho and Wong, 2019).
Therefore, there is an urgent unmet need to explore new therapies
targeting mechanisms of glaucomatous neurodegeneration in
addition to IOP reduction. One such important new route of
study in glaucoma, and the focus of this review, may be the
glucagon-like peptide 1 (GLP-1).

Glucagon-like peptide 1 (GLP-1) is an incretin hormone
that, like its fellow incretin hormone GIP (glucose-dependent
insulinotropic polypeptide), stimulates a decrease in blood
glucose levels after nutrient intake. GLP-1 achieves the decrease
in blood glucose levels by potentiating glucose-induced insulin
secretion (the “incretin”-effect), improving insulin sensitivity and
inhibiting glucagon release. Furthermore, GLP-1 regulates weight
and satiety and delays gastric emptying (Gutniak et al., 1992;
Drucker, 2018; Yildirim Simsir et al., 2018). The first agents
targeting GLP-1 receptor (GLP-1R) signaling were developed to
optimize the treatment of type 2 diabetes mellitus (T2D) as an
adjunct to metformin when therapeutic goals where not met
(Yildirim Simsir et al., 2018). The first GLP-1R agonists received
FDA-approval in 2005 and included exenatide. Subsequently,
many different GLP-1R agonists were developed and approved,
including: extended release exenatide (exenatide XR), liraglutide,
lixisenatide, dulaglutide, and semaglutide (Table 1). Although
all GLP-1R agonists are effective in stabilizing blood glucose
levels, glycated hemoglobin (HbA1c), cholesterol levels, insulin
sensitivity, and several other beneficial aspects of metabolism
in T2D patients (Courrèges et al., 2008; Patel et al., 2014;
Jinnouchi et al., 2015; Rizvi et al., 2015; Rizzo et al., 2015, 2016),
drug administration has been challenging. Until recently, the
treatments had to be administered subcutaneously (Table 1).
In September 2019, the first oral GLP-1R agonist for T2D was
approved by FDA (Davies et al., 2017; Aroda et al., 2019; Husain
et al., 2019; Mosenzon et al., 2019; Pieber et al., 2019; Pratley et al.,
2019; Rodbard et al., 2019; Rosenstock et al., 2019; The U.S. Food
and Drug administration, 2019; Zinman et al., 2019a; Yabe et al.,
2020; Yamada et al., 2020; Khoo and Lin, 2021). With its great
beneficial systemic effects and promising results from previous
randomized clinical trials with injectable semaglutide, the oral
GLP-1R agonist, Rybelsus R©, also seem to be a promising and
convenient anti-obesity treatment option (Khoo and Lin, 2021).

Glucagon-like peptide 1 (GLP-1) agonists not only exert a
beneficial systemic effect, but also cross the blood-brain barrier
(Kastin et al., 2002; Secher et al., 2014; Yildirim Simsir et al.,
2018). In this context, GLP-1R agonists have been shown to
affect the central nervous system and exhibit neuroprotective
properties in animal models of several neurodegenerative
diseases, including Alzheimer’s and Parkinson’s disease, stroke,
diabetic retinopathy, and ocular hypertension (McClean et al.,
2011; Hao et al., 2012; Fan et al., 2014; Gonçalves et al., 2016;
Zhang et al., 2018, 2019; Basalay et al., 2019; Yang et al., 2019;
Chang et al., 2020; Ramos et al., 2020; Ren et al., 2020; Sterling
et al., 2020; Zhai et al., 2020). The potential neuroprotective
properties of GLP-1R agonists have also been demonstrated in

clinical trials, with Novo Nordisk currently running a phase III
clinical trial of oral semaglutide as a potential treatment option
for Alzheimer’s disease in the announced EVOKE trial program
(NCT04777409, NCT04777396).

In addition to GLP-1R agonists, orally administrated DPP4-
inhibitors, e.g., sitagliptin and saxagliptin, which are known to
potentiate the effect of endogenous GLP-1 by inhibiting its
degradation, have also been clinically studied as protective agents
against retinopathy (Chung et al., 2016), Alzheimer’s disease
(Isik et al., 2017), and Parkinson’s disease (Svenningsson et al.,
2016) in T2D patients, although DPP4-inhibitors cannot cross
the blood-brain barrier (Mousa and Ayoub, 2019).

Recently, a registry-based case-control study of 1,961 patients
also associated the use of GLP-1R agonists with a reduced risk
of glaucoma (Sterling et al., 2021), strongly supporting further
research into the use of agents that increase GLP-1R signaling
as anti-glaucomatous treatment strategies. Accordingly, previous
studies of oral antidiabetics and insulin have also been proposed
for the treatment of glaucoma as well as other ocular conditions
such as age-related macular degeneration (AMD) (Ott et al., 2014;
Lin et al., 2015, 2017; Chung et al., 2016, 2019; Maleškić et al.,
2017; Douros et al., 2018; Kim et al., 2018; Li et al., 2018; Vilsbøll
et al., 2018; Wang et al., 2018; Brown et al., 2019; Chen et al., 2019;
Fan et al., 2020; Gaborit et al., 2020; Blitzer et al., 2021; Sterling
et al., 2021). The present review aims to summarize current
literature on antidiabetics in the treatment of neurodegenerative
diseases with a special focus on GLP-1R agonists and glaucoma.

METHOD OF LITERATURE SEARCH

PubMed and the Cochrane Library were searched in April 2021
(Figure 1). The search was not limited to a specific language.
However, mainly clinical studies and clinically inclined reviews
were included as core sources. In addition, the Cochrane
Library was screened for relevant Cochrane reviews only.
MeSH-controlled vocabulary terms and related keywords
were combined using appropriate Boolean operators to find
literature either investigating or discussing incretin-based drugs
(GLP-1R agonists and DPP4-inhibitors) for the treatment of
neurodegenerative diseases, particularly glaucoma, diabetic
retinopathy, AMD, Alzheimer’s disease, Parkinson’s disease,
stroke and neuropathy. Search words included: GLP-1, Glucagon-
Like Peptide 1, semaglutide, oral semaglutide, Rybelsus, Ozempic,
liraglutide, lixisenatide, dulaglutide, albiglutide, exenatide,
DPP4 inhibitor, dipeptidyl phosphatase 4 inhibitor, sitagliptin,
antidiabetics, metformin, insulin, type 2 diabetes, diabetes,
diabetes mellitus, neurodegenerative diseases, glaucoma, AMD,
age-related macular degeneration, diabetic retinopathy, elderly,
Alzheimer, dementia, cognitive impairment, Alzheimer’s Disease,
Parkinson, Parkinson’s Disease, stroke, neuropathy. The reference
lists of all core sources were searched for additional references.
Completed and ongoing trials examining the role of GLP-1R
agonists, especially semaglutide, in the treatment of glaucoma,
AMD, Alzheimer’s, and Parkinson’s disease, were searched on
the public clinical trial registry clinicaltrials.gov (NCT04777409,
NCT04777396, NCT03811561, NCT01843075, NCT04232969,
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TABLE 1 | Comparison of various currently available GLP-1 receptor agonists.

Drug
(Commercial
name)

Administration HbA1c Weight GI-adverse
effects

Patient
persistence

Preclinically proven
neuro-protective effect

Exenatide
(Byetta R©)

s.c. Twice daily Low Low Highest − Yes

Exenatide XR
(Bydureon R©)

s.c. Once weekly Intermediate Low low low

Lixisenatide
(Lyxumia R©/
Adlyxin R©)

s.c. Once daily Low Low Intermediate − Yes

Liraglutide
(Victoza R©)

s.c. Once daily High High Intermediate/high Intermediate Yes

Dulaglutide
(Trulicity R©)

s.c. Once weekly High Intermediate Intermediate/high High Yes

Semaglutide
(Ozempic R©)

s.c. Once weekly Highest Highest High High Yes

Semaglutide
(Rybelsus R©)

p.o. Once daily Highest/ high Highest Intermediate/high Highest*

Based on results from HbA1c-levels and bodyweight reductions of patients, semaglutide seem to be the most efficient GLP-1R agonist. However, semaglutide may also
cause higher rates of gastrointestinal (GI) adverse effects. In general, once weekly or orally administrated GLP-1R agonists, i.e., oral semaglutide, are preferred amongst
patients. The scheme is inspired by Trujillo et al. (2021) GLP-1 receptor agonists: an updated review of head-to-head clinical studies and patients’ persistence of treatment
based on estimations by Uzoigwe et al. (2021) Semaglutide Once-Weekly Persistence and Adherence Versus Other GLP-1 RAs in Patients with Type 2 Diabetes in a US
Real-World Setting. P.o.; per oral, s.c.; subcutaneous.
*Based on a Japanese diabetes treatment related quality of life questionnaire oral semaglutide seemed to be preferred over injectable dulaglutide (i.e., injectable GLP-1R
agonist) by the participating patients (Ishii et al., 2021).

NCT03659682, NCT02953665, NCT04305002, NCT03439943,
NCT04269642, NCT04154072, NCT02673931, NCT02829502,
NCT02838589, NCT00418288, NCT00256256, NCT03948347,
NCT03287076, NCT02684578, NCT05035095). Completed
clinical trials with unknown status, no recent updates, no public
or published results, and no relevance to the subject of the
current review were excluded.

RESULTS AND DISCUSSION

Oral Semaglutide Has Great Potential for
the Prevention of Retinal
Neurodegeneration
There is a demonstrated neuroprotective effect of GLP-1R
agonists in both the retina and brain in preclinical studies of
ocular hypertension, diabetic retinopathy, Alzheimer’s disease,
Parkinson’s disease, stroke, neuropathy, and several other
neurodegenerative diseases (Kastin et al., 2002; McClean et al.,
2011; Hao et al., 2012; Fan et al., 2014; Secher et al., 2014;
Gonçalves et al., 2016; Zhang et al., 2018, 2019; Basalay et al.,
2019; Yang et al., 2019; Chang et al., 2020; Ramos et al., 2020;
Ren et al., 2020; Sterling et al., 2020; Zhai et al., 2020). In
the retina, GLP-1R agonists have specifically protected retinal
ganglion and glia cells, such as the Müller glia, from various
stresses (Hao et al., 2012; Fan et al., 2014; Gonçalves et al., 2016;
Yang et al., 2019; Ramos et al., 2020; Ren et al., 2020; Sterling et al.,
2020) (Figure 2).

One of the most promising and effective GLP-1R agonists
is semaglutide (Tables 1, 2) (Trujillo et al., 2021), which until

September 2019 was only available as an injectable formulation.
Semaglutide is also being tested in trials against diabetic eye
diseases expected to end in 2027 (NCT03811561; the FOCUS
trial). Now, with its ability to be administered orally, semaglutide
offers great opportunities in the treatment of T2D as well as
other potential disease groups. Semaglutide was designed from
the backbone of another GLP-1R agonist, liraglutide, which
has been tested as a prospective neuroprotective treatment
option against dementia (Femminella et al., 2019; Evaluate,
2020) (NCT01843075, the ELAD study). In addition, semaglutide;
like dulaglutide and exenatide XR, were developed to act as a
long-acting GLP-1 analog, replacing the previous subcutaneous
injections once daily with once weekly administration, potentially
improving patient adherence and convenience (Lau et al., 2015).

The safety and efficacy of semaglutide have been assessed in
several phase II and III clinical trials (Marso et al., 2016a; Nauck
et al., 2016; Ahrén et al., 2017; Aroda et al., 2017, 2019; Davies
et al., 2017; Sorli et al., 2017; Ahmann et al., 2018; Kaku et al.,
2018; Pratley et al., 2018, 2019; Rodbard et al., 2018, 2019; Seino
et al., 2018; Husain et al., 2019; Lingvay et al., 2019; Mosenzon
et al., 2019; Pieber et al., 2019; Rosenstock et al., 2019; Zinman
et al., 2019a,b; Capehorn et al., 2020; Ji et al., 2020; Yabe et al.,
2020; Yamada et al., 2020). Among these, there are 15 studies
assessing the injectable semaglutide as part of the SUSTAIN trial
series and 10 evaluating the newly approved oral semaglutide
as part of the PIONEER trial program (Table 2). Through the
SUSTAIN 1-10 (Marso et al., 2016a; Ahrén et al., 2017; Aroda
et al., 2017; Sorli et al., 2017; Ahmann et al., 2018; Pratley
et al., 2018; Rodbard et al., 2018; Lingvay et al., 2019; Zinman
et al., 2019b; Capehorn et al., 2020) trials, the effect of injectable
semaglutide, measured as reductions in glycated hemoglobin and

Frontiers in Neuroscience | www.frontiersin.org 3 February 2022 | Volume 16 | Article 824054

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-824054 February 15, 2022 Time: 20:5 # 4

Mouhammad et al. GLP-1R Agonists and Glaucoma

FIGURE 1 | PRISMA flowchart and overview of the literature search. Studies were primarily excluded based on their clinical relevance and whether or not they
assessed a neuroprotective effect of GLP-1R agonists/DPP4-inhibitors or not. Thus, included core studies were assessed as eligible if identified as randomized
clinical trials, pilot studies, other interventional studies, epidemiological studies (cohort studies, case-control studies, etc.) and studies analyzing samples from clinical
trials. For elaboration of the core sources, i.e., reviews, preclinical studies investigating the neuroprotective mechanisms behind GLP-1R agonists, relevant abstracts
and post hoc analyses were included as additional records. In total, 199 records were included.

bodyweight, was generally significantly better than treatment
with DPP4-inhibitors (sitagliptin) (Ahrén et al., 2017; Seino et al.,
2018; Ji et al., 2020), SGLT-2-inhibitors (canagliflozin) (Lingvay
et al., 2019), long-acting insulin (insulin glargine) (Aroda et al.,
2017), and other GLP-1R agonists [exenatide XR (Ahmann
et al., 2018), dulaglutide (Pratley et al., 2018) and liraglutide
(Capehorn et al., 2020)]. In the PIONEER 3 (Rosenstock et al.,
2019) and 7 (Pieber et al., 2019) trials, oral semaglutide was
also found to be superior to the DPP4-inhibitor sitagliptin. In
addition, a retrospective database study estimated that patients’
persistence of injectable semaglutide treatment was significantly

higher than treatment with dulaglutide, liraglutide and exenatide
XR (Table 1) (Uzoigwe et al., 2021). Semaglutide has also
shown promise as an effective anti-obesity treatment option. In a
randomized clinical trial, a dose of 2.4 mg injectable semaglutide
weekly in subjects with or without weight-related complication,
semaglutide, along with lifestyle interventions, was associated
with sustained as well as clinically relevant reduction in body
weight (Khoo and Lin, 2021). In 2021, Novo Nordisk launched
the OASIS trial expected to end in 2023 assessing the beneficial
effects and safety-profile of 50 mg daily semaglutide compared to
placebo (NCT05035095).
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FIGURE 2 | Mechanisms behind a neuroprotective effect of GLP-1R agonists in the retina. Preclinical studies have demonstrated a glia- and neuroprotective effect of
GLP-1R agonists in the brain and retina. In the retina GLP-1R agonists have shown to protect against neurodegeneration by preventing: (1) Glutamate
excitotoxicity by, e.g., upregulating glutamate transporters, (2) Neuroinflammation by, e.g., inducing anti-inflammatory cytokines, reducing levels of
pro-inflammatory factors and favoring DNA-repair, (3) Loss of retinal ganglion cells (RGCs), (4) Vascular dysfunction by, e.g., maintaining the blood-retinal
barrier and regulating the tone of retinal capillaries, (5) Oxidative stress by, e.g., inducing an anti-oxidative environment and maintaining mitochondrial integrity,
(6) Glial cell change by, e.g., reducing ocular hypertension-induced astrocyte reactivity, dysfunction and loss of Müller glia. BRB: Blood-retina-barrier.

When comparing oral semaglutide with injectable GLP-1R
agonists as in the PIONEER 4 trial (Pratley et al., 2019),
oral semaglutide appears to be an even better option than
injectable alternatives. In addition, daily oral semaglutide was
found to be ranked as the best GLP-1R agonist to reduce
cardiovascular death and death from any cause when indirectly
compared with injectable semaglutide, liraglutide, lixisenatide,
dulaglutide, albiglutide, exenatide and placebo (Alfayez et al.,
2020). Compared to subcutaneously injected semaglutide, a phase
II trial showed that oral semaglutide was equally effective in
improving HbA1c and body weight for the T2D patients included
in the trial (Davies et al., 2017).

Oral semaglutide is also likely to be more cost-effective than
other existing GLP-1R agonists in the treatment of T2D patients
(Hansen et al., 2020). Across the PIONEER trials, the most
common adverse effects of oral semaglutide were related to the
gastrointestinal tract, similar to the injectable GLP-1R agonists,

and manifested as: vomiting, diarrhea and nausea (Seidu et al.,
2021). In addition, oral semaglutide was not associated with
severe cardiovascular outcomes or further kidney impairment
in patients with renal dysfunction (Mosenzon et al., 2019).
This further supports oral semaglutide as effective despite long-
standing T2D and comorbidities. Thus, oral semaglutide appears
to be the most effective and convenient option compared to other
GLP-1R agonists, DPP4-inhibitors, and second-line antidiabetic
agents. Novo Nordisk also recently started recruiting participants
to the EVOKE trial program (phase III) expected to end in 2024,
in which the effectiveness of oral semaglutide in the treatment
of early Alzheimer’s disease will be assessed by measuring
changes in clinical dementia rating, daily activity, mild cognitive
impairment and mini-mental state examinations and other
secondary outcome measures (NCT04777409, NCT04777396).
Furthermore, as semaglutide is the only GLP-1R agonist that can
be administrated as both an oral and injectable formulation, the
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TABLE 2 | Clinical interventional studies elucidating the efficacy and safety-profile of oral semaglutide in comparison to placebo or other antidiabetics in
patients with T2D.

Comparator treatment Study phase and
name

Study design Results References

Placebo Placebo Phase: III
PIONEER 1
PIONEER 4
PIONEER 5
PIONEER 6
PIONEER 8
PIONEER 9

5,895 patients with T2D were
randomly assigned to receive daily
oral semaglutide (3, 7 or 14
mg/day) or placebo for 26 or 52
weeks. Patients were either
medication-naïve or medicated with
other second-line antidiabetics.

Superiorly reduced HbA1c levels at
all doses and mean body weight.
Did not change the renal function of
participants and had a non-inferior
cardiovascular safety profile
compared to placebo. Also,
semaglutide allowed participants
using basal insulin to reduce their
daily insulin doses by 15-25%.
Gastrointestinal events, mainly
mild-to-moderate nausea, were
more common with oral
semaglutide than with placebo.

Aroda et al., 2019;
Husain et al., 2019;
Mosenzon et al.,
2019; Pratley et al.,
2019; Zinman et al.,
2019a; Yamada
et al., 2020

GLP-1R agonists Injectable
semaglutide

Phase: II 632 patients with T2D were
randomized to receive oral
semaglutide (2.5, 5, 10, 20 mg/day
or escalation to 40 mg/day),
subcutaneous semaglutide
(1.0mg/week) or placebo for 26
weeks.

Improved HbA1c and mean body
weight non-inferiorly compared to
subcutaneous semaglutide.

Davies et al., 2017

Liraglutide or
dulaglutide

Phase: II/III
PIONEER 4
PIONEER 9
PIONEER 10

1,412 patients with T2D were
randomly assigned to receive oral
semaglutide (3, 7 or 14 mg/day),
subcutaneous dulaglutide (0.75
mg/week) or liraglutide (0.9
mg/week or escalation to 1.8
mg/day) for 52 or 57 weeks.
Patients were either
medication-naïve or medicated with
other antidiabetics.

Superiorly or non-inferiorly reduced
HbA1c levels and mean body
weight. A dose of 14 mg/day was
especially efficient.

Pratley et al., 2019;
Yabe et al., 2020;
Yamada et al.,
2020

Other antidiabetics Sitagliptin or
empagliflozin

Phase: III
PIONEER 2
PIONEER 3
PIONEER 7

3,189 patients with T2D were
randomly assigned to receive daily
oral semaglutide (3, 7 or 14
mg/day), sitagliptin (100mg/day) or
empagliflozin (25 mg/day) for 52
weeks or up to 78 weeks.

Superiorly reduced HbA1c levels
and mean body weight. Doses of 7
and 14 mg/day were especially
efficient.

Pieber et al., 2019;
Rodbard et al.,
2019; Rosenstock
et al., 2019

Compared to other antidiabetic drugs, including subcutaneously administrated GLP-1R agonists, oral semaglutide is associated with significant improvements in HbA1c
levels and body weight of patients with T2D and is either non-inferior or superior in effect.

selection of the most convenient mode of administration can be
made on an individual level to best suit the patients’ preferences
and needs. Given the potential neuroprotective and insulin
sensitivity-regulating effects of compounds that increase GLP-
1R signaling, semaglutide appears to be a promising candidate
for further investigation as a novel add-on compound in the
treatment of neurodegenerative diseases, such as glaucoma.

Glucagon-Like Peptide 1 Agonists and Other
Antidiabetic Agents as a Potential Treatment for
Glaucoma
Several antidiabetic compounds have shown potential for
glaucoma treatment (Lin et al., 2015; Maleškić et al., 2017; Sterling
et al., 2021) (Table 3). In support of this, several studies have
suggested that diabetes mellitus is a risk factor for glaucoma
(Oshitari et al., 2007; Chopra et al., 2008; Welinder et al.,
2009; Zhou et al., 2014; Horwitz et al., 2016; Jung et al., 2018;
Hanyuda et al., 2020). Thus, it raises the question of whether

glaucoma may be associated with retinal insulin desensitization
(Agostinone et al., 2018) as well as insulin desensitization of
the brain as associated with Alzheimer’s and Parkinson’s disease
(Faiq et al., 2014; Dada, 2017; Faiq and Dada, 2017). However,
the mechanistic link and relationship between glaucoma and
T2D still needs further analysis and requires further elucidation
(Tielsch et al., 1995; Ellis et al., 2000; Quigley, 2009).

Metformin
Studies conducted by Lin et al. (2015) have shown that patients
with T2D had a reduced risk of developing glaucoma when
exposed to antihyperglycemic agents, in particular metformin,
which was associated with a reduced risk of developing open-
angle glaucoma. A later observational study also associated
the use of metformin with a reduced risk of both glaucoma
and diabetic retinopathy (Maleškić et al., 2017). The use of
metformin has also been linked with a lower risk of developing
other neurodegenerative eye conditions, such as AMD (Brown
et al., 2019; Chen et al., 2019; Blitzer et al., 2021), and diabetic
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TABLE 3 | Clinical studies elucidating the use of antidiabetics against glaucoma.

Compound Study types Study design Study outcome References

Glaucoma GLP-1R agonists Observational 1,961 patients with no baseline glaucoma,
glaucoma suspect nor ocular hypertension
who newly initiated GLP-1R agonist
treatment, e.g., semaglutide, were
compared to an unexposed control group.

Reduced the hazard for both a new
diagnosis of glaucoma and
glaucoma suspect (i.e., angle
closure, no damage).

Sterling et al., 2021

Metformin Observational 150,250 patients with diabetes mellitus
treated with metformin or other antidiabetic
agents were followed and assessed.

Reduced the risk of developing
glaucoma and other ocular
complications as DR.

Lin et al., 2015;
Maleškić et al.,
2017

Clinical studies elucidating the effects of GLP-1R agonists and metformin on the development of glaucoma. The use of antidiabetics is associated with a reduced
risk of glaucoma.

retinopathy (Maleškić et al., 2017; Li et al., 2018; Fan et al., 2020)
(Table 4). The effects of metformin on AMD progression have
not yet been directly investigated. However, there is currently an
ongoing trial (scheduled for completion in 2023) that assesses the
use of metformin to minimize geographic atrophy progression in
AMD patients (NCT02684578).

DPP4-Inhibitors
In addition, with respect to other ocular conditions and the use of
antidiabetic drugs, DPP4-inhibitors have been suggested to exert
a protective role in the progression of diabetic retinopathy (Ott
et al., 2014; Chung et al., 2016, 2019; Kim et al., 2018). In a cohort
study, DPP4-inhibitors appeared to protect against diabetic
retinopathy progression, independent of their glucose-lowering
effect (Chung et al., 2016). Another population-based study in
South Korea comparing the use of DPP4-inhibitors with other
oral glucose lowering agents (sulfonylurea, thiazolidinedione, and
metformin) showed that the overall risk of diabetic retinopathy
events was not increased (Kim et al., 2018). These findings
are supported by a small double-blinded, placebo-controlled
trial in 50 T2D patients, where 6 weeks of treatment with the
DPP4-inhibitor, saxagliptin, increased vasodilation capacity and
decreased retinal capillary blood flow (Ott et al., 2014). Another
recent cohort study showed that the combination of metformin
with DPP4-inhibitors had a strong beneficial effect against non-
proliferative diabetic retinopathy (NPDR) (Fan et al., 2020).
Moreover, the same study showed that the use of sulfonylurea
instead of DPP4-inhibitors in combination with metformin
increased the risk of NPDR (Fan et al., 2020). Thus, several
clinical studies have linked the use of DPP4-inhibitors to either a
reduced odds of diabetic retinopathy or a reduced risk of diabetic
retinopathy progression (Ott et al., 2014; Kim et al., 2018; Wang
et al., 2018; Chung et al., 2019; Fan et al., 2020).

Glucagon-Like Peptide 1 Agonists
Sterling et al. (2021) linked the exposure to GLP-1R agonists (i.e.,
dulaglutide, liraglutide, lixisenatide, exenatide, and semaglutide)
to a low risk of developing open-angle glaucoma (Sterling
et al., 2021). However, previous studies have raised concern that
treatment with GLP-1R agonists may increase the risk of diabetic
retinopathy, making them less favorable to be used against
diabetic eye complications (Diabetes Control and Complications
Trial Research Group, Nathan et al., 1993; No authors listed,
1998, 1999; Aiello and Dcct/Edic Research Group, 2014; Green

et al., 2015; Marso et al., 2016b; Jingi et al., 2017; Tang et al.,
2018; Bain et al., 2019; Lim et al., 2019; Bethel et al., 2021).
Nevertheless, this effect of GLP-1R agonists is most likely caused
by a rapid decrease in patients’ blood glucose levels as discussed
later (Vilsbøll et al., 2018; Bain et al., 2019; Lim et al., 2019).
The AngioSafe 1 study, which is also designed to clarify the
association between exposure to GLP-1R agonists and diabetic
retinopathy through clinical and preclinical study designs found
no risk for severe diabetic retinopathy when patients were
treated with GLP-1R agonists, and no effect of GLP-1R agonists
on angiogenesis (Gaborit et al., 2020). In prospect, the effect
of GLP-1R agonist exposure on severe diabetic retinopathy
should be further elucidated in the ongoing AngioSafe 2 study
(NCT02671864). Another phase III interventional study by Novo
Nordisk, the FOCUS trial, also investigates the long-term effects
of injectable semaglutide in diabetic eye diseases (NCT03811561).

Diabetic Retinopathy and Glucagon-Like Peptide 1
Agonists
Previous studies, including the DCCT, SUSTAIN-6, LEADER
and TECOS trials, have linked exposure to incretin-based
therapies and other hypoglycemic agents (i.e., insulin, injectable
semaglutide, liraglutide, and oral sitagliptin) to the exacerbation
of pre-existing retinopathy (Diabetes Control and Complications
Trial Research Group, Nathan et al., 1993; No authors listed,
1998, 1999; Aiello and Dcct/Edic Research Group, 2014; Green
et al., 2015; Marso et al., 2016a,b; Jingi et al., 2017; Tang et al.,
2018; Bain et al., 2019; Lim et al., 2019; Bethel et al., 2021). For
example, the SUSTAIN-6 trial showed that the risk of retinopathy
events was increased during the first 2 months of treatment with
injectable semaglutide. Nevertheless, a post hoc analysis across
the SUSTAIN trials (Marso et al., 2016a; Ahrén et al., 2017;
Aroda et al., 2017; Sorli et al., 2017; Ahmann et al., 2018; Kaku
et al., 2018; Pratley et al., 2018; Rodbard et al., 2018; Seino et al.,
2018; Lingvay et al., 2019; Zinman et al., 2019b; Capehorn et al.,
2020; Ji et al., 2020) associated the increased risk of diabetic
retinopathy with being limited to the early stages of treatment
and mainly caused by rapid improvements in glycemic control,
i.e., not a direct adverse effect of semaglutide (Vilsbøll et al.,
2018). As part of the AngioSafe 1 study, both an observational
and interventional phase IV study of patients with T2D showed
that GLP-1R agonists did not increase the risk for severe diabetic
retinopathy (Gaborit et al., 2020). This was further supported by
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TABLE 4 | Clinical studies elucidating the use of antidiabetics against ocular conditions other than glaucoma.

Compound Study types Study design Study outcome References

AMD Metformin Observational 320,192 patients with or without AMD
exposed/unexposed to metformin were
compared.

Reduced odds of developing AMD
(wet AMD, dry AMD and macular
degeneration involving, e.g.,
drusen, retinal hemorrhaging or
edema) among patients using
metformin.

Brown et al.,
2019; Blitzer
et al., 2021

Observational 68,205 patients with new-onset T2D
using or not using metformin were
assessed.

Lowered the risk of developing
AMD among diabetic patients.

Chen et al.,
2019

Diabetic
Retinopathy

Metformin Observational 10,379 patients with newly diagnosed
or longstanding T2D (≥ 15 years) and
DR using metformin or metformin along
with DPP4-inhibitors or sulfonylurea
were assessed.

Lowered the risk of severe
non-proliferative, proliferative and
sight-threatening DR.
DPP4-inhibitors further reduced,
and sulfonylurea increased the risk
of DR.

Li et al., 2018;
Fan et al., 2020

Incretin-based
therapies*

Observational 213,652 patients using incretin-based
therapies were compared to patients
using other second line antidiabetics,
i.e., sulfonylurea and long-acting insulin.
All patients had received no prior
treatment for retinopathy.

Did not increase the risk of DR
compared to other antidiabetics.

Wang et al.,
2018

GLP-1R agonists**
&metformin

Observational 80,269 patients with T2D exposed to
GLP-1R agonists were compared to
patients treated with other antidiabetics
or no add-on to metformin and insulin.

GLP-1R agonist exposure was not
associated with severe DR,
metformin was protective, and
insulin strongly associated with
severe DR. GLP-1R agonists were
also found to decrease the risk of
diabetic retinopathy.

Douros et al.,
2018; Gaborit
et al., 2020

Liraglutide** Phase IV interventional 50 patients with T2D and obesity were
randomized to be treated for 4 weeks
with 1.2 mg daily subcutaneous
injections of liraglutide. Purpose was to
assess levels of angiogenic biomarkers
and hematopoietic progenitor cells
associated with DR.

Was not associated with severe
DR. Did not cause any significant
differences in biomarkers and
hematopoetic cells between treated
and control group.

Gaborit et al.,
2020

Semaglutide Post hoc analysis Post hoc analyses of data on DR
across the SUSTAIN clinical trial
program (8.105 patients in total).

Did not directly cause early DR
complications upon treatment
initiation.

Vilsbøll et al.,
2018

DPP4-inhibitors*** Observational 11,282 patients with DR and/or only
T2D using DPP4-inhibitors or other
hypoglycemic agents with/without
metformin were retrospectively
reviewed and compared.

Did not increase the risk for DR and
independently protected against
the progression of DR.

Chung et al.,
2016, 2019

Sitagliptin Observational 14,552 patients with T2D using
DPP4-inhibitors, i.a. sitagliptin (11.026
patients), were followed and assessed
for DR events.

Did not increase the overall risk of
DR. However, short exposure and
low cumulative doses were linked
to greater risk of DR events.

Kim et al., 2018

Saxagliptin Phase III interventional 50 patients with T2D without DR were
randomly assigned to receive either
5 mg saxagliptin or placebo for
6 weeks.

Reduced the retinal capillary blood
flow and increased the vasodilatory
capacity two-fold.

Ott et al., 2014

Other Metformin Observational 44,609 patients with T2D with no
baseline retinal vein occlusion were
followed and compared to non-diabetic
subjects.

Protected against the development
of retinal vein occlusion.

Lin et al., 2017

Clinical studies elucidating the effects of antidiabetic agents, including GLP-1R agonists, DPP4-inhibitors and metformin, on the development and progression of ocular
conditions. The use of antidiabetics is associated with a reduced risk of diabetic retinopathy (DR) and age-related macular degeneration (AMD). T2D; Type 2 diabetes.
*Incretin-based therapies include: DPP4-inhibitors and GLP-1R agonists.
**The clinical part of the AngioSafe 1 T2D study includes an observational study, where exposure to, i.e., any GLP-1R agonist was assessed, and an interventional study,
where the exposure to GLP-1R agonists only included liraglutide.
***DPP4-inhibitors included: vildagliptin, sitagliptin, saxagliptin, linagliptin or gemigliptin.
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another study comparing GLP-1R agonists to thiazolidinedione
and long-acting insulin where GLP-1R agonists did not increase
the risk of diabetic retinopathy over an average treatment time
of less than 1 year (Wang et al., 2018). Accordingly, a cohort
study found no association between the exposure to GLP-1R
agonists and diabetic retinopathy, and in fact GLP-1R agonists
were found to even decrease the risk of diabetic retinopathy
by 33% when compared to new-users of insulin (Douros
et al., 2018). Over a longer period of time, the progression
of diabetic retinopathy after intensified glycemic control has
also been demonstrated to be transient and reversible (Aiello
and Dcct/Edic Research Group, 2014). The intensive glycemic
control of diabetic patients appears to reduce both the risk of
progression and the onset of diabetic retinopathy (Aiello and
Dcct/Edic Research Group, 2014 with conventional antidiabetic
treatments. Thus, the association between hypoglycemic agents
and the exacerbation of diabetic retinopathy remains uncertain,
and the early worsening is likely due to rapid lowering of blood
glucose and intensified glycemic control, which, in the long run,
also appears to be beneficial (Aiello and Dcct/Edic Research
Group, 2014; Jingi et al., 2017; Tang et al., 2018; Vilsbøll et al.,
2018; Wang et al., 2018; Bethel et al., 2021). A recent meta-
regression analysis of GLP-1R agonist cardiovascular outcome
trials (LEADER, SUSTAIN-6, EXSCEL, HARMONY, REWIND,
and PIONEER-6 trials) has suggested that clinicians should
consider the status of diabetic retinopathy in patients before
initiating treatment with GLP-1R agonists (Bethel et al., 2021).
In summary, the risk of diabetic retinopathy does not seem to be
increased with the use of GLP-1R agonists and is being further
investigated in ongoing trials (NCT02671864, NCT03811561).
Thus, the patient’s retinopathy status must be determined before
initiating treatment with incretin-based therapies as the GLP-
1R agonists.

What Are the Possible Concerns About
Glucagon-Like Peptide 1 Agonists as Potential
Treatments for Glaucoma?
If GLP-1R agonists are to be used in the treatment of glaucoma
patients, their retinopathy status must be determined before
start of treatment. The most common type of glaucoma is
primary open-angle glaucoma, with the typical patients being
elderly and often underweight (Klein et al., 1992; Leske et al.,
1994; Wensor et al., 1998; Jonasson et al., 2003; Iwase et al.,
2004; de Voogd et al., 2005; Na et al., 2020). Accordingly,
the appetite suppressant and weight loss effects of GLP-1R
stimulation (Khoo and Lin, 2021) should be considered in
potential trials with GLP-1R agonists as therapeutic agents
for the treatment of glaucoma. Consideration should also be
given as oral semaglutide has been associated with greater
discontinuation of treatment in patient groups aged 65 years
or older (Aroda et al., 2020). The most common reason stated
for patients discontinuing oral semaglutide has been its mild
to moderate gastrointestinal adverse effects, especially nausea,
which is experienced by up to 50% of patients (Filippatos et al.,
2014; Pratley et al., 2019; Zinman et al., 2019a; Aroda et al.,
2020; Evaluate, 2020). Therefore, premature discontinuation
of oral semaglutide due to adverse effects turn out to be only

a few percent higher than its injectable alternatives. In the
PIONEER-4 trial, 11% of the patients using oral semaglutide
discontinued treatment because of adverse effects compared
to 9% of the patients using subcutaneous liraglutide (Pratley
et al., 2019). Another phase II interventional study found that
premature cessation of treatment due to adverse effects was
also higher for oral semaglutide than injectable semaglutide
(Warren et al., 2018). However, this study as well as other studies
(Davies et al., 2017; Warren et al., 2018; Aroda et al., 2020;
Wright and Aroda, 2020) reported that both oral and injectable
semaglutide were mostly discontinued due to gastrointestinal
adverse effects. This together with the fact that patients showed
treatment satisfaction in favor of injectable semaglutide rather
than, e.g., injectable liraglutide in the SUSTAIN-10 trial
(Capehorn et al., 2020), suggests that the higher proportion
of patients discontinuing oral semaglutide treatment may be
due to patients having to administer oral semaglutide once
every day versus once a week with injectable semaglutide,
making compliance for oral semaglutide more difficult and
more expensive. Therefore, premature discontinuation of oral
semaglutide may be due to the fact that elderly patients may be
weaker, prefer treatment once a week, and are more susceptible
to gastrointestinal intolerance (Newton, 2005) combined
with baseline comorbidities that complicate continuation of
treatment. Premature discontinuation of treatment due to
adverse effects may also be simply due to the dosage of oral
semaglutide and the rate of dose escalation. For instance,
a dose of 7 mg oral semaglutide in the PIONEER 8 trial
caused a lower percentage of patients discontinuing treatment
compared to 14 mg oral semaglutide (7 mg: 9% and 14 mg: 13%,
respectively) (Zinman et al., 2019a). Similar to the conventional
subcutaneously administrated GLP-1R agonists, another study
found that slow dose escalation of oral semaglutide resulted
in a lower proportion of patients discontinuing treatment
(Davies et al., 2017). Furthermore, the adverse effects of
oral semaglutide tend to exacerbate as the dose is increased
(Wright and Aroda, 2020). This suggests that the premature
discontinuation of oral semaglutide in trials may also be due
to patients’ expectations at the start of treatment and lack of
counseling that effects such as nausea are frequent experiences
that typically disappear over time. However, a recent Japanese
health-related quality of life assessment of the PIONEER-10 trial
showed that patients tended to be more satisfied when treated
with oral semaglutide than with injectable dulaglutide (Ishii
et al., 2021). Patients treated with oral semaglutide were also
more adherent to the treatment (Ishii et al., 2021). This suggests
that oral GLP-1 receptor agonists, compared to injectable GLP-1
receptor agonists, result in greater patient satisfaction and
treatment persistence.

In summary, current knowledge about the potential
disadvantages of GLP-1R agonist drugs is few compared to
the potential beneficial neuroprotective properties. Semaglutide,
in both injectable and oral formulations, appears to be a
promising potential GLP-1R agonist in combination with
conventional IOP-lowering agents to decrease the rate of
glaucoma worsening. However, it would be wise to assess
retinopathy status, patients’ BMI, age and preference for weekly
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FIGURE 3 | Ways in which GLP-1R agonists exert neuroprotection. GLP-1R agonists can exert neuroprotection either systemically (1), by improving glycemic control
and reducing insulin resistance, or locally (2), by acting on receptors in neuronal tissue cells and thus causing, e.g., antiinflammation, preservation of memory,
dopaminergic neurons, motor function and mood improvements. AD: Alzheimer’s disease, DR: Diabetic retinopathy, PD: Parkinson’s disease.

subcutaneous injections or daily oral administrations as well as
the dose before starting treatment.

Glucagon-Like Peptide 1 Agonists Show
Neuroprotective Properties in the
Treatment of Other Neurodegenerative
Diseases
Glucagon-like peptide 1 (GLP-1) and GLP1R agonists have been
associated not only with neuroprotection in the retina but also in
the brain in various animal models of neurodegenerative diseases
(Zhang et al., 2018, 2019; Basalay et al., 2019; Yang et al., 2019;
Chang et al., 2020; Zhai et al., 2020). The promising preclinical
results have now paved the way for evaluating the use of GLP-1R
agonists in clinical studies with neurodegenerative diseases such
as Alzheimer’s disease, Parkinson’s disease, stroke, and diabetic
neuropathy. The neuroprotective effect of GLP-1R agonists is that
it can either directly/locally cause neuroprotection by acting on
neuronal tissue or indirectly/systemically cause neuroprotection
by improving glycemic control and treating existing insulin
resistance (Figure 3) (Fiory et al., 2019; Femminella et al., 2021).

Alzheimer’s Disease
Several early studies have identified the presence of cognitive
impairment in patients with T2D (Perlmuter et al., 1984; Helkala
et al., 1995; Vanhanen et al., 1999), and T2D has been recognized
as a risk factor for the development of Alzheimer’s disease

(Janson et al., 2004). In addition, Alzheimer’s disease has also
been directly linked to insulin resistance (Neth and Craft, 2017;
Arnold et al., 2018; Hölscher, 2019; Kellar and Craft, 2020),
even in the absence of concomitant diabetes (Schrijvers et al.,
2010). In this case, peripheral insulin resistance was associated
with decreased hippocampal glucose metabolism and lower
volume of gray matter in a population of non-diabetic patients
with Alzheimer’s disease (Femminella et al., 2021). Similarly,
patients with cognitive impairment and Alzheimer’s disease have
been shown to improve in memory, attention, mental tasks,
cognition, and brain activation following insulin treatment, both
intravenously and intranasally (Craft et al., 1996, 1999, 2003,
2012, 2017; Kern et al., 2001; Reger et al., 2006, 2008a,b; Claxton
et al., 2015; Femminella et al., 2021; Hallschmid, 2021). Although
these are promising results, evidence for a protective role for
insulin remains low, and a recent Cochrane review from 2017
found no protective or preventive association between cognitive
impairment and the use of antidiabetic T2D treatment strategies
(Areosa Sastre et al., 2017) (i.e., metformin, insulin, repaglinide,
glibenclamide, glimepiride, rosiglitazone, gliclazide, perindopril-
indapamide). An aspiring novel take on insulin regulation is the
administration of GLP-1R agonists, as these both regulate insulin
sensitivity in the brain (Sandoval and Sisley, 2015) and possibly
exert direct neuroprotective effects (Figure 3).

Besides preclinical studies pointing toward a potential use
of GLP-1R agonists in the treatment of Alzheimer’s (McClean
et al., 2011; Chang et al., 2020), a recent post hoc analysis
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TABLE 5 | Clinical studies elucidating the use of GLP-1R agonists in Alzheimer’s disease and cognitive dysfunction in other conditions.

Compound Study types Study design Study outcome References

Alzheimer’s
Disease (AD)

Exenatide Interventional pilot
study

18 patients with high-probability AD
were randomly assigned to receive
exenatide or placebo. However, the
study was finalized before time due to
withdrawal of sponsor support, which
was not related to safety
considerations.

Possibly decreased Aβ42-levels. Mullins et al.,
2019

Liraglutide Phase II
interventional

81 patients with AD or subjective
cognitive complaints were randomly
assigned to receive liraglutide or
placebo for 12 weeks, 26 weeks or
12 months.

Improved the volume of gray matter
and enhanced the ADAS-Exec z-score.
Prevented decline in cerebral glucose
metabolic rate and improved
connectivity in several brain regions, i.a.
the default mode network.

Gejl et al.,
2016; Watson
et al., 2019

Mood
Disorders

Liraglutide Interventional 19 patients with major depressive or
bipolar disorder and impaired executive
function were treated with liraglutide
(1.8 mg/day) as an add-on to existing
medication.

Improved the cognitive function, and
response to treatment was better in
individuals with higher baseline insulin
resistance and BMI.

Mansur et al.,
2017

Diabetes DPP4-inhibitors
(e.g., sitagliptin)

Phase N/A
interventional,
observational

265 patients with T2D with/without
post-stroke mild cognitive impairment
(MCI) were randomly assigned to
receive DPP4-inhibitors. Patients with
T2D using sitagliptin were observed.

Improved cognitive ability in post-stroke
MCI patients and cognitive function in
patients with and without AD.

Isik et al., 2017;
Xue et al., 2020

Dulaglutide Phase III
interventional

9,901 patients with T2D were randomly
assigned to receive dulaglutide and
followed up at least every 6 months.

Reduced hazard of cognitive
impairment by 14%.

Cukierman-
Yaffe et al.,
2020

The use of agents increasing GLP-1 receptor signaling may be associated with a neuroprotective effect in Alzheimer’s disease (AD) by preventing declines in cortical
activity, decreasing Aβ-levels and improving cognitive function as well as the volume of gray matter of patients. T2D; Type 2 diabetes.

led by Novo Nordisk comprising 15,820 patients with T2D,
the use of the GLP-1R agonists liraglutide and semaglutide
was also associated with a 53% significantly lower risk of
developing dementia (Ballard et al., 2020). These findings have
led to the initiation of the EVOKE trial program in 2021,
which will enlighten a potential neuroprotective effect of oral
semaglutide in the future. Previously, a neuroprotective effect
of GLP-1R agonists has also been supported by long-term
treatment with another GLP-1R agonist, dulaglutide, which
reduced cognitive impairment in patients with T2D compared
to placebo (NCT01394952; the REWIND trial) (Cukierman-Yaffe
et al., 2020). 6-months of treatment with the GLP-1R agonist
liraglutide (Victoza R©) in Alzheimer’s disease patients was found
to prevent declines in cerebral glucose metabolism, which is
associated with synaptic dysfunction, cognitive impairment, and
progression of the disease (Gejl et al., 2016) (Table 5). 12 weeks
liraglutide-treatment of patients at high risk for dementia was
also shown to increase connectivity in the default mode network
supporting the fact that GLP-1R agonists may reduce or hinder
the progression of Alzheimer’s disease (Watson et al., 2019).
Supporting the hypothesis that increased GLP-1R signaling
potentially promotes neuroprotection, DPP4-inhibitors are also
associated with improved cognitive function (Isik et al., 2017; Xue
et al., 2020). The use of GLP-1R agonists in Alzheimer’s disease
also appears to be beneficial in an as yet unpublished multicenter,
12-month, phase II UK trial (NCT01843075, the ELAD-study),
which evaluates liraglutide as a potential therapeutic agent in
Alzheimer’s patients with mild dementia (Femminella et al.,

2019). Results from the ELAD-study, presented at the Clinical
Trials on Alzheimer’s Disease Conference (CTAD) 2020, showed
that daily injections of liraglutide improved secondary outcomes
of the study, i.e., the volume of gray matter and the cognitive
function measured as improvements in Alzheimer’s Disease
Assessment Scale (ADAS) scores (Evaluate, 2020). Thus, the use
of GLP-1R agonists and DPP4-inhibitors has been reported to
prevent cognitive impairment in several clinical studies (Gejl
et al., 2016; Isik et al., 2017; Mansur et al., 2017; Watson et al.,
2019; Ballard et al., 2020; Cukierman-Yaffe et al., 2020; Xue et al.,
2020).

In contrast, a recent pilot study could not conclude any
neuroprotective property of the GLP-1R agonist exenatide, other
than a reduced level of Aβ (NCT01255163) (Mullins et al., 2019).
However, the lack of significant results favoring a neuroprotective
effect of GLP-1R agonists may be due to early business-related
withdrawal of sponsor support (Mullins et al., 2019). Thus, there
is evidence in favor of a neuroprotective effect of GLP-1R agonists
in Alzheimer’s disease, which will hopefully be better elucidated
in ongoing clinical trials such as the EVOKE trial program.

Parkinson’s Disease
Clinical studies on GLP-1R agonists in Parkinson’s disease have
focused on the GLP-1R agonist exenatide, which has yielded
many promising results (Aviles-Olmos et al., 2013, 2014; Athauda
et al., 2017, 2018, 2019a,b; Brauer et al., 2020) (Table 6).
These notable developments have even led to the initiation
of a phase III clinical trial with exenatide (Bydureon R©) as
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TABLE 6 | Clinical studies elucidating the use of GLP-1 receptor agonists in Parkinson’s disease.

Compound Study types Study design Study outcome References

Parkinson’s
Disease (PD)

Exenatide Phase II
interventional

107 patients with PD were randomly
assigned to receive exenatide for 48 weeks
or 12 months.

Improved motor and cognitive
symptoms of patients, which persisted
even 12 months after last
exenatide-exposure.

Aviles-Olmos
et al., 2013,
2014; Athauda
et al., 2017

Post hoc analyses Post hoc analyses of studies assessing the
motor and non-motor symptoms, e.g., the
cognitive function, mood and emotional
well-being of 60 patients with PD treated
with exenatide.

Improved motor and non-motor
symptoms of patients included in the
analyses. Patients with older age and
PD duration over 10 years responded
less well to treatment with exenatide.

Athauda et al.,
2018, 2019a

Incretin-based
therapies*

Observational Retrospective cohort and nationwide
case-control study assessing the incidence
of PD among 106,168 patients with T2D
treated with, e.g., DPP4-inhibitors and/or
GLP-1 receptor agonists.

Reduced the incidence of PD, even
when patients were exposed to
incretin-based therapies for a short
period of time (up to 12 and
12-36 months).

Svenningsson
et al., 2016;
Brauer et al.,
2020

Clinical studies on the use of GLP-1 receptor agonists in patients with PD have focused on exenatide, and there remains a further need to investigate the neuroprotective
effects of DPP4-inhibitors. Off note, exenatide has been associated with improvements in motor and non-motor symptoms of PD patients.
∗ Incretin-based therapies include: DPP4-inhibitors and GLP-1R agonists.

an antiparkinsonian agent, launched in the beginning of 2020
(NCT04232969). The observed neuroprotective effects of GLP-
1R agonists can be attributed to a possible mechanistic link
between Parkinson’s disease and diabetes. Low insulin sensitivity
has, similar to Alzheimer’s disease, been associated with an
increased risk of developing Parkinson’s disease (Athauda and
Foltynie, 2016). In addition, insulin is expected to have a
decisive influence on the dopaminergic system (Fiory et al.,
2019). Death of dopaminergic neurons in the substantia nigra
pars compacta and changes in striatal nuclei in patients
with Parkinson’s disease have been correlated with remarkable
changes in structures involved with insulin signaling (Fiory
et al., 2019). A possible mechanism behind the properties
of exenatide in the study by Athauda et al. (2019a) was
suggested to be a normalization of brain insulin signaling and
an involvement of Akt signaling pathways. This was supported
through electrochemiluminescence assay quantifications of
proteins related to insulin signaling (i.e., phosphorylated forms of
Akt) from neuronal-derived exosomes harvested from peripheral
blood samples of Parkinson’s patients who had participated in the
study (NCT01971242) (Athauda et al., 2019a).

A recent population-based cohort study by Brauer et al.
(2020) also found evidence of a lower incidence of Parkinson’s
disease in diabetic short-term and long-term users of GLP-1R
agonists and DPP4-inhibitors (Brauer et al., 2020), suggesting
beneficial assets of anti-diabetic drugs in the fight against
Parkinson’s disease. This finding has been confirmed by other
studies in which subcutaneous administration of exenatide to
randomly assigned Parkinson’s patients was associated with
greatly improved outcome measures that assessed the severity of
motor symptom (Aviles-Olmos et al., 2013, 2014; Athauda et al.,
2017, 2018). Motor function of Parkinson’s patients who have
previously been exposed to exenatide has been shown to improve
even 12 months after terminated treatment (Aviles-Olmos et al.,
2014). Furthermore, exenatide appears to both suppress motor
impairments (i.e., dyskinesia) and improve cognitive function
of patients with Parkinson’s disease (Aviles-Olmos et al., 2013;
Athauda et al., 2017). In addition, a post hoc analysis further

revealed that exenatide improved a wide range of non-motor
symptoms (i.e., mood, depression) in patients with Parkinson’s
disease compared to placebo (Athauda et al., 2018). Concerning
the treatment of Parkinson’s patients with GLP-1R agonists, there
seems to be one compelling aspect regarding effectiveness of the
treatment, and that is that the agonists should be administered
as early as possible after diagnosis, as increasing age and disease
duration over 10 years is associated with less effective response to
exenatide treatment (Athauda et al., 2019b).

The effects of other GLP-1R agonists in the treatment of
patients with Parkinson’s disease are also in line to be elucidated.
A phase II study is currently investigating the neuroprotective
effects of injectable semaglutide in 270 Parkinson’s patients in
a double-blinded, placebo-controlled design (NCT03659682).
Also, liraglutide (NCT02953665), lixisenatide (NCT03439943),
exenatide (NCT04305002), sustained release exenatide – PT320
(NCT04269642) and a pegylated form of exenatide, NLY01
(NCT04154072), are all undergoing clinical investigation in
Parkinson’s disease.

While GLP-1R agonists show promising results, there is
a need to further investigate the neuroprotective effects of
DPP4-inhibitors in Parkinson’s patients (Svenningsson et al.,
2016; Brauer et al., 2020; Ece Bayram and Irene Litvan,
2020). Nevertheless, the numerous previous studies of exenatide
combined with the initiation of a phase III clinical trial of
exenatide, combined with ongoing trials, undeniably provide a
promising basis for the prospective neuroprotective use of GLP-
1R agonists in Parkinson’s disease.

Stroke
Stroke is associated with cognitive dysfunction (O’Brien et al.,
2003), glaucoma (Lee et al., 2018; Rim et al., 2018), and secodary
neurodegeneration (Ong et al., 2017). Several preclinical studies
have observed GLP-1R agonists as neuroprotective compounds
in rodent stroke models (Basalay et al., 2019; Yang et al., 2019),
and GLP1-R agonists have been suggested for the use in patients
with ischemic stroke (Maskery et al., 2021). In general, studies
on the potential of GLP-1R agonists in stroke have focused on
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its effectiveness in either treating acute stroke or preventing the
onset of stroke. In acute stroke, GLP-1R agonists have been
suggested to treat stroke-induced hyperglycemia (post-stroke
hyperglycemia) that is associated with, e.g., disruption of the
blood-brain-barrier, intensified inflammatory reactions, edema,
increased infarct size and worsening of functional outcomes
(Li et al., 2013). Compared to insulin, GLP-1R agonists also
have the advantage of preventing incidences of hypoglycemia.
In a pilot study, 11 patients with ischemic stroke were treated
with exenatide within app. 4-12 h after onset appeared to
reduce hyperglycemia and hypoglycemic incidences (Daly et al.,
2013). Another ongoing study (TEXAIS-study) also assesses the
potential of exenatide in acute stroke (NCT03287076) (Muller
et al., 2018). GLP-1R agonists have also shown effect in preventing
stroke. Meta-analyses of large cardiovascular outcome trials have
demonstrated that GLP-1R agonists, i.e., dulaglutide, liraglutide,
injectable and oral semaglutide, have a potential stroke-protective
effect (Pfeffer et al., 2015; Marso et al., 2016a,b; Holman
et al., 2017; Hernandez et al., 2018; Kristensen et al., 2019;
Alfayez et al., 2020; Gerstein et al., 2020; Strain et al., 2020).
Another meta-analysis of large cardiovascular outcome trials
such as SUSTAIN (injectable semaglutide), LEADER (liraglutide),
HARMONY (albiglutide) (Hernandez et al., 2018), ELIXA
(lixisenatide) (Pfeffer et al., 2015) and EXSCEL (exenatide)
(Holman et al., 2017) appeared to reduce the risk of total
stroke (by, i.e., 13% or 16%) (Bellastella et al., 2020; Gerstein
et al., 2020). Semaglutide and dulaglutide were also associated
with significantly reduced risks for stroke, where semaglutide
appear to be better (Alfayez et al., 2020; Evans et al., 2021).
However, in line with the potential neuroprotective effect of
GLP-1R agonists in ischemic stroke, Rigshospitalet Denmark is
running a randomized clinical trial of exenatide as an organ
protecting agent, e.g., a brain-protecting agent, where stroke
is one of the primary outcome measures (NCT02673931).
Another Danish study is also investigating the effect of GLP-1R
agonists on cerebral blood flow (NCT02829502). In fact, there
are many other recruiting or completed studies investigating
the protective effects of GLP-1R agonists (NCT02838589,
NCT00418288, NCT00256256, NCT03948347) and also DPP4-
inhibitors (NCT01107886, NCT00968708) in stroke. Thus, GLP-
1R agonists show encouraging potential as stroke-protective
agents, but there is still a need to investigate their effects in further
clinical therapeutic trials.

Diabetic Neuropathy
Several preclinical studies have suggested that GLP-1
receptor activation is a promising mechanism that prevents
neurodegeneration and improves neuroprotection in peripheral
nerves (Yamamoto et al., 2002; Perry et al., 2007; Luciani et al.,
2010; Griffioen et al., 2011; Himeno et al., 2011; Kan et al.,
2012). A prospective, open-label pilot study of the DPP4-
inhibitor teneligliptin in patients with T2D treatment has been
shown to improve the patient’s peripheral and autonomic
neuropathy status (Syngle et al., 2021). An unpublished clinical
study has also associated a lacking responsiveness to GLP-1R
agonist treatment (liraglutide and exenatide) with a higher
presence of cardiovascular autonomic neuropathy (Clinical Trial

Registration Number: 7459) (Duvnajak et al., 2017). However,
DPP4-inhibitors, e.g., saxagliptin, have shown to have a neutral
impact on the incidence of diabetic neuropathy (Taylor and Lam,
2020). A proof-of concept open-label randomized clinical trial
has also assessed the effect of GLP-1R agonists on 46 patients
with T2D and mild to moderate diabetic peripheral neuropathy
(Jaiswal et al., 2015). Patients were randomized to be treated
with either exenatide or insulin glargine for 18 months. The
trial found no statistically significant effect on measures of
neuropathy, i.e., no significant differences in confirmed clinical
neuropathy, measures of cardiovascular autonomic neuropathy,
nerve conduction tests nor intra-epidermal nerve fiber densities
(Jaiswal et al., 2015). Although, the lack of significant differences
in patients’ neuropathic statuses might be the result of: (1)
the comparison to insulin, which also promotes glycemic
control, and (2) that GLP-1 receptor agonists mainly prevent
the development of neuropathy. The latter is also supported
by the TODINELI-trial (Brock et al., 2019), where treatment
of type 1 diabetic patients with liraglutide reduced levels of
proinflammatory cytokines (IL-6) but did not improve the
status of patients that had already established autonomic or
diabetic polyneuropathy. Thus, clinical trials related to the
neuroprotective role of GLP-1R agonists and DPP4-inhibitors
in neuropathy are sparse (Mehta et al., 2021). Nevertheless,
promising results from preclinical trials and the TODINELI-trial
promote the idea of investigating the protective effects of GLP-1R
agonists on neuropathy in further clinical trials.

CONCLUSION

The present review has summarized the current clinical
evidence for a potential use of GLP-1R agonists in prospective
neuroprotective treatment strategies against glaucoma and other
neurodegenerative diseases. GLP-1R agonists have exerted a
neuroprotective effect in several preclinical studies in both
the brain and the retina. The most promising GLP-1R agonist
in terms of efficacy, adverse effects, convenience for patients,
cost-effectiveness and risk of cardiovascular complications
is semaglutide, which is the only GLP-1R agonist that can
be administrated as both an oral and injectable formulation.
A recent association between exposure to GLP-1R agonists
and a reduced risk of glaucoma makes it even more justified
to consider the neuroprotective potential of GLP-1R agonists,
particularly semaglutide, in anti-glaucomatous treatment
strategies. Agents that increase GLP-1R signaling also appear
to reduce the likelihood of developing diabetic retinopathy,
AMD, cognitive dysfunction, motor dysfunction, stroke-induced
neurodegenerative impairments, and neuropathy, supporting
a potential neuroprotective effect of semaglutide in glaucoma.
Furthermore, as oral semaglutide has recently entered phase III
trials against Alzheimer’s disease, and injectable semaglutide
is in the phase II trial of Parkinson’s disease as well as in the
phase III trial against diabetic eye diseases, the potential of
specifically semaglutide in glaucoma is additionally endorsed.
However, there are currently no clinical nor any preclinical
studies assessing the neuroprotective effects of semaglutide
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in glaucoma. Therefore, future studies are strongly needed to
further investigate the potential of semaglutide as a repurposed
novel neuroprotective agent in the treatment of glaucoma.
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