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Abstract

Skin aspartic acid protease (SASPase) is believed to be a key enzyme involved in filaggrin

processing during epidermal terminal differentiation. Since little is known about the regula-

tion of SASPase function, the aim of this study was to identify involved protein partners in

the process. Yeast two hybrid analyses using SASPase as bait against a human recon-

structed skin library identified that the N-terminal domain of filaggrin 2 binds to the N-termi-

nal fragment of SASPase. This interaction was confirmed in reciprocal yeast two hybrid

screens and by Surface Plasmon Resonance analyses. Immunohistochemical studies in

human skin, using specific antibodies to SASPase and the N-terminal domain of filaggrin 2,

showed that the two proteins partially co-localized to the stratum granulosum. In vitro enzy-

matic assays showed that the N-terminal domain of filaggrin 2 enhanced the autoactivation

of SASPase to its 14 kDa active form. Taken together, the data suggest that the N-terminal

domain of filaggrin 2 regulates the activation of SASPase that may be a key event upstream

of filaggrin processing to natural moisturizing factors in the human epidermis.

Introduction

Human skin is a multi-layered tissue composed of three compartments, the epidermis, the der-

mis and the hypodermis. The outermost of these–the epidermis–terminally differentiates to

form a cornified protective and impermeable barrier to the external environment–the stratum

corneum, which consists of several layers of enucleated cells known as corneoctyes and inter-

cellular arrays of organized lipids. The corneocytes are flat polyhedral shaped cells primarily

composed of intermediate filament networks surrounded by a highly cross-linked protein

envelope [1–3]. The filaments are mainly composed of keratin organized into bundles by

another protein known as filaggrin, which is a member of the S100 family of proteins encoded

by the epidermal differentiation complex of genes found on chromosome 1 [4, 5]. The process-

ing of filaggrin by a cascade of proteases also provides a source of free amino acids that are the

main components of the natural moisturizing factors key to maintaining the stratum corneum

in a hydrated state [6].
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Funding: L’Oréal funded the study and the work

was done at Hybrigenics Services. Co-authors
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employed by L’Oréal Research, & Innovation.
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The skin aspartic acid protease (SASPase) is a specifically expressed protease in both the

stratum granulosum (SG) and the stratum corneum (SC) of normal human skin, where it is

believed to be involved in the control of epidermal terminal differentiation and desquamation

[7].

SASPase is expressed in the epidermis as a 28 kDa proform where it is processed to its 14

kDa active form in the SG and SC of human skin. In psoriatic skin the 28 kDa proform of SAS-

Pase (SASPase28) is significantly present throughout the stratum corneum [7]. SASPase is also

expressed in differentiated areas of squamous cell carcinomas but not in undifferentiated

tumors [8]. Several studies have shown that SASPase has a key role in SC barrier function.

Recent proteomics studies of subjects with dandruff scalp showed that there was a significant

increase of SASPase in the SC in this condition [9]. Furthermore, de novo missense variants in

SASPase in dogs result in aberrant filaggrin expression and an associated ichthyosis skin phe-

notype [10]. A transcriptomic study of lipid raft disruption in keratinocytes, evoking typical

features of Atopic Dermatitis (AD), showed that SASPase was one of the most significantly

down-regulated genes [11].

Transgenic knockout studies of the mouse homolog of the SASPase (ASPRV1) gene

resulted in a finely wrinkled skin surface indicating that the protease is functionally important

in mammalian tissue organization [12]. Transgenic mice that over-express ASPRV1 did not

show evident characteristics on unchallenged skin but a delay was observed in wound closure

suggesting that the enzyme is functionally important in skin tissue regeneration [13]. In addi-

tion, SASPase deficiency in hairless mice revealed a dry skin phenotype associated with a

defect in filaggrin maturation suggesting that SASPase is indispensable for filaggrin processing

[14]. More recent transgenic studies have provided evidence that ASPRV1 acts as a mediator

in neutrophil induced inflammation in autoimmune disease [15].

Filaggrin 2 (FLG2) is one of the most recently described members of the S100 fused-type

protein family [16]. The FLG2 gene encodes a 250 kDa protein and its N-terminal region con-

tains a S100 calcium binding domain. It is expressed in the granulous layer of the epidermis

where it is processed to smaller fragments by the protease calpain 1 [17]. The amino terminal

domain of FLG2 is a component of cornified envelopes [18] and co-localizes with corneodes-

mosin [19] indicating that FLG2 plays a role in epidermal and SC adhesion.

Filaggrin (FLG) mutations are recognized as a major risk factor for AD [20] and mutations

in the gene also underlie Ichthyosis vulgaris syndrome [21]. The protein levels of FLG2 are

also decreased in the SC and epidermis of AD patients [22, 23], in the SC from dandruff condi-

tion [9], in a lipid raft disruption model [24] and in ichthyosis peeling skin [19, 25] suggesting

that FLG2 plays an important role in epidermal homeostasis and barrier formation. In a recon-

structed epidermal model where the expression of FLG2 was downregulated by lentivirus

mediated shRNA interference, the levels of filaggrin processing enzymes were reduced, result-

ing in decreased levels of filaggrin derived free amino acids. These data demonstrated that

FLG2 has a key role to play in the processing of filaggrin to NMFs in the epidermis of human

skin [26].

Despite such knowledge of SASPase biology in skin, little is known about the regulation of

its physiological function and auto-activation. Thus, the objective of this study was to identify

proteins that bind to and regulate the function of SASPase in the epidermis of human skin. In

this paper, we report, through yeast 2 hybrid (Y2H) analyses of a reconstructed epidermis

cDNA library, the identification of the N-terminal domain of FLG2 (FLG2Nter) as a binding

partner of SASPase. This interaction was confirmed through Surface Plasmon Resonance

(SPR) analyses and their partial co-localization in the stratum granulosum of human skin was

evidenced by immunohistochemistry. We also demonstrated through in vitro enzymatic analy-

ses that FLG2Nter regulates the auto-activation of SASPase. Thus, a model describing the
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potential role of FLG2Nter in the regulation of SASPase activity and subsequent processing of

FLG is proposed.

Results

In order to obtain a deeper understanding of the molecular mechanism underlying SASPase

autoactivation and to identify epidermal proteins that may be involved in the regulation of its

function in skin, Y2H analyses were performed using a human reconstructed epidermis library

and full length SASPase28 as bait as described in materials and methods. In a Y2H screen by

cell to cell mating of more than 123 million clones, 29 positive interactions were detected.

Twenty six of these clones represented sequences from filaggrin 2 (Uniprot Q5D862) with a

predicted biological score (PBS) of class A (the score of highest confidence in the interaction).

The selected interaction domain (SID) was identified to be between amino acids 2 and 213 in

FLG2Nter (Table 1).

To confirm this protein interaction, a reciprocal Y2H analysis was carried out using

FLG2Nter (aa 2–213) as bait. 325 positive interactions were detected in a screen of 68 million

clones in the random primed human reconstructed skin library. FLG2Nter was not an activa-

tor by itself in the Y2H assay. 307 of these clones represented sequences from SASPase

(Q53RT3) with a PBS score of class A. The SID domain was identified to be between amino

acids 12 and 84 in the N-terminal domain of SASPase28 (Table 2, corresponding to aa 97 to

169 in the published Q53RT3 sequence, Fig 1).

In order to determine if the S100 domain of filaggrin 2 was involved in the interaction, a

third Y2H was performed using an amino acid fragment (aa 2–95) encompassing the S100

domain of filaggrin 2 as bait. In this analysis 362 positive interactions were detected out of 71

million clones screened. 355 of these clones represented sequences from SASPase (Q53RT3)

with a PBS score of class A and the SID domain was identified to be between amino acids 12

and 84 in the N-terminal domain of SASPase28 (Table 3).

Thus, the Y2H analyses showed that an N-terminal fragment of FLG2 (aa 2–95), which

includes its S100 domain, bound to a fragment in the N-terminal domain of SASPase28 (aa

12–84) but not within the 14 kDa catalytic domain located in the C-terminus of the enzyme

(Fig 1). The Y2H analyses that were performed with SASPase28 did not show interactions with

the S100 proteins filaggrin, hornerin or TCHH.

In the Y2H analyses FLG2 interacted with a SID located between aa 97–169 in SASPase

while SASPase interacted with a SID between aa 2–95 in the N terminal region of FLG2. The

full length of SASPase is illustrated (aa 1–343) showing a putative transmembrane domain

Table 1. SASPase 28 interacts with the N terminus of filaggrin 2 protein. An Y2H analysis used full length SASPase 28 as bait to screen more than 123 million clones in

a random primed human reconstructed skin library. 26 out of 29 positive clones detected represented sequences from filaggrin 2 (Q5D862) with a PBS score class A and a

SID domain between amino acids 2 and 213 in the N terminal domain of filaggrin 2.

Bait Uniprot accession no. Number of clones obtained PBS Score Bound Protein Uniprot accession no. Region involved in interaction (SID)

SASPase Q53RT3 26 A Filaggrin 2 Q5D862 2-213aa

https://doi.org/10.1371/journal.pone.0232679.t001

Table 2. Filaggrin 2 N-terminus (aa 2–213) interacts with the N-terminus of SASPase 28 protein. An Y2H analysis using filaggrin 2 N-terminus (aa 2–213) as bait was

used to screen more than 68 million clones in the random primed human reconstructed skin library. 307 out of a total of 325 positive interactions represented sequences

from SASPase (Q53RT3) with a PBS score class A and a SID domain between amino acids 12 and 84 in the N terminal domain of SASPase 28.

Bait Uniprot Accession no. Number of clones obtained PBS Score Bound Protein Uniprot accession no. Region involved in interaction (SID)

Filaggrin 2 Q5D862 307 A SASPase Q53RT3 12–84 aa(SASPase28)

https://doi.org/10.1371/journal.pone.0232679.t002
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-TMD (aa 57–85), the proform of the enzyme SASPase28 (aa 85–343) and the activated form

SASPase14 (aa 191–326). The full length of FLG2 is illustrated (aa 1–2391) showing the S100

calcium binding protein domain (aa 1–81), the A type repeats domain (aa 467–1220) and the

B type repeats domain (aa 1227–2284).

To confirm the association between the respective N-terminal domains of SASPase28 and

FLG2Nter, the interaction in real time between the two proteins was analyzed by SPR. A goat

polyclonal anti-GST immobilized on a CM5 sensorchip was used to capture a GST-Flag-SAS-

Pase 28 kDa recombinant protein and GST, respectively. A recombinant MBP-HA tagged

FLG2 (aa 2–95) recombinant protein was injected onto the sensorchip at 6 different concen-

trations (0–6 μM). The sensorgram (Fig 2a) showed that MBP-HA FLG2 (aa 2–95) bound to

GST-Flag-SASPase 28 kDa. The association of the two proteins increased in proportion to the

concentration of injected MBP-HA FLG2 (aa 2–95). The binding of MBP-HA FLG2 (aa 2–95)

to SASPase appeared to reach saturation at 5 μM (S2 Fig). The kinetic association (ka) and dis-

sociation (kd) rate constants were calculated to be 4632 M-1s-1 and 2.261 10−3 s-1, respectively,

yielding a dissociation constant KD of 0.488 μM. No binding was observed between MBP-HA

and SASPase 28 (S2 Fig) nor was there any observed interaction between MBP-HA FLG2 (aa

2–95) and immobilized GST (S3 Fig).

Since the S100 domain of FLG2 shares significant homology to the S100 domain in the pro-

teins filaggrin, hornerin and TCHH, a SPR binding analysis was performed, as described in

materials and methods, to determine if the binding of SASPase 28 to the N-terminus of FLG2

was specific. The results showed that SASPase 28 bound the S100 domain of filaggrin 2, with a

relative response binding of 60 RU, but no interaction between SASPase 28 and the S100

domains of filaggrin, hornerin or TCHH was observed (Fig 2b). Nor was there any binding

observed between MBPHA and SASPase 28. Thus, the data suggest that SASPase 28 specifically

binds the N terminal domain of filaggrin 2 containing the S100 domain.

Table 3. FLG2Nter (aa 2–95) interacts with the N-terminus of SASPase 28 protein. A Y2H analysis using FLG2Nter (aa 2–95) as bait was used to screen 71 million

clones in a random primed human reconstructed skin library. 355 out of 362 positive interactions represented sequences from SASPase (Q53RT3) with a PBS score class A

and a SID domain between amino acids 12 and 84 in the N-terminal domain of SASPase 28.

Bait Uniprot Accession no. Number of clones obtained PBS Score Bound Protein Uniprot accession no. Region involved in interaction (SID)

Filaggrin 2 Q5D862 355 A SASPase Q53RT3 12–84 aa (SASPase28)

https://doi.org/10.1371/journal.pone.0232679.t003

Fig 1. Domain organization of FLG2 and SASPase showing the single interacting domains (SID) between the two

proteins.

https://doi.org/10.1371/journal.pone.0232679.g001

PLOS ONE N terminal domain of filaggrin 2 regulates SASPase auto-autoactivation

PLOS ONE | https://doi.org/10.1371/journal.pone.0232679 May 21, 2020 4 / 19

https://doi.org/10.1371/journal.pone.0232679.t003
https://doi.org/10.1371/journal.pone.0232679.g001
https://doi.org/10.1371/journal.pone.0232679


Fig 2. A) The N-terminal domain of Filaggrin 2 binds to SASPase 28. SPR sensorgram shows the binding between recombinant GST-Flag-SASPase 28

and MBP-HA FLG2 S100 (aa 2–95). MBP-HA FLG2 S100 (aa 2–95) was injected at 6 different concentrations (1, 2, 3, 4, 5 & 6 μM) across 1 μM of

SASPase 28 captured by the GST antibody immobilized on a CM5 sensorship. B) The binding of SASPase 28 to the N terminal domain of Filaggrin 2 is

specific. A goat polyclonal anti-GST was immobilized on a CM5 sensorchip to capture 1 μM of GST-Flag-SASPase 28 kDa and GST, respectively. The

S100 proteins MBP-HA FLG2 S100 (aa 2–95), MBP-HA FLG S100 (aa 2–95) MBP-HA Hornerin S100 (aa 4–95) and MBP-HA TCHH S100 (aa 2–95)

and the control MBP-HA were injected at a concentration of 3 and 6 μM respectively.

https://doi.org/10.1371/journal.pone.0232679.g002
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The data from the Y2H and SPR analyses clearly showed a binding interaction between the

N-terminal domains of SASPase 28 and FLG2 suggesting that both would be associated in the

same compartments of the epidermis.

In order to explore this further, a confocal immunohistochemical analysis was performed,

using a recombinant antibody specific for the FLG2Nter and an affinity purified rabbit poly-

clonal antibody against SASPase to determine if the proteins were co-expressed within the epi-

dermis in human skin. Both proteins were expressed and partially co-localized in the stratum

granulosum of human skin (Fig 3).

It was not clear from the immunohistochemical images in Fig 3 whether SASPase28 and

FLG2Nter were also both present in the stratum corneum. Accordingly, a western blot analysis

of soluble protein extracts from normal skin biopsies, reconstructed epidermal skin models,

stratum corneum sampled by varnish stripping and plantar stratum corneum was performed

to confirm the presence of the FLG2Nter and SASPase in the cornified layers of the epidermis.

The results (Fig 4) showed that a specific recombinant antibody recognizing the FLG2Nter

detected a unique and strong band at 14 kDa in human epidermis, plantar stratum corneum,

and SC sampled by varnish stripping. The 14 kDa band was not detected in a reconstructed

epidermis model where bands of 18, 25 and 28 kDa were detected by the recombinant anti-

body suggesting that in this model the maturation of the N-terminus of FLG 2 is not complete.

SASPase 28 was detected in epidermal extracts from human skin and reconstructed skin mod-

els (Fig 4b—red arrow) but only the 14 kDa catalytic form of SASPase (Fig 4b—green arrow)

was detected in the stratum corneum. Taken together, the data suggest that SASPase 28 was

Fig 3. SASPase 28 and FLG2Nter co-expressed in the stratum granulosum of human epidermis. Confocal immunohistochemical analysis of the

expression of SASPase 28 and the FLG2Nter on frozen sections from human skin A) SASPase 28 (in green) B) FLG2Nter (aa 2–213) (in red) C) Overlay

showing co-expression of SASPase 28 and FLG2Nter in the SG of human epidermis (in yellow) D) control without primary antibodies. Nuclei stained

with Hoescht dye (blue) (c & d). Scale bar = 25 μM.

https://doi.org/10.1371/journal.pone.0232679.g003
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interacting with FLG2Nter in the stratum granulosum and not in the stratum corneum of

human skin.

The evidence that FLG2Nter and SASPase physically interacted in the binding studies and

co-localize in the epidermis and stratum corneum supports the hypothesis that the FLG2Nter

may play a role in the regulation of SASPase auto-activation and activity in the differentiated

layers of the epidermis. Thus, an in vitro enzymatic assay for SASPase 28 was carried out in the

presence of FLG2Nter (aa 2–213) in order to determine if FLG2Nter could act either as an ago-

nist or an antagonist to SASPase enzymatic activity. A quenched fluorescent tagged peptide,

QIDRIMEK, which was previously identified as a preferred substrate for SASPase in a library

screening assay, was incubated in a reaction buffer at pH 5.5 with the recombinant form of

SASPase 28 in the presence or absence of a recombinant protein representing the FLG2Nter

(aa 2–213). The results showed that the presence of FLG2Nter in a dose response manner

enhanced the activity of SASPase and as much as tenfold at higher ratios as compared to the

protease alone (Fig 5). Furthermore, a truncated FLG2Nter recombinant (aa 81–213) at equiv-

alent doses did not increase the activity of SASPase in this assay (Fig 5). Thus, the results sug-

gest that the FLG 2Nter (aa 2–213) fragment containing the S100 domain preferentially

enhances the auto-activation of SASPase 28.

However, we could not conclude from this assay whether FLG 2Nter was enhancing the

activity of SASPase through the stimulation of the auto activation of SASPase 28 or via a direct

effect on the active form of SASPase itself.

Thus, in order to understand further the precise mechanism underlying the activation of

SASPase the recombinant form of GST-SASPase 28 was incubated over a time course from 0

to 6 hours in a reaction buffer at pH 5.5 in the presence or absence of recombinant protein

FLG2Nter (aa 2–213) at equimolar concentrations (1 μM). The auto-processing of SASPase 28

Fig 4. FLG2Nter is present in the stratum corneum of human skin in vivo. A) Western blot analysis showing the

detection of a 14 kDa band (blue arrow) representing the N-terminal domain of FLG2 in soluble protein extracts from

the human stratum corneum and epidermis of normal skin. The contrast was enhanced from the original image (see

supplementary information) to better visualize the bands. B) Western blot analysis showing the presence of SASPase 28

(red arrow) and the 14 kDa catalytic form of SASPase (green arrow) in epidermis of human skin and reconstructed

skin. (RHE = reconstructed epidermal skin; NE = epidermis from normal skin; SCP = plantar stratum corneum;

SC = stratum corneum (sampled by varnish stripping). Protein Molecular Weight markers are indicated on the left of

each image.

https://doi.org/10.1371/journal.pone.0232679.g004
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kDa to its catalytic 14 kDa form was analyzed by Western blot analysis using a monoclonal

antibody which detects SASPase 14 and SASPase 28. The results showed (Fig 6 and S5 Fig) that

the presence of FLG2Nter accelerated the formation of the active 14 kDa SASPase particularly

after 30 minutes and 1 hour of incubation–and its presence also enhanced a greater yield of

SASPase 14 as compared to the reaction where FLG2Nter was absent.

In order to address the question if FLG2Nter could directly influence the activity of the

active form of SASPase we analysed the effect of FLG2Nter in an in vitro enzymatic assay with

a recombinant protein of the active form of SASPase–SASPase 14 and the peptide Dabcyl-

QIDRIMEK-Glu(Edans) as described in materials and methods. The results showed that

FLG2Nter did not stimulate the activity of SASPase 14 in the assay either at equal molar con-

centrations (1:1) or in excess levels of FLG2 Nter to SASPase (4:1) (S4 Fig). Taken together the

results from the biochemical assays in this study suggest that FLG2 Nter stimulates the activity

of SASPase by preferentially stimulating its auto activation to its active form.

Discussion

In this study we demonstrated, for the first time, through Y2H and SPR analyses, that SASPase

28 interacts with FLG2Nter. In addition, SPR studies showed that the reaction was specific to

FLG2Nter among S100 related proteins. In particular no binding was evidenced to filaggrin

and hornerin which share high amino acid homology in the N terminal domain to filaggrin 2.

Immunohistochemical analyses showed that the two proteins were partially co-localized

within the stratum granulosum of the human epidermis. FLG2Nter was also demonstrated by

western blot to be present in the stratum corneum of human skin where SASPase 14 was

shown to be also present in previous studies [7]. Finally, in vitro enzymatic assays demon-

strated that FLG2Nter stimulated the autocatalytic protease activity of SASPase 28 but does

not appear to modulate the activity of the catalytic form of the enzyme–SASPase 14 –once

formed.

Hairless mice with a deficiency in SASPase activity displayed a dry skin phenotype associ-

ated with a thicker and dehydrated stratum corneum [14]. In these mice alterations in filaggrin

Fig 5. FLG2Nter activates SASPase proteolytic activity in vitro. An in vitro enzymatic assay using recombinant

proteins of 28 kDa SASPase (0.5 μM), and FLG2Nter (aa 2–213) and FLG2Nter (aa 81–213) at different mass ratios to

SASPase 28 in the presence of a fluorescent-labeled peptide Dabcyl-QIDRIMEK-Glu(Edans)-NH2 (0.1 mM). The

histogram presents the mean values (+/-SD) of each assay performed in triplicate.

https://doi.org/10.1371/journal.pone.0232679.g005
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processing resulted in increased levels of unprocessed forms of filaggrin. Furthermore, in the

same study, a recombinant protein for SASPase 14 was shown, in vitro, to cleave the linker

sequence between the 37 kDa repeats in a recombinant filaggrin protein. Thus, the data from

this study provided evidence that SASPase regulated skin hydration through the processing of

profilaggrin to its intermediate isoforms. Taken together with our data, we propose a model

(Fig 7) describing the role of the FLG2Nter in the auto-activation of SASPase and subsequent

processing of filaggrin to its free amino acids. Since it has been shown that FLG 2 is proteo-

lysed in part by calpain 1 [17] we propose that, during the proteolysis of FLG2 to its intermedi-

ate fragments, the N-terminal S100 domain is cleaved and binds to the N-terminal domain of

SASPase 28. This interaction stimulates the auto-activation of SASPase to its active 14 kDa

form, which in turn participates in the early processing of profilaggrin to its intermediate frag-

ments, the 37 kDa filaggrin peptides and a 32 kDa profilaggrin N-terminal domain [27]. The

latter fragment localizes to the nucleus and cytoplasm of epidermal granular layer cells [28]

and has been postulated to play a role in signalization during epidermal differentiation [27,

29]. The hypothetical role of the proFLG N-terminal domain was partially deciphered, provid-

ing a feedback mechanism that controls epidermal homeostasis [30] and probably epidermal

barrier formation through its interaction with loricrin [31]. Recently new roles for FLG2 in

epidermal adhesion and barrier function have been described [18, 19, 25]. However, given the

high homology between the S100 domains of filaggrin and filaggrin 2, an additional role in

feedback regulation similar to that of filaggrin could also be envisaged for the FLG2 N-termi-

nal domain, which was shown to be fully processed in the stratum corneum in this study.

Fig 6. The N-terminal domain of Filaggrin 2 enhances the auto-activation of 28 kDa SASPase to its active 14 kDa

form. Recombinant SASPase 28 was incubated from 0 to 6 hours in the presence of equimolar amounts of

recombinant protein FLG2Nter (aa 2–213). The auto-processing of 28 kDa SASPase into its catalytic 14 kDa form was

analyzed by Western blot analysis using a monoclonal antibody that detects SASPase. A cropped image from S5 Fig

shows the 14 kDa catalytic of SASPase. (B) semi quantitative analysis of the SASPase 14 band in the presence of

FLG2Nter (green bars) as compared to SASPase 28 alone (red bars).

https://doi.org/10.1371/journal.pone.0232679.g006
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In this model, FLG 2 is proteolysed, in part, by calpain 1 and other unidentified proteases,

to its intermediate fragments and its N-terminal domain (FLG2Nter) [17]. The latter binds to

the N-terminal domain of SASPase 28, stimulating the auto-activation of SASPase 28.

In this study, we have shown that the SASPase28 and FLG2Nter are partially co-expressed

in the stratum granulosum suggesting it is in this compartment of the epidermis that

FLG2Nter regulates the auto-activation of SASPase28. Since it has been shown that SASPase is

one of the secreted proteases in lamellar bodies [32] and these organelles are acidic by nature

[33], the modulation of SASPase auto activation by FLG2 Nter, which is optimal at an acidic

pH of 5–6, may occur when the SASPase is released by lamellar bodies in the stratum

granulosum.

In a reconstructed human epidermis skin model, where filaggrin 2 expression has been

downregulated by shRNA technology, the proteolytic processing of filaggrin and the levels of

the NMF free amino acids UCA and PCA were reduced. However, the levels of the processing

protease calpain 1 were not diminished [26]. Since SASPase is a key enzyme in the early pro-

cessing of filaggrin, it would be very interesting to see if the auto-activation of SASPase 28 and

the consequent levels of SASPase 14 are decreased in this filaggrin 2 shRHE model. This would

help explain the accumulation of profilaggrin in the SG in this model, a phenomenon, that was

also observed in the SASPase -/- transgenic mouse model. If this proves to be the case it would

add weight to the data suggesting that the auto-activation of SASPase is regulated by

FLG2Nter.

Despite the evidence that FLG2Nter can activate the auto-activation of SASPase in vitro, the

precise molecular mechanism through which this occurs has not been elucidated in this study.

One hypothesis could be that the association between SASPase 28 and FLG2Nter leads to an

allosteric conformational change of SASPase favoring a more active protein folding, similar to

the mechanism through which related HIV proteases oscillate between an unfolded and folded

active state [34]. Another hypothesis could be similar to the mechanism involved in the activa-

tion of cathepsin L, where auto-processing releases the N-terminal domain of the protein,

which in turn, acts as an inhibitor of its activity [35]. In this scenario, auto-activation of SAS-

Pase releases its N-terminal domain which would inhibit the dimerization of the consensual

Fig 7. Proposed model for the role of FLG2Nter in the auto activation of SASPase and the maturation of FLG and

FLG2.

https://doi.org/10.1371/journal.pone.0232679.g007
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aspartic protease active site [36], thus quenching activity of the enzyme. FLG2Nter could then

block the inhibition of SASPase 14 dimerization by the N-terminal domain of SASPase 28 and

consequently enhance the auto-activation and dimerization of the protease.

Y2H and other protein-protein interaction techniques [37] such as, co-immunoprecipita-

tion, proximity ligation assay, enzymatic proximity labelling, or in silico modeling are being

increasingly used to identify protein-protein interactions in order to deepen our comprehen-

sion of skin regulatory pathways. Here, Y2H was used to identify FLG2Nter as a regulator of

SASPase. It was previously used to identify the interaction between FLGNter and loricrin and

the its role in terminal differentiation [31]. During epidermal differentiation many proteins

are processed into fragments with undefined functions, the S100 fused gene family [5], innate

defense proteins like dermcidin [38], desquamation related proteases such as KLK7 [39], pro-

tease inhibitors such as LEKTI [40] or signalization protein like stratifin [41]. The identifica-

tion of interacting proteins or protein domains for these released fragments would be a

powerful way to decipher their role in epidermal differentiation.

In summary, the data obtained from this study showed that SASPase auto-activation is

enhanced by FLG2Nter. This discovery supports the potential role of FLG2Nter in SASPase

activation during the processing of filaggrin to NMFs in the human epidermis and its role in

the fine tuning of epidermal terminal differentiation, SC barrier formation and skin hydration.

Materials and methods

Skin samples and human reconstructed epidermis

Normal human skin was obtained from surgical residues of breast reduction surgery. Stratum

corneum plantar samples were obtained from foot scrapings and other stratum corneum sam-

ples were obtained from the leg by varnish stripping. All skin and stratum corneum samples

were from healthy volunteers, with their written informed consent in accordance with the

Declaration of Helsinki protocols and with Article L. 1243–4 of the French Public Health

Code. Patients’ written informed consents were collected and kept by the acting dermatologist.

The samples were anonymized before their reception by the authors. Only age, sex and ana-

tomical site of samples were specified to the authors. The authors did not participate in sample

collection. The sampling of varnish strippings were taken at an approved clinical research cen-

ter (Dermexpert, Paris, France), study 07 0036 and approved by their internal ethics commit-

tee. Given its special nature, surgical residues or stratum corneum planter is subject to specific

legislation included in the French Code of Public Health (anonymity, gratuity, sanitary/safety

rules). This legislation does not require prior authorization by an ethics committee for sam-

pling or use of surgical waste (http://www.ethique.sorbonne-paris-cite.fr/?q=node/1767).

Human reconstructed epidermis models were cultured until day 13 or day 20 as described

[42, 43].

Stratum corneum samplings Varnish Stripping
A nylon membrane (15 x 6 cm) (Millipore, Molsheim, France) with varnish solution (nitrocel-

lulose, isopropanol, alkyd resin, acetyl tributyl citrate and ethyl acetate) was applied to the skin

surface of the upper leg of volunteers—the membrane was peeled off after 10 mins. Mem-

branes containing stratum corneum material were washed with 100 ml of ice cold acetone in a

beaker. The released material, which was essentially corneocytes (cornified keratinocytes) was

filtered through a 44 μm membrane. This was washed 3 times with 90 ml ice cold acetone and

corneocyte material was air dried prior to extraction. Typically, 100 μl of extraction buffer was

used per 1 mg of dry weight tissue.
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Yeast two hybrid analysis

The coding sequences for the full length wild type SASPase 28 (corresponding to aa 85–343 of

SASPase 37), FLG2Nter (aa 2–213) and FLG2S100 (aa 2–95) were PCR amplified and cloned

in frame into a pB27 plasmid as a C-terminal fusion to LexA. The constructs were used as bait

to screen a random primed human reconstructed epidermis (Episkin1 day 13) library into the

plasmid pP6. pB27 and pP6 plasmids derive from the original pBTM116 and pGADGH plas-

mids, respectively. More than 70 million clones were screened for each bait using a mating

approach with Y187 (matα) and L40dGal4 (mata) yeast strains as previously described [43].

Positive colonies were selected on a tryptophan, leucine and histidine free medium, supple-

mented with 5 mM or 20 mM 3-aminotriazole for the FLG2Nter (aa 2–213) and FLG2S100 (aa

2–95) screens, respectively. The prey fragments of the positive clones were amplified by PCR

and sequenced at their 5’ and 3’ junctions. The resulting sequences were used to identify the

corresponding interacting proteins in the GenBank database (NCBI) using a fully automated

procedure. A confidence score (PBS, for Predicted Biological Score) was attributed to each

interaction as previously described [44, 45]. This allows for the ranking of the clones into clas-

ses from A (highest confidence) to D (lowest confidence) in decreasing probability of having a

specific interaction with the bait. A fifth class (E) specifically flags interactions involving highly

connected prey domains previously found several times in screens performed on libraries

derived from the same organism. Finally, several of these highly connected domains have been

confirmed as false positives of the technique and now tagged as class F. The PBS scores have

been shown to positively correlate with the biological significance of interactions [46, 47]. In

order to determine the interacting domains, the overlapping prey fragments from the same

gene were clustered and their translated amino acid sequences aligned. The common overlap-

ping regions were designated as the “selected interacting domain”—SID.

Expression and purification of recombinant proteins for SASPase and

FLG2Nter for SPR studies

The coding sequence for amino acids 1–259 of SASPase 28 (corresponding to amino acids 85–

343 of SASPase 37) was sub-cloned into the E. Coli expression vector pEB9 with a GST-Flag

tag at the N-terminus of the recombinant protein. The coding sequence containing the S100

domains (amino acids 2–95) of filaggrin 2, filaggrin, hornerin and trichohyalin (hTCHH)

were sub-cloned into the E. Coli expression vector pEB7 with a MBP-HA specific double tag at

its N terminus. 5 ml cultures of BL21 E. coli strains were transformed with pEB9 protein

expression vector for GST-Flag-SASPase 28 and the pEB7 vectors MBP-HA-FLG2S100 (aa

2–95), MBP-HA-FLGS100 (aa 2–95), MBP-HA-HRNR S100 (aa 2–95), and MBP-HA-TCHH

S100 (aa 2–95), respectively. 200 mL of culture media was inoculated with each respective

transformed BL21 strain and grown at 37˚C until an OD600nm of 0.8–1.0. The cultures were

then induced with 0.1 mM IPTG for E. Coli transfected with pEB9 GST-Flag-SASPase 28 and

0.5 mM IPTG for the pEB7 vectors and then incubated overnight at 16˚C. Cells were then har-

vested by centrifugation; BL21 pellets were resuspended in PBS pH 7.4 supplemented with

10% glycerol and 1% Triton X-100 and lysed by sonication. Each recombinant was purified by

affinity chromatography on glutathione resin for GST-Flag-SASPase 28 and amylose resin for

MBP-HA-FLG2S100 and the other S100 recombinants. The elution fragments containing the

fusion recombinant protein were pooled and dialyzed overnight at 4˚C against PBS pH 7.4.

The sample homogeneity was checked by Coomasssie blue staining of SDS-PAGE gels and the

image of the gel was captured by a gel imager FluorSMax (Biorad, Marnes-la-Coquette,

France) (see S1 Fig for image of GST-Flag-SASPase 28 recombinant) and its concentration

was measured by Bradford assay.
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Surface plasmon resonance analysis

Binding analysis between SASPase 28 and FLG2S100 (aa 2–95) was analysed on a Biacore

T200 (GE Healthcare, Orsay, France). Briefly, 1700 RU of goat polyclonal anti-GST diluted in

HBS-EP+ buffer were immobilized on flow cells 1 and 2 of a CM5 sensorchip using the GST

capture kit (GE Healthcare, Orsay, France). A GST recombinant protein (GE Health Care)

diluted in HBS-EP+ buffer was injected into flow cell 1 at a flow rate of 30 μl/min for 180 sec-

onds at 25˚C. The ligand, GST-Flag-SASPase 28 kDa recombinant diluted in HBS-EP+ was

injected into the flow cell 2 at a concentration of 1 μM at a flow rate of 30 μl/min for 180 sec-

onds at 25˚C. The analyte MBP-HA-FLG2S100 (aa 2–95) was injected at 6 different concentra-

tions (0, 1, 2, 3 4, 5 & 6 μM) and the control recombinant MBP-HA (3 and 6 μM) into flow cell

1 and 2 at the same flow rate for 120 seconds (association) followed by injection of running

buffer alone HBS-EP+ for 600 seconds (dissociation). Regeneration of the CM5 chip was per-

formed with 10 mM Glycine-HCl at pH 2.1 for 120 seconds at 30 μl/min. Results are displayed

as response units (RU) as a function of time (s). Rate equations derived from the 1:1 Langmuir

binding model were fitted to the experimentally obtained association phase and dissociation

phase binding curves for all injections. Kinetic association (ka) and dissociation (kd) rate con-

stants were calculated and the KD with the formula: KD = kd/ka.

The binding analysis of between SASPase 28 and the S100 domains of the proteins filaggrin

2, filaggrin, hornerin and TCHH were also performed on a Biacore T200 (GE Healthcare,

Orsay, France). Briefly, 1700 RU of goat polyclonal anti-GST diluted in HBS-EP+ buffer were

immobilized on flow cells 1 and 2 of a CM5 sensorchip using the GST capture kit (GE Health-

care, Orsay, France). A GST recombinant protein (GE Health Care) diluted in HBS-EP+ buffer

was injected into flow cell 1 at a flow rate of 30 μl/min for 180 seconds at 25˚C. The ligand,

GST-Flag-SASPase 28 kDa recombinant diluted in HBS-EP+ was injected into the flow cell 2

at a concentration of 1 μM at a flow rate of 30 μl/min for 180 seconds at 25˚C. The analytes

MBP-HA FLG2S100, MBP-HA FLGS100, MBP-HA Hornerin S100, MBP-HA TCHH S100

and MBP-HA were injected over both flow cells 1 and 2 at two concentrations, 3 and 6 μM, for

120 seconds at a flow rate of 30 μl/min followed by injection of running buffer alone HBS-EP

+ for 600 sec (dissociation). Results are displayed as response units (RU) as a function of time

(s).

Immunofluorescence confocal microscopy

Human skin biopsies were frozen at– 80˚C. Subsequent 6 μM sections were fixed with ice cold

acetone for 5 min, rehydrated in PBS (Gibco1, Thermo Scientific, Courtaboeuf, France) and

blocked with PBS/3% BSA for 20 min at RT. Sections stained for SASPase were then incubated

with an affinity purified rabbit polyclonal (HPA03489 Sigma) against SASPase at 0.5 μg/ml

final concentration overnight at 4 ˚ C. After washing for those sections stained for FLG2Nter

and double staining for SASPase/FLG2Nter were incubated with a custom Alexa Fluor 546

conjugated recombinant antibody against FLG2Nter (aa 1–95)–clone AbD15810 (BioRad

AbDSerotec, Puchheim, Germany) at RT for one hour–the specificity of this antibody was

evaluated in ELISA assay against recombinant proteins representing the N terminal domains

of filaggrin and filaggrin 2- the AbD15810 antibody only detected FLG2Nter and did not

detect filaggrin. This antibody was used at a final concentration of 3 μg/ml. After washing, sec-

tions stained for SASPase and double staining for SASPase/FLG2Nter were incubated with a

secondary antibody Goat anti-Rabbit IgG (H+L) Cross-Adsorbed Secondary Antibody, Alexa

Fluor 488 (Invitrogen) at 2 μg/ml final concentration. All incubations (1 hour) and washes (2 x

10 min) were in PBS, 0.2% BSA at RT. Staining of sections and nuclei (Hoechst) were
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visualized under a Leica TCS SP8 DMI 6000 inverted microscope using a 40 X objective (Leica

Microsystems, Nanterre, France).

Expression and purification of recombinant proteins FLG2Nter for

enzymatic studies

The sequence for FLG2Nter (aa 2–213) was cloned into the expression vector PEB6. Briefly, E.

coli BL21 cells were transformed with the vector, cultured in LB broth at 37 ˚ C for 16 hours

and then induced with 1 mM IPTG for 22 h at 20˚C. Cells were lysed and the recombinant

protein purified by Ni-NTA affinity chromatography. The quality and purification of this

recombinant was verified by Coomassie stained SDS- PAGE and the image captured by a a gel

imager FluorSMax in automated mode (S1B Fig).

The truncated form of FLG2Nter (aa 81–213) was cloned into a derivative of the expression

vector pTFT74 and expressed and purified by the method as described [48]. Briefly, E.coli
BL21 (DE3 pLys S) cells were transformed with the vector, induced with 1 mM IPTG for 3 h at

37˚C and recombinant protein was purified by immobilized Ni-NTA affinity chromatography.

Image of the Coomassie stained Criterion anyKD gel (Bio-Rad) was captured by a Gel Doc EZ

System (Bio-Rad) using automated mode.

Kinetic enzymatic SASPase assay

Recombinant protein representing the N-terminus of FLG2 (aa 2–213) or a truncated form of

FLG2Nter (aa 81–213) was incubated in increasing concentration ratios (from 1.25 to 10) with

0.5 μM of the recombinant form of 28 kDa SASPase and 0.1 mM of a fluorescent-labeled pep-

tide substrate Dabcyl-QIDRIMEK-Glu(Edans)-NH2 (JPT Peptide Technology, Berlin, Ger-

many)—identified as substrate in a library screening assay—in 0.1 M acetate/150 mM NaCl

pH 5.5 on a 96 well plate for 60 min at 37˚C. Resulting fluorescence was then recorded (λex

340 nm, λem 490 nm) on a SpectraMax M5e spectrophotometer (Molecular Devices, St Gre-

goire, France). To study the effect of FLG2 Nter on the catalytic form of SASPase, 1 μM of the

recombinant FLG2Nter (aa 2–213) was incubated with 1 μM or 0.25 μM of a recombinant

form of SASPase 14 (Abcam, Cambridge UK) and 0.1 mM of a fluorescent-labeled peptide

substrate Dabcyl-QIDRIMEK-Glu(Edans)-NH2 (JPT Peptide Technology, Berlin, Germany)

—in 0.1 M acetate/150 mM NaCl pH 5.5 on a 96 well plate for 60 min at 37˚C. Resulting fluo-

rescence was then recorded (λex 340 nm, λem 490 nm) on a SpectraMax M5e spectrophotome-

ter (Molecular Devices, St Gregoire, France). Each assay was performed in triplicate and the

results were presented as the mean value (+/- SD).

Auto-processing analysis of SASPase 28 kDa

The recombinant protein representing the N-terminus of FLG2 (aa 2–213) at a final concen-

tration of 1 μM was incubated with the recombinant form of 28 kDa SASPase at a final concen-

tration of 1 μM in 0.1 M acetate/150 mM NaCl pH 5.5 for 6 hours at 37˚C. 10 μL aliquots of

the reaction at time points 0.5, 1, 2, 3, 4 and 6 hours were electrophoresed on Tris-HCl 10–

20% gradient SDS-PAGE gels (Biorad, Marnes-la- Coquette, France). Proteins were then

transferred to PVDF membranes (Immobilon P, Millipore, Molsheim, France) under standard

conditions. Membranes were incubated with anti–SASPase monoclonal antibody (clone

7H9a105) [7] followed by an anti-mouse HRP conjugated secondary antibody. Protein bands

were revealed by ECL Plus1 (GE Healthcare, Orsay, France) and the image captured on a gel

imager (FluorSmax, Biorad, Marnes-la-Coquette, France) using longer exposure (10 secs) to

visualize lower molecular weight bands. The intensity of each band (CNT/cm2) was analyzed

and integrated by Quantity One (Biorad, Marnes-la-Coquette, France).
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Western blot analysis of FLG2 and SASPase in SC and skin samples

4 mm punch skin biopsies or stratum corneum samples were homogenized in a lysis buffer of

TBS/1 M NaCl/ 1% Triton X 10 containing a cocktail of protease inhibitors (Roche, Meylan,

France). Lysates were clarified by centrifugation at 10 000 X g at 4˚C. Protein determination

was performed on subsequent soluble protein supernatants using a BCA assay (Thermo Scien-

tific, Courtaboeuf, France) according to the manufacturer’s instructions. 10 μg aliquots of solu-

ble protein extracts from normal skin biopsies, plantar stratum corneum (PSC) and SC

obtained by varnish were separated on Tris-HCl 10–20% gradient SDS-PAGE gels (Bio-Rad,

Marnes-la-Coquette, France). Proteins were then transferred to PVDF membranes (Immobi-

lon P, Millipore, Molsheim, France) under standard conditions. Membranes were incubated

with primary antibody–a His tagged recombinant monoclonal antibody (Bio-Rad AbDSerotec,

Puchheim, Germany) directed against FLG2 N terminal domain (aa2-213) at 1 μg/ml followed

by anti His HRP conjugated secondary antibody) (Roche, Meylan, France). For SASPase mem-

branes were incubated with anti–SASPase monoclonal antibody (clone 7H9a105) at 1 μg/ml

[7] followed by an anti-mouse HRP conjugated secondary antibody. Protein bands were

revealed by ECL Plus1 (GE Healthcare, Orsay, France) and visualized imaged captured on a

gel imager (FluorSmax, Bio-Rad, Marnes-la-Coquette, France).

Supporting information

S1 Fig. Recombinant proteins used in vitro enzymatic assays. Coomassie stained gels of the

respective recombinants used in biochemical assays. All the images are spliced versions–as

indicated by black vertical lines—adapted from the original image (see raw images file). A)

GST FLAG SASPase 28 showing the recombinant migrating at 52–56 kDa–a weaker band is

migrating at 25 kDa. Lane E3 is shown from the original image. B) FLG2 Nter (aa 2–213)

showing the recombinant migrating at 43 kDa. Lane E5 is shown from the original image. C)

FLG2 Nter (aa 81–213) showing the recombinant at 16 kDa and the fusion N1-FLG2 Nter (aa

81–213) at 25 kDa. The other bands in this purification are Sly D (35 kDa) a known His–rich

E.coli protein often co purified with AgX and N1 at 10 kDa. Lane 13 is shown from the original

image.

(TIF)

S2 Fig. The binding of SASPase 28 to the N terminal domain of filaggrin 2 is dose depen-

dent. A goat polyclonal anti-GST was immobilized on a CM5 sensorchip and used to capture

GST-Flag-SASPase 28 kDa. MBP-HA FLG2 S100 (aa 2–95) was injected at 6 different concen-

trations (1, 2, 3, 4, 5 & 6 μM) across immobilized SASPase 28 on a CM5 sensorchip. The con-

trol recombinant MBP-HA was injected at a concentration of 3 and 6 μM. The graph shows

the relative binding response of MBP-HA FLG2 S100 (aa 2–95) and MBP-HA to SASPase 28

kDa.

(TIF)

S3 Fig. No binding was observed between GST and the N terminal domain of filaggrin 2. A

goat polyclonal anti-GST was immobilized on a CM5 sensorchip and used to capture GST.

MBP-HA FLG2 S100 (aa 2–95) was injected at 6 different concentrations (1, 2, 3, 4, 5 & 6 μM)

across immobilized GST on a CM5 sensorchip. The sensorgram showed no observed associ-

ated or dissociated binding curves between GST and MBP-HA FLG2 S100 (aa 2–95).

(TIF)

S4 Fig. FLG2Nter does not activate SASPase14 proteolytic activity in vitro. An in vitro enzy-

matic assay using recombinant proteins of 14 kDa SASPase and FLG2Nter (aa 2–213) at either
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equal mass ratios (1 μM: 1 μM) and at a ratio of 1:4 (0.25 μM: 1 μM) respectively in the pres-

ence of a fluorescent-labeled peptide Dabcyl-QIDRIMEK-Glu(Edans)-NH2 (0.1 mM). The

histogram shows the relative change in activity at 30 mins of the reaction and presents the

mean values (+/-SD) of each assay performed in triplicate.

(TIF)

S5 Fig. Western blot larger view (cropped image from original raw image). The N-terminal

domain of Filaggrin 2 enhances the auto-activation of 28 kDa SASPase to its active 14 kDa

form. Recombinant SASPase 28 was incubated from 0 to 6 hours in the presence of equimolar

amounts of recombinant protein FLG2Nter (aa 2–213). The auto-processing of 28 kDa SAS-

Pase into its catalytic 14 kDa form was analyzed by Western blot analysis using a monoclonal

antibody that detects both forms of SASPase. Results showed that the presence of FLG2Nter

accelerated the formation of SASPase 14 (indicated by blue arrow) as early as 30 minutes of

incubation. The size of the GST–SASPase 28 is 52–56 kDa indicated by a red arrow–the visible

bands observed between 52–56 kDa and 14 kDa are likely to be intermediate forms of the pro-

cessed GST- SASPase recombinant.

(TIF)

S1 Raw images.

(PDF)

S1 File.

(DOCX)
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