
 

  

 

 

 

 

 
 
 
 
 
 
 
 
 

 
Challenges in biotechnology 
 

Biotechnology promises to deliver innovative and sustainable 
products and processes as solutions to various societal problems [1]. 
Important challenges in this field include sustainable production of 
biofuels from renewable sources as an alternative to fossil fuels, the 
exploitation of the metabolic capabilities of microorganisms towards 
the production of fine chemicals and pharmaceutical products, the 
construction of novel pathways for environmental bioremediation due 
to urban and industrial pollution, smooth transfer of lab scale 
experiments to pilot and production scale and the integration of 
biotechnology with chemical processes [2-4]. Recent advances in 
biotechnology have overcome several technological barriers 
encountered in industrial applications necessitating a deeper 
understanding of the underlying control mechanisms of cellular 
growth in order to achieve efficient and cost-effective bioprocesses. 

Microorganisms hold great potential for industrial biotechnology, 
harbouring various metabolic pathways either for degradation of 
recalcitrant pollutants or the production of a series of compounds, 
which can be used as fuels, chemicals and pharmaceutical products 
[5]. However, the use of natural (wild type) microorganisms at large 
scale is usually hampered by sub-optimal bioprocesses in terms of 
yield, productivity and titre, along with the low tolerance of strains to 
process stresses, such as substrate and product toxicity, and 
fermentation inhibitors [6]. In order to improve the industrial efficacy 
of  wild  type  microorganisms  a  variety  of  approaches  have  been  

 
 
 
 
 
 

 
 

 
  

 

proposed. Synthetic biology seeks optimal pathway configurations 
with the application of gene combinatorial methods to construct and 
consequently evaluate several metabolic pathways, combining genes 
from different sources. This de novo construction of artificial 
biological systems utilizes theoretical approaches for the design of 
modular system components [7-8]. Furthermore, systems biology 
methodologies attempt to use system-wide measurements obtained by 
high-throughput technologies in combination with mathematical 
methods for the elucidation and implementation of novel biosynthetic 
pathways and identification of genetic targets for modification [9]. 
Metabolic engineering also aims at the improvement of microbial 
strains for industrial application. Contrary to synthetic biology, 
metabolic engineering targets the optimisation of pathways by 
regulating the activity of intermediate reactions combining rational 
and combinatorial methods [10].  

Mathematical models are increasingly becoming central to 
understanding and improving cellular based processes. However, with 
the field of biotechnology shifting from method development to 
application development [11], a systems biology approach of detailed, 
mechanistic modelling becomes problematic since modelling of 
complex biological systems inherently is an inverse problem that 
cannot be solved [12] and understanding of experimental information 
has lagged far behind data accumulation. Implementing microbial 
production on an industrial scale should focus towards bioprocess 
systems engineering strategies, which can ultimately enable control 
and optimisation at the bioprocess level [13]. 

 
Challenges in biological modelling 

 
Despite the economic turmoil of the last few years, 

Thomson&Reuters concur that the bio-industry is a viable platform 
for low risk investments with a good profit margin [14]. Nonetheless, 
the bio-chemical industry requires improved process efficiency; alas, 
the sophisticated mathematical toolset that led to the explosive 
growth of manufacturing capacity in traditional chemical industries, 
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known as Process Systems Engineering (PSE), is not readily 
applicable to the bio-industry. Obstacles hindering the adaptation of 
traditional PSE approaches to bio-processing include the complexity 
of the biological systems, the limited understanding of the biological 
processes, and the resulting lack of adequate process models. In the 
absence of model-based approaches, process optimisation in the bio-
industry relies on extensive, and in certain cases unnecessary, 
experimentation. 

The use of model-based techniques can facilitate the reduction of 
unnecessary experimentation by indicating the most informative 
experiments and providing strategies to optimise and automate the 
process at hand, resulting in a cost and time reduction. Mathematical 
models of biological systems developed in the past integrate various 
degrees of structure and mathematical complexity. Models of single 
cells, cell populations and cell cultures have been utilized in 
understanding and improving biological systems, as well as in the 
optimisation and control of bioprocesses [13]. Indicatively, 
mathematical models have been applied to various extents in the 
design of optimal media [15], the identification of previously ignored 
growth limiting factors [16], the optimization of culture growth and 
productivity [17, 18], and in the application of control approaches to 
cell culture processes [19]. 

Yet when Pörtner and Schäfer [20] compared a selection of 
models for cell growth and metabolism of hybridoma cell lines 
through an analytic error and range of validity analysis, they found 
significant variations in the values of maximum growth rate, yield and 
Monod constants. They concluded that the model predictions 
involved significant errors, particularly due to the limited 
understanding of cellular metabolism and the narrow data ranges 
within which the models were valid. The observed discrepancies were 
partly attributed to the absence of a formalised approach for the 
proper identification of process parameters. It was concluded that 
specific process models should be used for the estimation of specific 
types of process parameters. For example, it was suggested that static 
batch cultures should be used for the determination of the maximum 
specific growth rate, but not for establishing a relationship between 
the growth rate and substrate concentration, whereas continuous 
cultures could yield reliable data due to the steady-state operation 
conditions. For very low substrate concentrations, they suggested 
using fed-batch cultures.  

The large-scale generation of biological data obtained with a 
variety of high-throughput experimental technologies demand the 
development of integrated mathematical models of cellular processes 
[21]; alas, integration of mathematical modelling in bio-processing 
has proven to be challenging. The way biochemical engineers conceive 
and mathematically describe biological processes, by and large, is still 
defined by a mathematical formulation derived a century ago to 
describe enzyme kinetics [22]. Although the hypothetical system 
studied was the simplest possible, the conversion of one molecule of a 
given substrate to a product via a single enzymatic reaction, it has 
shaped the way we conceive kinetic rates in biology. Since then, the 
theory provided by Michaelis and Menten has evolved, being used as a 
starting point when attempting to describe much more complex 
systems, such as microbial growth [23]. Considering the developments 
in analytical and molecular biology over the past decades brings 
Bailey’s [24] argument that the development of mathematically and 
computationally orientated research has failed to catch up with 
developments in biology. Mathematical biology today revolves around 
mathematical expressions developed a hundred years ago (Table 1). 

Notable studies attempting to introduce a new approach to 
biological systems modelling include, but are not limited to, 
cybernetic modelling presented by Ramkrishna [25], the introduction 
of structure as defined by Fredrickson [26] and extended to the 

genetic level by Lee and Bailey [27, 28]. The concept behind 
cybernetic modelling is the adaptation of a mathematically simple 
description of a complex organism which is compensated for over-
simplification by assigning an optimal control motive to its response 
[29]. Microbial cells growing in the presence of multiple substrates 
are assumed to follow an invariant strategy to optimise a certain goal 
by choosing which substrate to consume first. Thus, by assuming a 
multi substrate environment containing cells that follow different 
strategies of substrate consumption, those cells that choose to grow 
first on the fastest substrate available will grow much faster than cells 
that respond differently. After some time all the cells that remain in 
the environment will be those that have responded in the optimal 
manner.  
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Lee and Bailey [27, 28], extended the concept of structure to the 

level of nucleotide sequences. They introduced an explicit connection 
between a particular nucleotide sequence and the affinity of a 
particular protein for that sequence, which in turn influences the 
corresponding transcription event, deriving a quantitative mapping 
from nucleotide sequence to overall phenotype. Even though in his 
detailed review, Bailey [24], predicted that this new “genetically 
structured model” would be widely embraced in the future, supported 
by the advancement of the “omics” techniques, little work has been 
done in that direction. 

Savageau [30-33] was amongst the first to investigate metabolic 
pathway control from a mathematical analysis point of view. A few 
years later the work of Kacser and Burns [34] and Heinrich and 
Rapoport [35] defined the field of Metabolic Control Analysis 
(MCA), which quantitatively studies the degree of flux control that is 
applied on a metabolic pathway by various effectors, such as enzyme 
activities and metabolite concentrations. Papoutsakis [36] 
demonstrated that it was possible to formulate balance equations 
using a metabolic map, a concept which later evolved into Flux 
Balance Analysis (FBA) [37, 38]. The idea of controlling flux balance 
through a given metabolic pathway towards achieving a desired overall 
behaviour  (e.g. maximisation of product formation)  was shaped into  
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the principles of Metabolic Engineering developed by Bailey [39]. 
Stephanopoulos and co-workers [40-42] spearheaded the expansion 
of Metabolic Engineering which they defined as: “the directed 
improvement of product formation or cellular properties through the 
modification of specific biochemical reaction(s) or the introduction 
of new one(s)”. 

Despite the significant efforts of the biochemical engineering 
community, the bio-industry has been slow to uptake and implement 
model-based approaches. Due to the lack of mechanistic information 
(and in many cases absence of proper modelling practice), 
mathematical models of biological processes are usually limited both 
in terms of range of validity and predictive capability. Model 
parameters are usually estimated without any a priori model analysis 
[43] and the reported values are only seldom accompanied by 
qualitative metrics (i.e. confidence intervals). This partly explains the 

significant deviation and inconsistency observed in the reported values 
of model parameters [20]. Moreover, mathematical models of 
biological systems, generally, lack transferability to other, even similar, 
processes without a complete re-estimation of the model parameters. 
Bioprocess models usually focus on the significant process variables 
and their interconnectivity around specific operating conditions. 
Furthermore, the primary “tools” utilised to describe the observed 
macroscopic behaviour are usually limited to nutrient and metabolite 
concentrations, a remnant from a period when those were the only 
readily measurable quantities analytically. If we imagine cellular 
metabolism as many pieces of rope tangled together, we are currently 
trying to untie the knot by pulling on one end of the rope alone. 
What is currently lacking is information from the other end of the 
rope, the genes, which are at the centre of control of cellular 
mechanism. 

Figure 1. A Bioprocess Systems Engineering framework for model development in biological systems. 
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It comes as no surprise therefore, that model based optimisation 
of cell culture processes currently lags behind the developments in 
other process industries [17, 19]. Apart from the lack of robust and 
predictive process models, the lack of readily applicable on-line 
measurements of key process variables significantly hinders the 
application of traditional PSE tools to the bio-industry. The response 
of cell cultures to changes in the feeding strategy is usually monitored 
primarily through simple measurements such as the oxygen uptake 
rate and pH [16, 44-46]. The limited number of readily available on-
line measurements in turn limits the complexity of the utilised model 
for deriving the optimal strategy. Thus, the common practice when 
estimating optimal feeding profiles is to base calculations on the cells’ 
need for the primary nutrients alone [17, 19, 44]. In an attempt to 
compensate for this simplification, excessive amounts of the primary 
nutrients are fed to the culture resulting in a net improvement of 
culture behaviour, even though this is known to be a sub-optimal 
approach [15]. 

Optimisation of cell culture processes largely depends on the 
balance between prolonged culture viability and increased 
productivity. Therefore, there is a need to identify and quantify this 
trade-off between growth and product formation in order to derive 
truly optimal culture conditions. Bailey [24] predicted the need to 
shift modelling focus upstream towards the genetic level where the 
kernel of the cell’s control mechanism lies, in order to truly 
understand the dynamics of metabolism. In a nutshell, our research 
efforts should revolve around the following questions: 

a) Which genes are crucial for cellular growth and product 
formation? How do these genes interact between themselves 
and the environment? 

b) How does the process environment (indicatively: media 
composition, feeding schedule, osmotic pressure, mixing) 
affect the rate and yield of product formation?  

c) Can models describing basic phenomena (i.e. heterogeneity 
between cells [47]) make a significant impact on the 
improvement of prediction in industrial bioprocesses? 

d) How can an “off-line” model containing information from 
the genetic level be used to enhance the predictive 
capabilities of an unstructured model updated through on-
line measurements? 

e) Can such a hybrid model be used for “true” bioprocess 
optimisation at both the bioreactor (through optimal 
operation) and the cellular (through appropriate genetic 
modifications) levels? 

 
Bioprocess systems engineering 

 
Present research efforts in systems biology are focused on the 

development of extremely complex models of intracellular pathways 
and the exploration of their qualitative characteristics. The problem 
with such detailed models is that it leads to a large number of model 
parameters, almost always larger than the number of measured 
experimental variables, which in turn limits the predictive capabilities 
of the model. In contrast, the use of overly simplified models may 
lead to the model’s inability to capture experimental results. Thus, one 
of the challenges in the field is the development of high fidelity 
models able to capture the required biological functions while 
remaining computationally tractable. What is essentially lacking is a 
formalized structure to guide the development of tractable yet still 
realistic mathematical models whilst maximizing the information 
content of the experimental measurements. Such a systematic 
approach to modeling biological systems has been shaped by the work 
of [48-53] and is depicted in Figure 1. Each step of the framework 

organizes and directs the flow of experimental information in an 
effort to alleviate uncertainty where possible. More specifically: 
 

Step 1. Model development:  One of the challenges is the 
development of a model of adequate fidelity in order to capture the 
required biological functions while remaining computationally 
tractable. However, high fidelity models inherently contain a large 
number of parameters. It is important to define the aim of the model 
a priori and choose an appropriate model type (i.e. structured vs. 
unstructured) depending on both the scope and the number of 
available experimental measurements. For example, during a high-
throughput screening test a small, easily tuneable model able to 
capture basic metabolic characteristics would be preferred in order to 
assist in the identification of high-capacity cell lines. However, when 
designing new cell lines by inserting mutations, that could potentially 
increase product yield, a detailed model would be essential. Model 
equations are defined through ‘first principles’ relationships. Let us 

name the developed mathematical model as 
),( Pxg

 where x 

denotes the input vector, and IP
 (where i = 1,…,ν) denotes the 

parameter vector. 
 

Step 2. Sensitivity analysis [50, 53]: Investigates how the 
uncertainty introduced through the parameter value estimates affects 
the model’s output and defines parameters crucial to the model’s 
output. Model parameters with low sensitivities can be set to their 
nominal values. The highly non-linear nature of models of biological 
systems favours the use of global methods (for example Sobol’ global 
indices). It has been shown that sensitivity indices change along the 
time trajectories of the studied model outputs [50]; therefore it is 
advisable to conduct global sensitivity analysis (GSA) at various time 
points as this provides valuable information for the design of tailor 
made experiments. 

The output of SA will be a vector of size ν, containing the 
sensitivity indices (SI) of the model parameters. Consequently an 
empirical threshold criterion, determined by the modeller, is applied 
in order to discriminate the significant from the insignificant model 
parameters. Any parameters with values below the set threshold are 
considered insignificant to the model output and are allocated in a 

partition of the parameter vector termed 

1

jp
 (j = 1,…,ν’). The 

remaining parameters whose SI is above the threshold value are 

allocated in a second partition of the parameter vector termed 
2

kp
 (k 

= 1,…,ν’’). The sum of ν’ and ν’’ should equal the size of the 

parameter vector IP
, at all times. The values of the parameters in 

partition 

1

jp
 are set to the nominal values, which can be derived 

either from existing literature or from a parameter estimation 

algorithm, hence yielding the parameter vector 

nom

jp
. 

  
Step 3. Optimal experimental design (DoE) [52, 56]: Based on 

the available experimental measurements, the aim of Model-Based 
Experiment Design is to design experiments that maximize the 
information content of the measurements in the context of estimating 
the significant model parameters [52, 53]. This is equivalent to 
minimizing the variances of the parameters to be estimated. DoE aims 
to address the following questions: 

- What should be the initial conditions for the experiment? 
- How long should we run the experiment for?  
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- How should we vary the controls (e.g. the time profiles of 
feed flow rates)?  

- When should we take the measurement samples?  
Based on an optimality criterion (for example D-optimality) 

experiments are specifically designed for the determination of the 

significant parameters (vector 
2

kp
) and once the experimental data is 

available the values for parameters 
2

kp
 are determined explicitly, 

yielding vector 
exp

kp
. 

 
Step 4. Range of validity [52]: The predictive capability of the 

refined model needs to be tested against a set of independent 
experiments with varying environmental conditions. If the model is 
not able to describe the experimental trends satisfactorily then a new 
model of increased fidelity needs be developed and the whole process 
needs to be repeated.  
 

Step 5. Model based optimisation [57]: Dynamic optimization 
techniques can be used to identify worst- and best-case scenarios for 
the operation of fed-batch and continuous cell cultures. The former 
should be avoided and the latter needs to be further refined 
experimentally so as to reach truly optimal operating conditions. Of 
particular interest are dynamic optimisation techniques that can 
remain computationally inexpensive whilst dealing with model 
uncertainty and scarce sampling times. 

The use of model-based techniques can facilitate the reduction of 
unnecessary experimentation by indicating the most informative 
experiments and providing strategies to optimise and automate the 
process at hand. The presented research approach attempts to 
integrate modelling, experimental design and validation with model 
based control and optimisation within a closed loop framework, that 
leads to increased productivity and reduced production costs for cell 
culture systems. The integration of these four research tools represents 
an elegant interdisciplinary approach that addresses the complicated 
research and industrial problem of model-based control and 
optimisation of cell culture processes. 

Traditional models of microbial growth kinetics are based on the 
assumption that description of the rate-limiting step produces an 
adequate description of the process. Therefore, the Monod model, 
which is perhaps the best classical description of growth kinetics, is 
based on the assumption that culture growth is limited by a single 
rate-limiting enzyme reaction following the well-known Michaelis-
Menten kinetics [23]. However, although traditional models can be in 
some cases very accurate, they are apparently not capable of capturing 
the regulatory effects controlling upstream the production of catabolic 
enzymes, providing a rather simplified and idealised view of complex 
biological processes [58]. The current progress in molecular biology 
can be used to unravel the underlying biological mechanisms that 
regulate gene expression and cellular function. High-throughput 
experimental technologies are able to elucidate the behaviour of a 
biological system at a holistic level. The results generated are known 
as ‘omics’ data and constitute of genomics, trascriptomics, proteomics 
and metabolomics, which measure gene, transcript, protein and 
metabolite profiles of cells [59]. During the past few years the 
advances in the ‘omics’ technologies have facilitated better 
understanding of the function of microorganisms as industrial “cell-
factories”. This recent ability to acquire mechanistic knowledge of cell 
function at local and global level enables the replacement of empirical 
models with mechanistic ones, thus advancing the development of 
efficient bioprocess models for industrial biotechnology [60].  

Various mathematical modelling approaches have been applied to 
study the properties of biological systems. FBA has been employed for 
analysing the properties of large metabolic networks and predicting 
the phenotypic behaviour of microorganisms [61]. Sorting of large 
amounts of biological data can be also done with the use of Boolean 
models, which make the assumption that gene expression is discrete 
[62]. On the contrary, when the study of smaller systems is required, 
dynamic analysis employing a set of ordinary differential equations 
(ODEs) can be applied to describe cellular behaviour in a mechanistic 
way, providing information about the kinetics of molecular 
interactions [63]. Moreover, the stochastic kinetics modelling 
framework considering the stochastic nature of biochemical reactions 
has been used to predict the concentration of molecular components 
in the cell [64]. The recent effort to build a whole-cell model has 
made the development of integrative modelling approaches necessary 
for the analysis of metabolism. Therefore, large-scale metabolic (FBA) 
and regulatory network (Boolean) models have been used as a scaffold 
with which ODE-based models can be integrated to study detailed 
models of sub-cellular networks in the context of their global effects 
[65]. Most of the integration efforts of large-scale regulatory and 
metabolic dynamic models assume steady state for the fast reactions 
of the metabolism, while slow reactions occasionally change the key 
parameters (i.e., metabolic fluxes) for the fast reactions [66]. A 
valuable approach that complements previous studies demonstrates 
that focusing on the development of validated mechanistic models of 
key genetic circuits, describing the molecular and genetic events that 
control the synthesis of enzymes, can significantly improve the 
prediction of bioprocess performance. This approach was initially 
established with the development of mechanistic models of circuits 
validated at the enzymatic level. Kremling et al [67] constructed a very 
detailed model describing the dynamics of gene regulation in the 
famous lac operon, producing an accurate description of glucose and 
lactose uptake and metabolism. In line with the above, the 
development of a simple dynamic gene regulation model to describe 
biomass and penicillin production in a chemostat, which was validated 
using only enzyme activity assays, has been recently applied for the 
prediction of bioprocess performance [68]. 

We have previously demonstrated that the development of 
validated mechanistic models of key genetic circuits, describing the 
molecular and genetic events that control the synthesis of enzymes, 
can significantly improve the prediction of bioprocess performance. 
Specifically, we have developed a novel mathematical model 
describing the function of the TOL (pWW0) plasmid of 
Pseudomonas putida mt-2 [69], which is considered a paradigm of 
specific and global regulation, encoding the enzymes for degradation 
of major environmental pollutants. The validated model of the TOL 
plasmid computed the relative mRNA transcript levels of the encoded 
genes and the amount of the translated rate-limiting enzymes 
regulating m-xylene biodegradation and biomass growth respectively. 
The concentration of rate-limiting enzymes were subsequently linked 
to specific growth and substrate utilisation rates, effectively describing 
the dynamics of the system, at both the gene expression (regulation) 
and macroscopic (kinetics) levels. The concentration of each enzyme 
was used to predict m-xylene and biomass dynamic profiles in the 
combined model, which was compared to the Monod model [23]. 
Equations 1 and 2 demonstrate that the rate-limiting enzyme 
concentration and the specific growth rate depend on mRNA levels 
and as shown on Figure 2, the mechanistic model developed was 
substantially more accurate than the Monod model for a wide range 
of initial m-xylene concentrations in batch cultures. This study 
demonstrates that linking the functional relationships between genetic 
circuit components is not only able to predict specific cellular 
functions, but also to provide the opportunity to shift from 
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unstructured and empirical models to advanced mechanistic models 
accurately predicting bioprocess performance. 
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αXylM: XylM degradation and dilution due to cellular volume 

increase;XylM: the translation rate based on Pm promoter driven 

mRNA synthesis; XylM,b: the maximum specific growth rate of 

biomass based on XylM; μ: the specific growth rate; KXylM: the 
saturation constant for XylM; PmTC: relative mRNA concentration 
from Pm promoter; t: time; XylM: the concentration of the assumed 
rate-limiting enzyme of the meta pathway encoded in TOL. 
 

 
 
 

Figure 2. Comparisons of Pseudomonas putida mt-2 growth kinetics 
predictions for mechanistic and Monod-type models. The TOL model was 
used to calculate the concentration of mRNA and rate-limiting enzymes 
regulating m-xylene biodegradation and biomass growth respectively. The 
concentration of each enzyme was used to predict m-xylene and biomass 
dynamic profiles in the combined model, which is compared to the Monod 
model. Shown are simulation and experimental results for three predictive 
experiments at various initial m-xylene concentrations. (A-B) 0.4 mM m-

xylene, (C-D) 0.7 mM m-xylene, and (E-F) 1.3 mM m-xylene.  : m-xylene 

concentration - experimental;  : biomass concentration - experimental; 
 : combined model;  : Monod model. For more 

details see [69]. 

 
The development of mechanistic models that utilize biological 

information obtained by advanced experimental techniques is 
currently enriching our understanding of bioprocesses, assisting the 

transition from empirical to detailed kinetic models [60]. This 
approach is realistic due to the progress in sequencing and genetic 
engineering, which have made the study of wild-type genetic circuits 
with mathematical models a feasible endeavour [70]. Various studies 
presented in the past few years have focused on dynamic modelling of 
genetic circuits [71-75]. As the function of a greater portion of the 
gene control network is clarified, it will be possible to apply 
mechanistic mathematical models that describe the dynamics in key 
regulatory systems for the design of optimal bioprocesses.  

 
Future opportunities 
 

As discussed above, several mathematical models of key genetic 
circuits are currently available for a variety of bioprocesses with the 
level of fidelity that would be required for industrial applications. 
However, mechanistic models are still not yet substantially applied for 
industrial bioprocess development [60]. Nevertheless, interest in them 
has grown considerably as mechanistic models may provide an 
outstanding summary of process knowledge [76]. The improvement 
of experimental techniques and computational power provide the 
opportunity to develop increasingly complex models. Given these 
advances, mechanistic models are expected to be gradually used to a 
greater extent in the future and may eventually become routine for 
industrial application. Consequently, the construction of complex 
models that capture the dynamics of various interacting genes, 
proteins and metabolites will be used to simulate conditions that are 
too expensive or time-consuming to be tested experimentally 
intervening beneficially in bioprocess development [77]. 

Many of the candidate strains for application at large scale are 
capable of producing very small quantities of the desired product and 
under conditions other than those usually applied in the industry 
[78]. The improvement of those microorganisms remains one of the 
greatest challenges in biotechnology and requires the combination of 
engineering and molecular biology disciplines for the analysis and 
modification of strains and bioprocesses. The development of next 
generation bioprocesses, with high selectivity for the production of 
pharmaceuticals and for production of chemicals from renewable 
sources is an effort where process systems engineers are expected to 
have an important role [79]. In line with the above, the modelling 
framework discussed in the present work provides a methodology that 
organises experimental information systematically, omitting 
unnecessary experiments and developing models with a priori 
established aims. Future studies may also utilize the current progress 
in molecular biology to construct detailed mechanistic models of key 
regulatory processes facilitating the development of high fidelity 
bioprocess models. Maybe then we can upgrade the simplified models 
that describe microbial growth kinetics based on enzyme kinetics with 
more detailed mechanistic models that capture the dynamics of gene 
regulation controlling upstream the production of catabolic enzymes. 
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