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Many conditions affecting the heart, brain, and even the eyes have their origins in blood 
vessel pathology, underscoring the role of vascular regulation. In age-related macular 
degeneration (AMD), there is excessive growth of abnormal blood vessels in the eye 
(choroidal neovascularization), eventually leading to vision loss due to detachment of 
retinal pigmented epithelium. As the advanced stage of this disease involves loss of 
retinal pigmented epithelium, much less attention has been given to early vascular events 
such as endothelial dysfunction. Although current gold standard therapy using inhibitors 
of vascular endothelial growth factor (VEGF) have achieved initial successes, some 
drawbacks include the lack of long-term restoration of visual acuity, as well as a subset of 
the patients being refractory to existing treatment, alluding us and others to hypothesize 
upon VEGF-independent mechanisms. Against this backdrop, we present here a 
nonexhaustive review on the vascular underpinnings of AMD, implications with genetic 
and systemic factors, experimental models for studying choroidal neovascularization, and 
interestingly, on both endothelial-centric pathways and noncell autonomous mechanisms. 
We hope to shed light on future research directions in improving vascular function in 
ocular disorders.

Keywords: choroidal neovascularization, endothelial, vascular mechanisms, age-related macular degeneration, 
disease models

INTRODUCTION
Endothelial dysfunction underlies the crux of many conditions, which may implicate comorbidities. 
One example is choroidal neovascularization, a process in wet or exudative age-related macular 
degeneration (AMD), characterized by the abnormal intravasation of choroidal vasculature into 
the retinal epithelium or subretinal tissue. This often involves dysfunctional and leaky vessels, 
which then lead to the accumulation of fluid and blood in the macula (Chirco et al., 2017; Saini 
et al., 2017). AMD is the principal cause of permanent blindness among elderly over 60 years in 
industrialized countries (Stan et al., 2004; Pascolini and Mariotti 2012; Wong et al., 2014). It has a 
prevalence of 8.7% which will increase with ageing populations, adversely affecting the quality of life 
of 196 million people by 2020. As one would expect, it will incur substantial public health burden in 
the next few decades (Friedman et al., 2004; Seddon et al., 2005; Wong et al., 2014; Jonas et al., 2017). 
Among AMD cases with acute visual impairment, wet AMD is responsible for approximately 90% 
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of cases (Ferris et al., 1984). Despite the rising prevalence of this 
debilitating condition, current treatment strategies for wet AMD 
mostly revolve around inhibitors of vascular endothelial growth 
factor and photodynamic therapy. Both have considerable 
limitations such as lack of long-term improvement on visual 
acuity (Rofagha et al., 2013; Fernández-Robredo et al., 2014; 
Bracha et al., 2017; Dunn et al., 2017; Jaffe et al., 2017; Malek et al., 
2018) and secondary inflammatory side effects (Ho et al., 2016). 
These bring to light the necessity for a deeper understanding of 
the disease (Fernández-Robredo et al., 2014; Bracha et al., 2017; 
Malek et al., 2018).

Endothelial dysfunction plays a role in many human diseases. 
Patients with early vascular abnormalities have been found to 
acquire AMD and associated cardiovascular and cerebrovascular 
diseases later in their lives (Cheung and Wong, 2014). Research 
on AMD has mainly focused on retinal pigmented epithelium 
deficit as that is the ultimate pathological change leading to 
vision loss, whereas mechanisms of endothelial dysfunction 
in choroidal neovascularization remain elusive. Limitations 
with the current gold standard treatment for wet AMD using 
inhibitors of vascular endothelial growth factor (VEGF) have 
revealed possibilities of VEGF-independent pathways (Huang 
et  al., 2016). Despite advances in genome wide association 
studies (GWAS), risk variants associated with AMD are hardly 
translated into the intended development of diagnostics and 
treatment. It is slowly being recognized that genetic risk variants 
exert minuscule influences as they often have no direct relevance 
to the illness. In fact, they are postulated to act through complex 
regulatory networks to influence the activity of key genes that are 
more biologically connected to the disease (Boyle et al., 2017).

We recognize that emerging studies are discovering a 
significant involvement of endothelial pathology in choroidal 
neovascularization. Here, we provide a nonexhaustive review 
to address the vascular underpinnings of AMD, provide 
information on state-of-the-art experimental models of choroidal 
neovascularization, and interpret existing knowledge on 
endothelial mechanisms with heterotypic interplay of different 
cell types and environmental factors.

vASCULAR ETIOLOGY IN AGE-RELATED 
MACULAR DEGENERATION

Endothelial Dysfunction in Early Stages
While the pathogenesis of wet AMD is still poorly understood, 
several reports suggest a vascular etiology for the disease. The 
choroidal endothelial cells that form choriocapillaris vessel 
walls are lost even before the occurrence of retinal pigmented 
epithelium dysfunction, suggesting that vascular dysfunction 
could be the first trigger of wet AMD (Lutty et al., 2009; 
Bhutto and Lutty, 2012; Biesemeier et al., 2014; Mullins et al., 
2014). Histologically, choriocapillaris tissue near the site of 
choroidal neovascular lesions exhibit decreased density without 
accompanying retinal pigmented epithelium disruption (Bhutto 
and Lutty 2012). Indeed, the choriocapillaris endothelium in 
aging macula is highly subject to complement activation stress 
and decreases in density with increasing drusen in dry or 

non-exudative AMD. Complement accumulation present in 
early stages may lead to choriocapillaris loss (Berenberg et al., 
2012; Mullins et al., 2014). The resultant loss of vascular support 
to the retinal pigmented epithelium releases angiogenic signals 
which stimulate abnormal intravasation of choroidal vessels 
into subretinal layers, observed in some cases of nonexudative 
AMD which progress to wet AMD. Furthermore, it is well 
established that the functions of retinal pigmented epithelium 
and choriocapillaris show tight mutualistic dependence and 
atrophy of either structures leads to a dysfunction of the other 
(Blaauwgeers et al., 1999; Marneros et al., 2005; Biesemeier 
et al., 2014; Seddon et al., 2016; Chirco et al., 2017). Therefore, 
the pathogenesis of choroidal neovascularization may arise from 
initial structural changes in the vasculature (Figure 1).

vasculopathy in Choroidal  
Neovascular Lesions
In addition to vascular degeneration in the early stages of AMD, 
vascular dysfunction is manifested in late stage neovascular 
outcomes, such as polypoidal choroidal vasculopathy (PCV). 
PCV is a subtype of wet AMD that is most prevalent in Asians 
(Wong et al., 2014; Huang et al., 2016). It is characterized 
by abnormal branching vascular networks and a presence 
of polypoidal or aneurysmal dilations at the terminal ends 
of these networks. These polypoidal lesions appear as 
hyperfluorescent nodules in fundus indocyanine angiography 
(Yannuzzi et al., 1990; Liu et al., 2016). Choroidal vessels in 
PCV display hyalinization, an arteriosclerotic phenotype 
characterized by the replacement of smooth muscle tissue with 
ill-defined basement membrane-like material, as observed in 
histopathological sections (Leishman 1957; Okubo et al., 2002; 
Kuroiwa et al., 2004; Nakashizuka et al., 2008). The aneurysmal 
dilations observed at terminal ends of aberrant networks also 
have vascular causes. They have been purported to be a result 
of dysfunction of elastin, homocysteine-associated oxidative 
stress and endothelial dysfunction (Cheng et al., 2014). The 
presence of hyalinization and aneurysms clearly indicate that 
PCV is a vasculopathy of the inner choroidal vasculature with 
arteriosclerotic features.

Wong et al. (2016) have presented a comprehensive 
review of the epidemiology, detailed risk factors and clinical 
manifestations of two wet AMD subtypes - PCV and typical 
choroidal neovascularization. Mechanisms that could lead to 
common vessel wall pathology in PCV and typical choroidal 
neovascularization include impaired extracellular matrix 
metabolism (Nakashizuka et al., 2008; Jones et al., 2011), 
involvement of the high-density lipoprotein pathway (Liu et al., 
2014), choroidal vascular hyperpermeability associated with 
genetic polymorphisms ARMS2 A69S (rs10490924) and CFH 
(rs1329428) (Yoneyama et al., 2016), and choroidal venous 
congestion leading to thickened choroid and choroidal vascular 
hyperpermeability in PCV (Chung et al., 2013) (Figure 1). 
Notably, levels of VEGF in the aqueous humor of patients with 
typical choroidal neovascularization were found to be higher 
than that in PCV patients. It is postulated that the two wet AMD 
subtypes could have different pathological mechanisms, with 
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typical choroidal neovascularization being more VEGF-driven 
than PCV (Tong et al., 2006).

Genetic Basis of Age-Related  
Macular Degeneration
In the past few decades, GWAS on AMD cohorts have revealed 
several disease-associated risk variants. The Genetics of AMD in 
Asians Consortium conducted a genome-wide and exome-wide 
association study to uncover the most common single nucleotide 
polymorphisms (SNPs) associated with wet AMD specifically 
in the East Asian population (Cheng et al., 2015). Consistent 
with previously identified variants, the SNPs ARMS2-HTRA1 
rs10490924, CFH rs10737680, CETP rs3764261, ADAMTS9 
rs6795735, C2-CFB rs429608, and CFI rs4698775 were the 
most significantly associated with wet AMD. In European and 
Asian populations, the most common SNPs seem to converge 
on the gene HTRA1 and complement pathway-related genes. 
Advances in GWAS have generated more targets than biological 
interpretation can translate them into new therapeutics. 
Emerging functional studies are primarily focused on how 
those SNPs impact on retinal pigmented epithelium. We will 
further discuss how HTRA1 and complement factors could lead 
to aberrant vascular outcomes in a later section on Vascular 
Mechanisms in Choroidal Neovascularization.

The risk variant residing in proximity to the promoter region 
of HTRA1 seems to be associated with elevated levels of HTRA1 
in the retinal pigmented epithelium. It has been postulated that 
HTRA1 upregulation could lead to Bruch’s membrane matrix 
breakdown, hence promoting choroidal vessel invasion (Yang 
et al., 2006; Jones et al., 2011). Variants in complement genes CFH, 
CFB, C2, C3, C5, and SERPING1 also suggest important roles of 
complement dysregulation in AMD (Khandhadia et al., 2012). 
SNPs affecting CFH and C3 result in decreased CFH inhibition, 

thus leading to increased alternative complement pathway 
activation (Nishida et al., 2006; Yu et al., 2014; Zhang et al., 2018), 
which might contribute to an angiogenic microenvironment 
favoring progression to choroidal neovascularization. Table 1 
represents a brief overview on the topmost variants with known 
molecular effects and implicated mechanisms contributing to 
AMD. Genetics of AMD and PCV have been reviewed extensively 
by our colleagues (Wong et al., 2016).

Limitation of Current Treatments
At present, gold standard therapy for wet AMD involves 
intravitreal administration of VEGF inhibitors such as 
bevacizumab, ranibizumab and aflibercept, based on the notion 
of VEGF being a main driver of angiogenesis (Xu and Chen, 2016; 
Siedlecki et al., 2017; Fogli et al., 2018). These are humanized 
monoclonal antibodies which act to decrease elevated VEGF 
at the site of neovascularization, eventually restoring retinal 
thickness and function (Golbaz et al., 2011). Other interventions 
for wet AMD include verteporfin photodynamic therapy, which 
is used in combination with anti-VEGF therapy to stimulate 
polyp regression in PCV (Cho et al., 2012; Qian et al., 2018). 
While anti-VEGF therapy has restored vision for many, the 
monotherapy does not improve visual acuity in a substantial 
number of AMD patients as a form of long-term management 
(Rofagha et al., 2013; Fernández-Robredo et al., 2014; Bracha 
et al., 2017; Dunn et al., 2017; Jaffe et al., 2017; Malek et al., 
2018). Furthermore, approximately 15% of AMD patients do 
not respond to anti-VEGF treatment (Krebs et al., 2013). Zhang 
and colleagues have neatly reviewed potential mechanisms of 
resistance to anti-VEGF therapy (Zhang and Lai, 2018). In fact, 
the same anti-VEGF therapy tackling both PCV and typical 
wet AMD result in different treatment outcomes. PCV patients 
exhibit a poor response to anti-VEGF monotherapy compared 

FIGURE 1 | Vascular contribution to wet age-related macular degeneration (AMD) pathogenesis. Top image: Healthy macula; Bottom left image: Vascular changes 
could occur early in disease progression, manifested as a reduction in choriocapillaris density through loss of endothelial cells; Bottom right image: Vasculopathy is 
also observed in polypoidal choroidal vasculopathy and typical choroidal neovascularization, such as polypoidal/aneurysmal dilations of vessels and arteriosclerotic 
features. Mechanisms in common vessel wall pathology in polypoidal choroidal vasculopathy (PCV) include impaired extracellular matrix production and choroidal 
vascular hyperpermeability.
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to typical wet AMD patients (Gomi et al., 2008; Lai et al., 2008; 
Liu et al., 2016; Zhang and Lai 2018). While it reduced subretinal 
fluid, visual acuity and retinal thickness, anti-VEGF monotherapy 
failed to eliminate polypoidal lesions after a year of treatment, 
which could lead to recurrence of exudative maculopathy (Gomi 
et al., 2008; Lai et al., 2008; Tsujikawa et al., 2010). Considering 
these limitations of anti-VEGF therapy, there might be a need for 
alternative strategies targeting wet AMD upon greater elucidation 
of the mechanisms of wet AMD.

Photodynamic therapy has several limitations. Firstly, the 
procedure has considerable side effects. Photodynamic therapy 
could cause secondary subretinal hemorrhage, retinal pigmented 
epithelium tears, and choroidal ischemia, resulting in further visual 
deficit (Lai et al., 2004; Lee et al., 2008; Teo et al., 2018). Administration 
of photodynamic therapy may also exacerbate existing intraocular 
inflammation in PCV (Ho et al., 2016). Secondly, photodynamic 
therapy does not entirely occlude the branching vascular network 
in PCV eyes, allowing new active polyps to emerge from persistent 
networks and hence triggering disease recurrence (Akaza et al., 
2007; Lee et al., 2008). Therefore, photodynamic therapy does 
not prevent recurrence of PCV. Lee and colleagues proposed that 
polyps are more susceptible to photodynamic therapy than the 
branching vascular network because verteporfin is mainly taken 
up by proliferative endothelial cells that express high low-density 
lipoprotein receptors. Endothelial cells at polyp sites are more 
proliferative than those at the branching vascular network and are 
therefore more susceptible to verteporfin. Overall, the presence of 

secondary inflammatory side effects and its inability to prevent 
recurrence have rendered photodynamic therapy questionable 
as an efficacious treatment option. The aforementioned issues 
contributing to current treatment limitations for wet AMD surface 
a key question of whether we have sufficiently understood the 
mechanistic underpinnings of exudative macular degeneration and 
PCV, and whether alternative therapeutic angles are possible.

LINKING vASCULAR ASPECTS FROM 
OCULAR DISORDERS TO DISEASES OF 
THE BRAIN AND HEART
Scientists and clinicians have traditionally viewed AMD as a stand-
alone disease that is confined to the eye. However, recent results from 
large-scale epidemiological studies have consistently shown that 
AMD is associated with several other disorders (Cheung and Wong, 
2014). It is important to note that due to AMD’s chronic degenerative 
nature, the disease tends to be associated with other chronic disorders 
such as cardiovascular and neurodegenerative disorders (Wong 
et al., 2006; Tan et al., 2008; Ohno-Matsui 2011; Lee et al., 2019). 
With accumulating evidence pointing to an increased risk of AMD 
in patients suffering from cardiovascular and neurodegenerative 
disorders and vice-versa, studies have started looking at common 
mechanisms that might underlie the associations. Here, we believe 
that blood vessels may provide some insights to the mechanistic link 
between AMD, cardiovascular, and neurodegenerative diseases.

TABLE 1 | Common age-related macular degeneration (AMD) variants with known molecular effects and associated mechanisms. 

Risk variant Study references Population/Type of cases Effect of variant Implicated mechanisms 
contributing to AMD

ARMS2-HTRA1 
rs10490924

(DeWan et al., 2006) Asia (Hong Kong)/wet AMD In linkage disequilibrium with 
rs11200638; surrogate marker for 
functional polymorphism rs11200638 
(DeWan et al., 2006)

–

(Fritsche et al., 2013) Europe and Asia (Meta-analysis 
of GWAS)/advanced AMD

(Yu et al., 2011) Europe (Meta-analysis of 
GWAS)/advanced AMD

(Cheng et al., 2015) East Asia/wet AMD
HTRA1 rs11200638 (DeWan et al., 2006) Asia (Hong Kong)/wet AMD Increase in HTRA1 mRNA and protein 

[in RPE (DeWan, et al., 2006; Yang 
et al., 2006), in aqueous humor 
(Tosi et al., 2017) and in drusen 
(DeWan et al., 2006; Yang et al., 2006)]

Higher HTRA1 levels increase activity 
of degradative ECM enzymes and 
compromise Bruch membrane 
integrity, favoring choroidal invasion 
(Yang et al., 2006; Jones et al., 2011).

CFH rs10737680 (Fritsche et al., 2013) Europe and Asia (Meta-analysis 
of GWAS)/advanced AMD

Loss of function mutation in CFH 
which disrupts binding of CFH to 
C3b [Reported for common allele 
CFH Y402H and rare penetrant allele 
R1210C] (Clark et al., 2010; Clark 
et al., 2013; Manuelian et al., 2003; 
Ferreira et al., 2009; Weismann et al., 
2011)

Decreased CFH inhibition of C3b 
results in increased alternative 
complement pathway activation 
[Reported for common allele CFH 
Y402H and rare penetrant allele 
R1210C] (Clark et al., 2010; Clark et al., 
2013; Manuelian et al., 2003; Ferreira 
et al., 2009; Weismann et al., 2011)

(Cheng et al., 2015) East Asia/wet AMD
C3 rs2230199 (Fritsche et al., 2013) Europe and Asia (Meta-analysis 

of GWAS)/advanced AMD
Alteration of configuration of first ring 
of macroglobulin domains, reducing 
binding of C3 to CFH (protein studies 
using electron microscopy) (Nishida 
et al., 2006; Zhang et al., 2018)

Reduced C3 binding to CFH 
increases complement activation 
(Zhang et al., 2018)

Amongst the large repertoire of AMD single nucleotide polymorphisms (SNPs) generated by genome wide association studies (GWAS), several such as ARMS2-HTRA1 
rs10490924, HTRA1 rs11200638, CFH rs10737680, and C3 rs2230199 have been further interrogated for their molecular effects and mechanisms leading to AMD.
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AMD and Dementia
With a globally aging population, age-related diseases such as 
AMD and dementia have received unprecedented attention. These 
diseases have been known to contribute largely to our economic 
burden and healthcare expenses (Gordois et al., 2012). A recent 
meta-analysis of association between the two diseases proved 
that they tend to comorbid (Rong et  al., 2019). Furthermore, 
a longitudinal study which followed 3,877 dementia-free 
participants who were diagnosed with eye disorders, found 
that those with AMD had a 50% increased risk of developing 
Alzheimer’s disease later on (Lee et al., 2019). Interestingly, 
AMD and Alzheimer’s disease share several degenerative and 
pathological features such as oxidative stress, inflammation, 
and deposition of amyloid-rich materials (Beatty et al., 2000; 
Golde 2002; Lin and Beal 2006; Hollyfield et  al., 2008). Such 
common pathological features between the two diseases may be 
attributed to the close anatomical link between the retina and 
brain, explained by their shared developmental origin from the 
neural tube. Recognized as “the window to the brain,” research 
have looked into using the blood vessels of the eye as a proxy to 
evaluate brain health (London et al., 2013; Lim et al., 2016; Yoon 
et al., 2019). While the vascular mechanisms that underlie the 
associations between AMD and dementia are largely still poorly 
described, here, we discuss two potential vascular links between 
AMD and dementia.

The first vascular link between AMD and dementia is 
highlighted by the deposition of vascular amyloid-β associated with 
tissue degeneration in both diseases. Traditionally, Alzheimer’s 
disease, the most frequent cause of dementia, is hypothesized to 
arise due to an imbalance between amyloid-β production and 
clearance, resulting in increased levels of amyloid-β in the central 
nervous system. Amyloid-β accumulation subsequently causes 
neurotoxicity and cognitive impairment (Hardy and Selkoe 
2002). Similarly, deposition of amyloid-β at the site of choroidal 
vessels and in extracellular deposits known as drusen, has been 
found in AMD patients (Dutescu et al., 2009; Kam et al., 2010; 
Ohno-Matsui 2011; Wang et al., 2011). Multiple reservoirs of 
amyloid-β have been found in the aging retinas of AMD patients 
and elevated amyloid-β levels were found to be associated with 
the key stages of AMD progression (Ohno-Matsui 2011). The 
similarities in brain and ocular amyloid-β deposition suggest 
that similar pathogenic mechanisms might underlie these two 
diseases. From a vascular angle, amyloid-β has toxic effects on 
the vascular unit in both brain and eye. In cerebral amyloid 
angiopathy, a vascular abnormality frequently accompanying 
Alzheimer’s disease, amyloid-β directly hinders the adhesion 
of vascular smooth muscle cells to the basement membrane, 
leading to vascular damage (Mok et al., 2006). In the ageing 
retina, amyloid-β deposits from multiple reservoirs surrounding 
the retina exert pro-inflammatory and pro-angiogenic effects 
on the retinal pigmented epithelium, the choroidal vasculature 
and the neuroretina, which may lead to increased vascular 
permeability and triggering of choroidal neovascularization. 
This may occur on top of non-vascular effects of amyloid-β such 
as retinal pigmented epithelium degeneration and senescence 
and increased reactive oxygen species (Ratnayaka et al., 2015). 

Therefore, amyloid-β deposits may be a common mediator of 
vascular abnormalities in both AMD and Alzheimer’s disease.

With multiple failed clinical trials targeted at removing 
amyloid-β from the brain, researchers have turned to other 
possible hypotheses to explain the cause of Alzheimer’s 
disease (Holmes et al., 2008; Karran et al., 2011). The role of 
the blood vessel in cognitive dysfunction is well described by 
others (Snyder et al., 2015; Sweeney et al., 2018; Nortley et al., 
2019). Cerebrovascular dysfunction might precede amyloid-β 
deposition in Alzheimer’s disease. In a 25-year longitudinal 
study on dementia, the presence of vascular risk factors at 
midlife was associated with higher levels of amyloid-β at late-life, 
indicating the role of vascular disease early in Alzheimer’s disease 
(Gottesman et al., 2017). Notably, adults with early cognitive 
dysfunction were found to develop brain microvascular damage 
independent of amyloid-β changes (Nation et al., 2019). Indeed, 
neuroimaging studies have found that patients with Alzheimer’s 
disease exhibit neurovascular impairment such as lowered 
cerebral blood flow and atherosclerotic vessels (Arvanitakis et al., 
2016; van de Haar et al., 2016; Kisler et al., 2017). Postmortem 
interrogations of cerebral microvasculature depict reduced 
density, length, and diameter in Alzheimer’s disease compared 
with age-matched controls (Fischer et al., 1990; Buee et al., 1994; 
Bouras et al., 2006). These microvascular abnormalities show 
parallels to vascular dysfunction found in AMD. As described 
in an earlier section, such vascular dysfunction includes 
decreased choriocapillaris density in early stages of AMD and 
atherosclerotic features in choroidal vessels with polypoidal 
choroidal vasculopathy (Leishman 1957; Bhutto and Lutty 
2012). Moreover, in Alzheimer’s disease, the breakdown of the 
blood-brain barrier is observed, often caused by cerebrovascular 
dysfunction (Sweeney et al., 2018; Nation et al., 2019). In AMD, 
the breakdown of the outer blood-retinal barrier is observed, due 
to cumulative pathological events affecting its key component – 
the retinal pigmented epithelium – and surrounding tissues 
involved – Bruch’s membrane and choroidal vasculature (Ambati, 
et al., 2013). These parallel pathologies may be explained by 
the functional and structural similarities of the blood-brain 
and blood-retinal barriers, both of which are derived from the 
developing neural tube (Ohno-Matsui 2011; London et al., 2013). 
Although we are still uncertain of the causative mechanisms that 
underlie AMD and Alzheimer’s disease, the similarity of vascular 
pathology between the two diseases highlights a possible 
mechanistic link between AMD and neurodegenerative diseases.

AMD and Cardiovascular Diseases
Studies have found that changes in ocular microvascular 
pathology may be associated with underlying systemic vascular 
diseases such as cardiovascular disease. Increasing evidence has 
demonstrated that AMD may share identical risk factors and 
pathogenic mechanisms with cardiovascular diseases (Wu et al., 
2014). In particular, both share several vascular-related factors 
highlighting the need to understand common mechanistic 
pathways that may result in an increased risk of developing 
one disease when one has the other (Tan et al., 2007; Yang 
et al., 2014; Pennington and DeAngelis 2016). For example, 
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having atherosclerotic carotid arteries and hypertension may be 
linked to a higher risk of AMD (Vingerling et al., 1995; Cheung 
et  al., 2007; Hogg et al., 2008; Klein et al., 2013). Conversely, 
AMD and atherosclerotic retinal vessels have been suggested 
to be a predictor of coronary artery disease (Tedeschi-Reiner 
et al., 2005; Thomas et al., 2015). Additionally, it has been 
proposed that inflammatory markers in the eye are linked with 
activation of inflammatory pathways in the heart (Seddon et al., 
2004). Studies have uncovered the involvement of vascular-
related molecular mechanisms such as chronic inflammation, 
endothelial dysfunction, and oxidative stress between AMD and 
cardiovascular diseases (Cai and Harrison 2000; Machalińska 
et al., 2012; Klein et al., 2014).

Endothelial dysfunction often refers to a range of 
deteriorative endothelial responses that includes altered vascular 
inflammatory responses, vascular growth dysregulation, and 
vascular remodeling impairments (Gimbrone, 1995). Clinical 
trials and research data have shown that endothelial dysfunction 
is implicated in AMD through dysregulation of VEGF and 
soluble ICAM1 secretion that is linked to neovascularization 
(Lip et al., 2001; Schaumberg et al., 2007). Similarly, studies have 
found that endothelial dysfunction precedes the development of 
atherosclerosis (Davignon and Ganz 2004; Mudau et al., 2012) 
and may be temporally associated with myocardial ischemia 
(Hasdai et al., 1997). Most recently, attention has been given 
to characterizing circulating endothelial cells as a hallmark of 
vascular impairments. Circulating endothelial cells, once part 
of the vascular endothelial monolayer, enter the bloodstream 
due to damage in the blood vessels. Notably, elevated number 
of circulating endothelial cells have been detected in individuals 
affected by cardiovascular diseases and AMD, which reflects 
vasculopathy in both diseases (Boos et al., 2006; Erdbruegger 
et al., 2006; Machalińska et al., 2011). Taken together, vascular-
related injury is a common pathological pathway implicated in 
the pathogenesis of AMD and cardiovascular diseases.

Investigations into the molecular mechanisms that link similar 
pathologies observed in AMD, dementia, and cardiovascular 
diseases are still in its infancy due to limited understanding of 
the causative mechanisms of these diseases. We propose that 
a closer look at the vascular mechanisms could yield answers 
on the purported associations. Specifically, studies on vascular 
endothelial cells, smooth muscle cells and pericytes of the eye, 
brain, and heart can potentially illuminate pathways that connect 
these diseases.

EXPERIMENTAL MODELS OF CHOROIDAL 
NEOvASCULARIZATION
As the causative mechanisms of AMD remain elusive, the 
use of experimental models that recapitulate clinical features 
accurately will greatly enhance our understanding of AMD 
etiology. Numerous in vivo and in vitro models have attempted to 
recapitulate the disease characteristics in its early and late stages. 
However, none have managed to recreate all the important 
pathological features seen in AMD owing to the disease’s complex 
interplay of genetic and environmental factors. This complexity 

is furthermore compounded by the differences in the ocular 
anatomy between animal models, cellular models and humans. 
Despite the limitations, existing animal and cellular models have 
uncovered important findings on the role of vascular system in 
wet AMD (Rosenfeld et al., 2006; Jager et al., 2008). As mentioned 
in our earlier section, current therapies aim at targeting blood 
vessel growth and angiogenic factors (Couch and Bakri 2011; 
Lally et al., 2012), with greater success of anti-VEGF therapy in 
certain subtypes of wet AMD. The focus has been pivoted toward 
the vascular system and the involvement of vascular-related 
molecular mechanisms in AMD pathogenesis. In this section, 
we review existing models of choroidal neovascularization and 
suggest potential improvements that could better enable the 
study of AMD pathophysiology.

In Vivo Models
Animal models of choroidal neovascularization generally involve 
introducing a breach to the integrity of Bruch’s membrane in the 
macula. This is achieved using laser and light, surgical methods, 
or manipulation through transgenic animals. Out of the three 
methods, models of laser-induced choroidal neovascularization 
are most widely adopted (Lambert et al., 2013). The first in vivo 
model of choroidal neovascularization was developed by Ryan 
(1979) using photocoagulation methods to induce a defect in the 
Bruch’s membrane of the eyes of primates (Ryan, 1979). Building 
on this method, other groups were able to induce choroidal 
neovascularization with a higher rate of success in mouse models 
by modifying the different types of lasers (e.g., argon laser, 
krypton laser) and parameters targeted by the lasers (Dobi et al., 
1989; Frank et al., 1989; Tobe et al., 1998).

The procedure to induce choroidal neovascularization in 
animal models starts with anesthetizing the animal and then 
dilating their pupils with an antimuscarinic drug, tropicamide. 
Laser photocoagulation is then performed to generate burns and 
laser spots in the areas of the eye surrounding the optic nerve. 
After laser treatment, the formation of a bubble at the burn 
spot indicates a rupture of the Bruch’s membrane and this is 
necessary for choroidal neovascularization to occur. Laser spots 
with bubbles would be continually observed posttreatment for 
the occurrence of choroidal neovascularization using imaging 
methods such as confocal microscopy (Kramer et al., 2000). 
Laser-induced choroidal neovascularization models have 
become a standard for treatment evaluation and studying in vivo 
mechanisms (Grossniklaus et al., 2010; Lambert et al., 2013). The 
merits of the model are that it is highly reproducible, inexpensive, 
and time-efficient to create. However, like the limitations of any 
in vivo model, the findings in animals may not be translated to 
humans. Compared to human eyes, mice and rats do not possess 
a macula in their eyes which proves to be a huge limitation 
when studying AMD as the main area of degeneration occurs 
at the macula. Furthermore, it is important to note that there 
are stark anatomical differences between biologically developed 
choroidal neovascularization and laser induced choroidal 
neovascularization in animal models. For example, undergoing 
the laser treatment could damage the neural retina, which is 
not typically affected in an individual with AMD, and these 
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neuroretinal changes remove the biological similarity between 
experimental choroidal neovascularization and human choroidal 
neovascularization (Pennesi et al., 2012). In the end, it should 
be noted that laser induced acute injury does little to mimic the 
chronic onset of ocular neovascularization in diseases.

These laser-treated animal models have since been used to 
investigate the various molecular mechanisms of choroidal 
neovascularization and potential pharmacological interventions 
(Tobe et al., 1998; Bora et al., 2003; Tolentino et al., 2004; 
Jones et al., 2008). One of the more notable findings that led to 
current therapeutics was the importance of VEGF signaling in 
the development of choroidal neovascularization (Kwak et al., 
2000). Treatments targeting VEGF signaling showed success 
in preventing vision loss and improving visual acuity for AMD 
patients at the early and late stages (Rosenfeld et al., 2006; CATT 
Research Group, 2011; Vogel et al., 2017). Apart from targeting 
VEGF, other studies open the possibility for therapeutics to 
inhibit and target other signaling pathways. Recently, apelin 
and TGF-β signaling were reported to play an essential role to 
trigger choroidal neovascularization in mouse models (Jiao et al., 
2017; Wang et al., 2017). Additionally, transcriptional coactivator 
Yes-associated protein (YAP) was found to promote choroidal 
neovascularization formation by upregulating the proliferation of 
endothelial cells (Yan et al., 2018). Moreover, recent advances in 
nanotechnology have leveraged on choroidal neovascularization 
mouse models to pioneer a noninvasive method for treating 
choroidal neovascularization where local delivery of drugs are 
administered through light-triggered targeting (Wang et al., 
2019). These findings underscore the value provided by in-vivo 
models of choroidal neovascularization.

Over the past few years, several optimizations and new 
developments have been made to augment existing in vivo 
models of laser-induced choroidal neovascularization (Poor 
et al., 2014; Gong et al., 2015). Recently, a preclinical mouse 
model of a complex heart disease was reported to accurately 
mimic the actual disease in vivo by combining the systematic 
manifestations of the disease instead of trying to recreate all 
the pathology (Schiattarella et al., 2019). In fact, AMD may be 
viewed as an manifestation of systematic disease (Cheung and 
Wong, 2014). Studies have widely reported associations between 
AMD and hypertension, cardiovascular disease, cerebrovascular 
disease, chronic kidney disease, and neurodegenerative disorders 
(Hogg et al., 2008; Nitsch et al., 2009; Kaarniranta et al., 2011; 
Chung et al., 2014). To the best of our knowledge, models of 
choroidal neovascularization created in combination with other 
stress paradigms such as metabolic perturbations have not 
been created. Perhaps scientists studying angiogenesis in ocular 
diseases such as AMD and diabetic retinopathy can apply similar 
principles to their animal models in order to account for systemic 
effects and interplay with other organ systems.

In Vitro Models
With the recent announcement of the closing of Wellcome 
Sanger Institute animal research facility, it has signaled a shift in 
the scientific community’s preference for in vitro methods (Else 
2019). Cellular systems are widely used as a working model for 

hypothesis testing due to their ease of handling, amenability to 
genetic manipulation and possibility to interrogate cell type-
specific effects in isolation of other cofounding factors present 
in in vivo models. The use of primary choroidal endothelial cell 
lines has pinpointed signaling dysregulations in these cells as the 
main cause of new blood vessel formation in wet AMD (Wang 
and Hartnett 2016). However, human- and animal-derived 
choroidal endothelial cells can only be obtained post-mortem, 
making them a relatively scarce resource. Cells obtained from 
patients in advanced stage of AMD often limit their relevance 
in studying onset of choroidal neovascularization. Additionally, 
there are other constraints such as the difficulty in maintaining 
endothelial identity in long-term cell cultures (Rops et al., 2004).

The breakthrough by Takahashi and Yamanaka (2006) in 
discovering that differentiated cells can be reprogrammed back 
to its pluripotent state has revolutionized scientific research and 
allowed pluripotent stem cell derivatives to be used in place 
of primary cells (Takahashi and Yamanaka, 2006). Songstad 
et al. (2017) has reported success in generating choroidal 
endothelial cells from human pluripotent stem cells. They 
first reprogrammed human fibroblast from an individual with 
normal ocular history into induced pluripotent stem cells 
(iPSCs). These human iPSCs were differentiated alongside with 
a RF/6A cell line which was originally isolated from the choroid-
retina of a rhesus macaque fetus (Lou and Hu, 1987). The 
differentiated choroidal endothelial cells expressed a choroid-
restricted marker, carbonic anhydrase IV, and a fenestration 
marker. As part of the characterization, these differentiated 
cells were benchmarked against the transcriptomic signature 
of RF/6A cells (Songstad et al., 2017). However, a recent study 
led by Makin et al. (2018) conducted a rigorous characterization 
of the RF/6A cell line and found that RF/6A cells lack several 
key endothelial markers and phenotypic properties, hence 
limiting its use in validating iPSC-derived choroidal endothelial 
cells. It is still a common challenge in the iPSC field to achieve 
homogenous population of cell derivatives. Given that carbonic 
anhydrase IV is the closest and only known marker restricted to 
the choroid in the eye (Hageman et al., 1991), more research into 
specific cell fate markers would help in the generation of a pure 
population of these cells.

A recent study by Giacalone et al. (2019) discovered a way 
to immortalize human isolated choroidal endothelial cells 
by transducing them to express an endothelial cell specific 
promoter, CDH5p-hTERT/CDH5p-Tag. The immortalized 
choroidal endothelial cell line offers promise for a more reliable 
in vitro model as it expresses endothelial specific markers (vWF 
and CD34), the choroid-restricted marker carbonic anhydrase 
IV, AMD-related proteins (CFH), and display functional 
endothelial characteristics (Giacalone et al., 2019). On the other 
hand, scientists have cocultured choroidal endothelial cells with 
retinal pigmented epithelial cells to develop an in vitro disease 
model that more faithfully mimics the anatomical association of 
different cell types in the human eye [reviewed by Chichagova 
et al. (2018)]. As loss of functional cells occurs at the early stage 
of AMD, cell replacement therapy may potentially serve as a 
treatment for AMD (Veckeneer et al., 2017). Clinical trials for 
replacement with healthy retinal pigmented epithelial cells are 
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underway. There remains concerns for possible complications 
such as the uncontrolled proliferation of lab-grown cells which 
have slowed down some of the trials (Garber 2015). Nevertheless, 
with more advanced technology, bioengineers are leveraging 
on 3D printing methods to create scaffolds of blood vessels for 
laboratory and clinical use (Huang and Zhang, 2014). Recently, 
a group led by Wimmer et al. (2019) successfully developed 3D 
blood vessels organoids that functioned strikingly similar to real 
human blood vessels when transplanted into mice (Wimmer 
et al., 2019). These in vitro vascular platforms offer a promising 
and exciting outlook for enabling research on vasculopathy as 
research continues to push the frontiers of creating functional 
human-like blood vessels.

Both in vivo and in vitro models of choroidal neovascularization 
have been developed for researchers to study pathology from 
molecular to cellular and system level. Each model has its own 
strengths and weaknesses. Both in vivo and in vitro models are 
complementary and can be manipulated appropriately to address 
certain limitations as well as develop more fit-for-purpose 
models of ocular angiogenesis.

vASCULAR MECHANISMS IN CHOROIDAL 
NEOvASCULARIZATION
Here, we provide a nonexhaustive review of the known 
vascular mechanisms in choroidal neovascularization, ranging 
from the source of pathological endothelial cells to noncell 
and cell autonomous mechanisms leading to choroidal 

neovascularization. Figure 2 provides an overview of our 
discussion in this section.

Source of Endothelial Cells in Choroidal 
Neovascularization
It was believed that all newly formed vessels in choroidal 
neovascularization arise from pre-existing choroidal vasculature 
(Ishibashi et al., 1987). However, in the 1990s, researchers 
discovered that circulating progenitor cells of bone marrow 
origin could in part contribute to postnatal vasculogenesis in 
both physiological and pathological neovascularization (Asahara 
et al., 1997; Asahara et al., 1999). Accumulating evidence 
then showed that circulating bone marrow progenitor cells 
contributed to newly generated endothelial cells specifically in 
choroidal neovascularization. Various groups have used the 
technique of transplanting EGFP-expressing bone marrow cells 
from EGFP donor mice into recipient mice and subsequently 
subjecting them to laser photocoagulation to induce injury in 
the choroid. The extent of donor derived GFP+ cells recruited 
to choroidal vasculatures or sites of Bruch membrane injury was 
then quantified. Often, GFP+ endothelial cells were found to give 
rise to different degrees of contribution to lesion endothelial cells 
(Sengupta et al., 2003; Tomita et al., 2004). Besides endothelial 
cells, a proportion of GFP+ cells was found to be immunoactive 
for vascular smooth muscle markers (Espinosa-Heidmann et al., 
2003). Variability in levels of contribution to lesion endothelial 
cells was also observed depending on the stage of progression of 
choroidal neovascularization (Espinosa-Heidmann et al., 2005; 

FIGURE 2 | Vascular mechanisms in choroidal neovascularization.
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Hou et al., 2006). In addition, circulating adult hematopoietic 
stem cells are mobilized into the injury region and are able 
to form endothelial cells that are subsequently incorporated 
into choroidal neovasculature (Chan-Ling et al., 2006). Such 
hemangioblast activity was also observed in a murine model of 
retinal neovascularization (Grant et al., 2002). Similarly, evidence 
of bone marrow contribution to choroidal neovascularization 
was observed in humans. Using AC133 a putative marker of 
both human hematopoietic stem and bone marrow-derived 
progenitor cells, Sheridan et al. identified the presence of bone 
marrow-derived progenitor cells in excised human choroidal 
neovascularization sections, albeit in very low numbers (Sheridan 
et al., 2006). Table 2 presents a summary of the aforementioned 
in vivo studies.

The mechanisms by which bone marrow progenitors are 
recruited to choroidal neovascularization sites have been 
described. Bone marrow derived cells incorporated into choroidal 
vasculature only at sites of laser-induced injury (Espinosa-
Heidmann et al., 2003; Sengupta et al., 2003; Takahashi et al., 2004; 
Hou et al., 2006). This suggests that vascular injury is required 
for the mobilization of these cells and the microenvironment of 
the choroidal neovascular lesion might secrete molecular signals 
that assist in the recruitment and differentiation of circulating 
progenitor cells into vascular endothelial and smooth muscle 
cells in situ (Hou et al., 2006). Gao and colleagues have proposed 
that the process occurs in four phases: mobilization, migration, 
adhesion, and differentiation (Gao et al., 2016). Upon local tissue 
injury, the levels of various cytokines such as VEGF, granulocyte 
colony-stimulating factor (G-CSF), and erythropoietin (EPO) 
increase, which result in MMP9 activation, triggering the release 
of bone marrow cells from interacting stromal cells in the bone 
marrow (mobilization). The chemotactic gradients of cytokines 
then facilitate the migration of bone marrow cells to the local 
neovascular lesion site. Key chemokine mediators in choroidal 
neovascularization include the chemoattractant stromal derived 
factor (SDF-1), which is upregulated by retinal pigmented 
epithelium upon laser injury and binds to its concomitant receptor 

CXCR4 on bone marrow cells (Zhang et al., 2011). Cell adhesion 
molecules such as VCAM-1 and ICAM-1 then facilitate the 
adhesion of migrated bone marrow cells to existing endothelial 
cells at the site of choroidal neovascularization. The final phase 
of differentiation of the bone marrow progenitors to endothelial 
cells, smooth muscle cells, and macrophages then occur at the 
site of choroidal neovascularization. To summarize, choroidal 
neovascular injury specifically mobilizes and incorporates new 
vascular cells from the bone marrow into the injury site utilizing 
a complex repertoire of factors, pointing to the need to consider 
these processes in the pathological mechanisms of wet AMD.

Of note, there are also several studies that refute the contribution 
of bone marrow cells to postnatal vasculogenesis. Okuno and 
colleagues showed that bone marrow-derived cells did not 
contribute to the wound healing site as differentiated endothelial 
cells, but instead mainly as pro-angiogenic macrophages (Okuno 
et al., 2011). Grunwald et al. proposed that these recruited bone 
marrow cells are retained close to the neovasculature and exert 
proangiogenic effects on in situ endothelial cells (Grunewald 
et al., 2006). In line with the latter, Purhonen and colleagues 
demonstrated that during vasculogenesis none of the recruited 
bone marrow-derived cells contributed to the endothelium and 
contended that in vivo endothelial differentiation is a rare event 
for these cells (Purhonen et al., 2008). Alternatively, resident 
stem-like/progenitor cells have been discovered in pre-existing 
endothelium which demonstrate colony-forming ability (Naito 
et al., 2012). Wakabayashi and colleagues found that these 
resident progenitors (termed endothelial side population cells) 
did not originate from bone marrow and were thus distinct from 
bone marrow-derived endothelial progenitors. The endothelial 
side population cells isolated from murine choroidal tissue also 
displayed strong colony-forming ability in vitro, and increased 
proliferation upon laser-induced choroidal neovascularization 
in vivo, suggesting their ability to contribute to neovascular 
vessels (Wakabayashi et al., 2013). These studies highlight 
that postnatal vasculogenesis occurs to a significant extent in 
choroidal neovascularization. Taken together, endothelial cells 

TABLE 2 | Summary of studies reporting bone marrow origin of endothelial cells in choroidal neovascularization.

Study references Model 
species

Percentage of CD31+ endothelial 
cells in choroidal neovasculature 
that were bone-marrow derived

Total donor-derived bone 
marrow contribution to 
choroidal neovasculature

Percentage of bone marrow 
population in choroidal 
neovasculature that were 
endothelial

Tomita et al. ( 2004) Murine – – 70%
Sengupta et al. (2003) Murine – 40 – 45% –
Espinosa-Heidmann et al. (2003) Murine – 17% 41%
Takahashi et al. (2004) Murine 5.3% 22% (total no. of cells: 154 

± 37; no. of marrow-derived 
cells: 34 ± 17)

20%

Espinosa-Heidmann et al. (2005) Murine 65% in early choroidal 
neovascularization (3 days) 50% in late 
choroidal neovascularization (4 weeks)

20 – 40% –

Hou et al. (2006) Murine 70% in early choroidal 
neovascularization (7 days) 50% in late 
choroidal neovascularization (4 weeks)

– 31%

Sheridan et al. (2006) Human – <0.1% stained for AC133 –
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that participate choroidal neovascularization could potentially 
originate from these sources: (1) circulating bone marrow 
progenitors, (2) circulating hematopoietic stem cells that have 
hemangioblast activity, and (3) vessel-residing endothelial side 
population cells that have high colony-forming activity. Figure 3 
provides a graphical representation of our discussion above.

Noncell Autonomous Mechanisms
Vascular Endothelial Growth Factor in  
Pathological Angiogenesis
Dysregulation of VEGF signaling in lesion sites is known as one of 
the key stimuli for pathological angiogenesis (Kinnunen and Ylä-
Herttuala, 2012). VEGF, existing as its various isoforms VEGF121, 
VEGF145, VEGF165, VEGF189, and VEGF206, is a potent angiogenic 
molecule that is known to stimulate proliferation, migration, 
tube formation, and vascular permeability of endothelial cells 
(Ferrara et al., 1991; Papadopoulos et al., 2012). The physiological 
importance of VEGF in the outer retina is well known. 
During fetal development, the retinal pigmented epithelium 
constitutively releases VEGF and FGF2 that are crucial for 
development of the choriocapillaris (Saint-Geniez and D’Amore, 
2004; Anand-Apte and Hollyfield, 2010). VEGF released from 
the basal side of the RPE monolayer is required for the formation 
of fenestrations in the choriocapillaris (Blaauwgeers et al., 1999; 
Marneros et al., 2005). These important structures serve a role 
of allowing large macromolecules to be transported in and out 
of choroidal circulation (Anand-Apte and Hollyfield, 2010). In 
vivo studies report that knock-out of vegf in the RPE resulted in 
total ablation of the choriocapillaris (Korte et al., 1984; Kurihara 
et al., 2012). Therefore, locally synthesized VEGF from the 
RPE is critical for the maintenance of the choriocapillaris. In 
physiological conditions, ocular levels of VEGF are low, but in 
pathological conditions like choroidal neovascularization, VEGF 

levels are significantly elevated in affected sites (Kvanta et al., 
1996; Kinnunen and Ylä-Herttuala, 2012). Of note, the VEGF 
isoform found to participate predominantly in pathological 
angiogenesis is VEGF164/165 (Ishida et al., 2003). In pathological 
angiogenesis, VEGF from hypoxic retina is believed to be the key 
driver (Miller et al., 1997; Papadopoulos et al., 2012). On top of its 
known functions of stimulating angiogenesis of choroidal vessels, 
elevated VEGF in the RPE leads to barrier integrity breakdown 
which could promote neovascularization (Ablonczy et al., 2011; 
Marneros 2013). As a proof of concept, treatment with VEGF 
antagonists have shown some success in reducing choroidal 
neovascularization lesion size and slowing the rate of vision loss 
(Schlingemann and Witmer, 2009; Kinnunen and Ylä-Herttuala, 
2012; Papadopoulos et al., 2012). However, anti-VEGF drugs are 
not entirely effective to treat all choroidal neovascularization 
lesions in wet AMD and are also unable to prevent recurrence 
of symptoms, therefore pointing to the role of other interacting 
pathways of pathological neovascularization.

Upregulation of High-Temperature Requirement A 
Serine Peptidase 1
High-temperature requirement A serine peptidase 1 (HTRA1) 
is a multi-functional serine protease expressed in endothelium, 
epidermis, and neurons that regulates vascular growth and 
maintenance and is required for the normal development of 
vasculature in the brain and eye (De Luca et al., 2003; Jiang et al., 
2012; Zhang et al., 2012). In 2006, it was reported that the SNP 
rs11200638 on the promoter sequence of HTRA1 at chromosome 
10q26 was the strongest casual genetic risk factor for AMD. The 
risk allele AA was associated with elevated levels of both HTRA1 
mRNA in lymphocytes of AMD donors and HTRA1 protein in 
retinal pigmented epithelium of AMD donors (DeWan et al., 
2006; Yang et al., 2006). In line with these findings, Chan et al. 

FIGURE 3 | Sources of recruited endothelial cells in choroidal neovascularization. Endothelial colony-forming cells (yellow) from the bone marrow can be mobilized 
from the bone marrow into the circulation, migrate to the site of neovascularization, and differentiate into vascular cells that form the new vasculature. Hematopoietic 
stem cells (blue) can be mobilized to the site of injury, differentiate into endothelial cells and be incorporated into newly formed vasculature. Tissue-resident 
endothelial side population cells (green) residing in choroidal endothelium have been proposed to contribute to choroidal neovascularization upon injury.
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found that HTRA1 mRNA expression was higher in the macula 
of AMD eyes with the AA genotype compared to non-AMD eyes 
(Chan et al., 2007). Elevated HTRA1 levels was also observed 
in the aqueous humor of patients with wet AMD (Tosi et al., 
2017). The overexpression of human HTRA1 in the RPE of mice 
has been shown to result in development of PCV (choroidal 
lesions with polypoidal structure), although classic choroidal 
neovascularization formation was not observed (Jones et al., 
2011). Furthermore, presence of HTRA1 protein was observed 
in the drusen of AMD patients (DeWan et al., 2006; Yang et al., 
2006). Several mechanisms have been proposed for how HTRA1 
overexpression could lead to choroidal neovascularization 
observed in wet AMD. Firstly, HTRA1 has been suggested to 
increase activity of degradative extracellular matrix enzymes 
and thus promote matrix breakdown (Grau et al., 2006; Jones 
et al., 2011). In vivo studies of transgenic mice overexpressing 
HTRA1 in the RPE described ultrastructural changes in Bruch’s 
membrane ECM (Vierkotten et al., 2011). It was therefore 
suggested that, in wet AMD, higher levels of HTRA1 compromise 
the integrity of Bruch’s membrane, allowing infiltration of 
choroidal vasculature through the layered matrix (Yang et al., 
2006). Secondly, HTRA1 is also known to inhibit the activity 
of transforming growth factor (TGF-ß) family proteins which 
have important roles in angiogenesis and extracellular matrix 
production (Oka et al., 2004; Zhang et al., 2012). Mathura et al. 
reported that the TGF-ß proteins BMP-2 and BMP-4 might serve 
as repressors of RPE growth and any dysregulation of the BMPs 
might lead to aberrant wound repair as observed in proliferative 
retinopathies (Mathura et al., 2000). Therefore, increased levels 
of HTRA1 in the RPE of AMD patients with risk genotype might 
result in pathological choroidal neovascularization through (1) 
promoting degradation of Bruch’s membrane and compromising 
barrier function and (2) inhibiting BMP signaling thus removing 
a negative regulator for aberrant wound repair response.

Oxidative Stress
Antioxidants have been found to slow progression of 
progression from early AMD to advanced stages of AMD (wet 
AMD or severe geographic atrophy), thus highlighting the role 
of oxidative stress in AMD progression (Dong et al., 2009). 
Oxidative stress may facilitate in creating a pro-angiogenic 
environment in the outer retina and choroid, which coupled 
with altered integrity of Bruch’s membrane may trigger the 
development of choroidal neovascularization as observed in 
wet AMD (Dong et al., 2009). In addition, oxidative stress is also 
known to stimulate premature senescence of RPE, a key event 
in the pathogenesis of AMD (Supanji et al., 2013). Senescent 
RPE has been found to increase the expression of VEGF and 
downregulate CFH, both of which are known to contribute to 
the development of choroidal neovascularization (Marazita 
et al., 2016; Kaarniranta et al., 2018). Of note, Supanji et al. 
showed that oxidative stress stimulated RPE cells to increase 
production of HTRA1 which when in excess accelerated 
premature senescence of the RPE cells (Supanji et al., 2013), 
suggesting that HTRA1 also has a role in influencing RPE 
senescence. These studies point to the complex role of oxidative 
stress in contributing to ocular neovascularization.

Complement Dysregulation
The complement system participates in the innate immune 
response as the first immediate acting system before cellular 
response is carried out by macrophages and neutrophils. It 
is composed of more than 30 small proteins and activation 
products with chemotactic, inflammatory, cytotoxic, and 
antimicrobial functions (Zipfel, 2009). Once fully activated, 
formation of the membrane attack complex will occur, which 
is then be able to destroy cells and pathogens (Xu and Chen, 
2016). Membrane attack complex deposition occurs naturally 
in healthy aging choriocapillaris (Mullins et al., 2014; Chirco 
et al., 2016). With a physiological balance of activation and 
repression of the complement system, self-tissue destruction 
is avoided. In AMD pathogenesis, a lack of repression of the 
complement system is implicated (Maugeri et al., 2018). Multiple 
complement products, such as C3, C5b-9, CFH, and CFB have 
been found in AMD lesions and drusen (Nozaki et al., 2006; Xu 
and Chen, 2016). Furthermore, as revealed by GWAS, genetic 
polymorphisms in complement genes such as CFH, CFB, 
C2, C3, C5, and SERPING1 confer risk for AMD, suggesting 
the role of complement dysregulation in the pathogenesis of 
AMD (Khandhadia et al., 2012). However, while numerous 
components are involved in AMD, only C3 and C5 have been 
reported for their roles in choroidal neovascularization. Nozaki 
et al. showed that induction of choroidal neovascularization 
in vivo increased levels of C3a and C5a, and C3a and C5a 
induced increase in VEGF secretion by primary human RPE in 
vitro (Nozaki et al., 2006). Knock out of the C3 gene protected 
mice from choroidal neovascularization after laser treatment 
(Bora et al., 2005), and genetic ablation of both C3a and C5a 
receptors results in lower VEGF secretion by RPE cells leading 
to decreased choroidal neovascularization (Nozaki et al., 
2006). Overall, build-up of membrane attack complex in the 
choriocapillaris and dysregulated complement activation might 
contribute to an angiogenic environment for the development of 
choroidal neovascularization.

Cell Autonomous Mechanisms
Platelet Derived Growth Factor
The long-term efficacy of anti-VEGF monotherapy on visual 
outcomes has been variable, with the need for repeated and 
lifelong treatment for patients with wet AMD (Singer et al., 
2012; Rofagha et al., 2013; Silva et al., 2013). A common trend of 
initial visual improvement in the first few months followed by a 
plateau that lasts throughout the course of treatment has raised 
the notion of anti-VEGF resistance. In tumor studies, anti-
VEGF resistance has been attributed to the secretion of platelet-
derived growth factor (PDGF) by tumor cells which stimulate 
the recruitment and proliferation of pericytes to developing 
vasculature. On top of the physical stabilizing support rendered 
by pericytes, PDGF stimulates pericytes to upregulate VEGF 
which promote endothelial survival (Reinmuth et al., 2001; 
Franco et al., 2011). In choroidal neovascular sites, tip cells 
that form the vascular front express PDGF, causing recruitment 
of pericytes to the neovasculature and thereafter microvessel 
maturation. Newly recruited pericytes form a protective barrier 
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around the newly formed endothelium in the face of anti-
VEGF therapy, reducing the effect of VEGF inhibitors and 
explaining the plateau phase in long term anti-VEGF treatment 
(Franco et al., 2011; Pachydaki et al., 2012). In line with this 
hypothesis, choroidal neovascular lesions from patients who 
were unresponsive to anti-VEGF therapy, were also found to 
be well-formed and “consistently exhibit pericytes” (Pachydaki 
et al., 2012).

Considering these findings, PDGF inhibitors were proposed 
in combination therapy with current anti-VEGF monotherapy 
for wet AMD. E10030 (Fovista; Ophthotech, New York, NY) is 
a DNA aptamer against PDGF that was recently assessed for its 
efficacy in combination therapy with the anti-VEGF treatment 
ranibizumab (Lucentis). The results from a phase 2b clinical 
trial showed that there was a 62% benefit from baseline with 
combination therapy compared with anti-VEGF monotherapy 
(Jaffe et al., 2017). However, much to the disappointment of 
clinical investigators, the following two phase 3 trials showed 
that Fovista in combination with ranibizumab showed no 
superiority over ranibizumab monotherapy. Further on, two 
other phase 2 studies investigating Fovista in combination with 
two other anti-VEGF approved drugs were terminated (Dunn 
et al., 2017). The failed anti-PDGF clinical trials have taught us 
a few lessons: firstly, that phase 3 trials should not be designed 
based on retrospective subgroup analyses of phase 2 trial results 
(as was done in Fovista phase 3 trials) (Rosenfeld and Feuer, 
2018), and secondly, that failure with PDGF antagonists indicate 
the need to shift efforts to target other mechanisms of choroidal 
neovascularization in AMD.

Angiopoietin-2
Angiopoietin-2 (ANG2) is a proangiogenic cytokine that plays a 
role in both angiogenesis and immune activation, both of which 
are integral processes in the pathogenesis of wet AMD (Fiedler 
et al., 2006; Wolf and Langmann, 2019). ANG2 levels have been 
found to be upregulated in aqueous humor of wet AMD human 
donors and increasing with disease severity (Ng et al., 2017). 
Due to its additional role in inflammation that is implicated in 
wet AMD, ANG2 has become a potential therapeutic target in 
wet AMD beyond anti-VEGF therapies (Gahn and Khanani, 
2018). In vivo experiments have recently demonstrated ANG2 
and VEGF combinatory inhibition led to reduced neovascular 
lesion formation in a spontaneous chronic choroidal 
neovascularization mouse model (JR5558 mice) (Foxton 
et  al., 2019). This has been carried forward to phase 1 and 2 
clinical trials with the bispecific antibody anti-VEGF-A/ANG2 
(RG7116; Roche/Genetech). Currently, RG7116, now known as 
faricimab, is being tested in phase 3 trials in comparison with the 
VEGF trap drug aflibercept (Eylea) (Wolf and Langmann 2019). 
The shift in efforts towards VEGF-independent pathways in wet 
AMD is promising; and it is hoped that more novel targetable 
candidates would be uncovered.

Vasoactive Agents
Endothelial cells produce a physiological balance of 
vasoactive substances to regulate vascular function, such as 

the vasoconstrictor endothelin-1 (ET-1) and the vasodilator 
nitric oxide (NO). ET-1 levels increase while NO availability 
decreases during aging, resulting in increased vasoconstriction 
and impaired vasodilation, which could lead to constriction of 
smaller vessels associated with ischemia of the choriocapillaris 
(decreased choroidal blood flow) seen in severe dry AMD 
(Stauffer et al., 2008; El Assar De La Fuente et al., 2012; 
Totan et  al., 2015). Decreased choroidal blood flow in dry 
AMD has been correlated with severity of dry AMD, and 
could increase the risk for ischemia and hypoxia leading to 
choroidal neovascularization in wet AMD (Grunwald et al., 
2005). Totan et al. showed that patients with wet AMD exhibit 
increased ET-1 and decreased NO in the plasma, indicating that 
endothelial dysfunction is apparent in these patients (Totan et 
al., 2015). With age being the largest risk factor for AMD, it 
is not surprising that age-related vascular dysfunction would 
contribute to the progression of AMD, as seen also in a number 
of age-related diseases (Ehrlich et al., 2009; Akpek and Smith, 
2013). Therefore, endothelial dysfunction in the choriocapillaris 
could play a role in AMD pathogenesis.

CONCLUSION
With the great momentum in the study of choroidal 
neovascularization, there remains knowledge gaps which 
the scientific and clinical communities could address. We 
propose that further research on the following areas could 
be illuminating. (1) AMD subtypes could have different 
etiology, rendering it important to investigate subtype-
specific mechanisms. Genomics distinguishing typical 
AMD and polypoidal choroidal vasculopathy may elucidate 
subtype-specific mechanisms. (2) Perturbations to choroidal 
vasculatures may have to be looked in the context of other 
influences. Existing experimental models could be adapted to 
recapitulate potential systemic/immune factors, as well as to 
study endothelial interplay with other cell types. (3) Finally, 
there is a need to explore both VEGF- and non-VEGF pathways 
to enhance the success of combinatorial treatment. We hope 
that vascular-targeting strategy will help advance therapy for 
early intervention.
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