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Overall prediction of oral cavity squamous cell carcinoma (OCSCC) remains inadequate, as more than half of patients with oral
cavity cancer are detected at later stages. It is generally accepted that the differential diagnosis of OCSCC is usually difficult and
requires expertise and experience. Diagnosis from biopsy tissue is a complex process, and it is slow, costly, and prone to human
error. To overcome these problems, a computer-aided diagnosis (CAD) approach was proposed in this work. A dataset comprising
two categories, normal epithelium of the oral cavity (NEOR) and squamous cell carcinoma of the oral cavity (OSCC), was used.
Feature extraction was performed from this dataset using four deep learning (DL) models (VGG16, AlexNet, ResNet50, and
Inception V3) to realize artificial intelligence of medial things (AIoMT). Binary Particle Swarm Optimization (BPSO) was used to
select the best features. )e effects of Reinhard stain normalization on performance were also investigated. After the best features
were extracted and selected, they were classified using the XGBoost. )e best classification accuracy of 96.3% was obtained when
using Inception V3 with BPSO. )is approach significantly contributes to improving the diagnostic efficiency of OCSCC patients
using histopathological images while reducing diagnostic costs.

1. Introduction

Oral squamous cell carcinoma (OSCC) is a diverse collection
of cancers that arise from the mucosal lining of the oral
cavity [1, 2], accounting for more than 90% of all oral cancers
[3]. It is a subtype of head and neck squamous cell carcinoma
(HNSCC), which is the world’s seventhmost frequent cancer
[4]. )e World Health Organization estimates that 657,000
fresh cases are diagnosed annually, with over 330,000 fa-
talities globally. OSCC frequency rates were found to be
massively greater in South Asian countries. India has the
biggest number of cases (one-third of cases), whereas

Pakistan has the first and second most common cancers in
males and females, respectively [5]. Drinking alcohol,
smoking cigarettes, poor oral hygiene, human papilloma-
virus (HPV) exposure, genetic background, lifestyle, eth-
nicity, and geographical region are all risk factors.

)e detection of OSCC in early stages is essential to
achieve a successful therapy, increased chances for survival,
and low mortality and morbidity rates [6]. With a 50%
average cure rate, the OSCC has bad prognosis [7, 8]. Mi-
croscopy-based histopathological analysis of tissue samples
is considered the standard method for diagnosing OSCC
[9, 10]. )is diagnostic pathology methodology depends on
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histopathologists’ interpretation, which is typically slow and
error-prone, limiting its clinical utility [11]. As a result, it is
critical to provide effective diagnostic tools to aid pathol-
ogists in the assessment and diagnosis of OSCC.

Lately, there have been a growing number of studies on
applying artificial intelligence (AI) to improve medical di-
agnostics. Researchers have been able to examine AI ap-
plications in medical image analysis thanks to increasing the
usage of diagnostic imaging. Deep learning (DL) [12], in
particular, has shown outstanding success in solving a va-
riety of medical image processing challenges [13], specifically
in the diagnostics of pathological images [14, 15]. Computer-
aided diagnosis (CAD) systems based on DL have been
suggested and established on a large scale for a range of
cancer sorts, such as breast cancer, prostate cancer, and lung
cancer ([16, 17] and [18]). Nevertheless, the research shows
that DL has been seldom used to diagnose OSCC from
pathological images. To recognize keratin pearls in oral
histopathology images, Dev et al. employed Convolutional
Neural Network (CNN) and Random Forest. For keratin
area segmentation, the CNN model achieved 98.05 percent
accuracy, whereas the Random Forest model spotted keratin
pearls with 96.88 percent accuracy [19]. Das et al. used DL to
divide oral biopsy images into different classes according to
Broder’s histological grading system. CNN was also pro-
posed, which had a 97.5 percent accuracy rate (N) [20].

Folmsbee et al. used CNN to classify oral cancer tissue
into seven types using Active Learning (AL) and Random
Learning (RL) (stroma, tumor, lymphocytes, mucosa, ker-
atin pearls, adipose, and blood). )e AL’s accuracy was
determined to be 3.26 percent higher than that of the RL
[21]. Furthermore, Martino et al. applied multiple DL ar-
chitectures, such as U-Net, SegNet, U-Net with VGG16
encoder, and U-Net with ResNet50 encoder, to segment oral
lesion whole slide images (WSI) into three groups (carci-
noma, noncarcinoma, and nontissue). A deeper network,
such as U-Net upgraded with ResNet50 as encoder, was
shown to be more accurate than the original U-Net [22].
Amin et al. recently used VGG16, Inception V3, and
Resnet50 were fine-tuned individually and then used in
concatenation as a feature extractor to perform binary
classification on oral pathology images [23].

)e categorization of oral histopathological images into
normal and OSCC classes was enhanced in this research.)e
increase is achieved by employing the notion of transfer
learning to extract features from pretrained CNN models
(VGG16, AlexNet, ResNet50, and Inception V3). )en,
using the Binary Particle Swarm Optimization (BPSO) ap-
proach, features were selected. Finally, three different
classifiers, XGBoost, KNN, and ANN, were used to deter-
mine the detection performance of OSCC and normal oral
histopathology images.

2. Research Contributions

)e proposed research investigates the following:

(a) Oral histopathological images introduced to extract
the desired features to four various models of DL.

(b) Investigating the obtained features in “a” by applying
the methods of metaheuristic feature selection.

(c) )e metaheuristic feature selection method is ex-
plored to enhance the performance of the classifiers.

(d) Achieving the most recommended “hybrid” system
that provides the highest accuracy in the stage of the
making decision, which is obtained by comparing
the highest performance of the proposed models for
detecting OSCC.

(e) )e final stage of the proposed research is the effect
evaluation for the stain normalization on images
classification.

(f ) Based on “a” to “e,” AIoMT platforms development
[24–26] is regarded as the main goal of the intro-
duced research in the medical and health field.

)e rest of the paper is organized as follows: )e lit-
erature study in Section 1 goes into detail on previous
successful approaches. A discussion of the method and
approaches used in this study can be found in Section 3. A
breakdown of the findings from the study is given in
Section 4. Finally, the outcome of the investigated study is
described in Section 5 before concluding the paper in
Section 6.

3. Materials and Methods

3.1. Materials. )e histopathological images dataset is got
from the online resource repository [27], and medical ex-
perts prepared and cataloged data from 230 individuals.
)ese images were collected from two different locations in
India: Dr. B. Borooah Cancer Research Institute and
Ayursundra Healthcare Pvt. Ltd, Guwahati. Images are di-
vided into two categories: normal epithelium of the oral
cavity (NEOR) and OSCC. A Leica ICC50 HD microscope
camera was used to get the images. Table 1 shows the his-
topathological image details in terms of class, resolutions,
and quantity. Figure 1 shows a chosen selection of histo-
pathological images and the related categories.

3.2. Proposed Model. Figure 2 depicts the proposed model.
)e model states that the input histopathology images were
first preprocessed. In order to extract features from nor-
malized histopathology images, four DL models were used.
)e transfer learning approach was used during the feature
extraction procedure. To find the best probable features,
Binary Particle Swarm Optimization was employed as a
feature selection method. Finally, three machine learning

Table 1: Image categories with the related source.

Resolution Class Number of images

100× magnification NEOR 89
OSCC 439

400× magnification NEOR 201
OSCC 495

Total images NEOR and OSCC 1224
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methods were used to classify abstract features, such as DL
[28].

3.2.1. Image Enhancement. To develop the classification
process, some preprocessing work is regarded as essential.
So, the processes performed in the preprocessing step are
explained in the following.

(1) Image Resizing. As shown in Table 2, the size of the
histopathology images was adjusted depending on the size of
the input of each DL architecture. Losing local features in
histopathological images when resized is offset by the
preservation of global features.

(2) Image Normalization. )e analysis of the histopathology
images faces may challenges, such as producing robust
models to the variations resulting from different labs and
imaging systems [30], caused by raw materials, the response
to various colors of the scanners’ slide, protocols for staining,
and manufacturing techniques [31]. )e histopathology
dataset was stain-normalized using the Reinhard method
[32, 33]. )e purpose of the Reinhard stain normalization
approach is to bring these stains’ appearances into line [34].
)is method allows a target image to be shifted in the color
domain to more closely match the template image, which is
applied on each histopathology image pixel as shown in
equations 1 to 3 [35, 36].

Step 1: Convert both the source image X and target
image Y from RGB space to lαβ space.
Step 2: Do the following transformation in lαβ space:

l2 � μg l1( 􏼁 + l − μg(l)􏽨 􏽩∗
σg l1( 􏼁

σg(l)
􏼢 􏼣, (1)

a2 � μg a1( 􏼁 + a − μg(a)􏽨 􏽩∗
σg a1( 􏼁

σg(a)
􏼢 􏼣, (2)

b2 � μg b1( 􏼁 + b − μg(b)􏽨 􏽩∗
σg b1( 􏼁

σg(b)
􏼢 􏼣, (3)

where l2, a2, andb2 are intensity variables of the pro-
cessed image in lαβ space. l1, a1, andb1 are intensity
variables of target image in lαβ space. l, a, andb are
intensity variables of source image. μg indicates the
global mean of the image and σg represents the global
standard deviation of the image.
Step 3: Convert back the processed image Z from lαβ
space to RGB space.

)e intensity variation of the original image is preserved
using this procedure. As a result, its structure is kept, while
the contrast is altered to match that of the target.

3.2.2. Features Extraction Using Deep Learning Models.

(a)

(b)

Figure 1: Different classes of histopathological images with (a) NEOR and (b) OSCC.
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In this work, four DL models were used for feature ex-
traction, namely, VGG16, AlexNet, Inception V3, and
ResNet50.

(1) VGG16. Maximum pooling and the convolution
layers arrangement are followed by the VGG16 architecture
[37] (Figure 3). Eventually, there are three FC layers: the first
and the second are triggered by ReLU, while the third is
triggered by Softmax. )is design has 16 layers and 138
million parameters; the input layer can receive images with
224× 224 pixels.

(2) AlexNet. )e AlexNet [38] model contains 61 million
parameters using an 8-layer CNN architecture. In the
AlexNet architecture (Figure 4), there are five convolu-
tional layers, where three of them are only used as linked
layers. )e fourth layer is the Softmax layer that requests a
resolution of 227 × 227 pixels input image, and the last
layer is the ReLU activation function, which performs the
system convolutional and connected processes. Moreover,
the FC-8 layer is linked to the Softmax layer via 39
neurons.

(3) ResNet50. )e ResNet50 architecture [39] addressed
the issues of several nonlinear layers, not learning identity
mappings, and deterioration. Simply said, ResNet50 is a
network made up of residual unit stacks (Figure 5). )e
network is built using residual units as building components.
)ese units were built with convolution and pooling layers.
)e input histopathology images have a resolution of
224× 224 pixels, and the design includes 3× 3 filters.

(4) Inception V3. Convolutions, average pooling, max-
imum pooling, dropouts, and completely connected layers
are among the asymmetrical and symmetrical building el-
ements used in themodel (Figure 6).)e Softmax function is
found in the last layer of the Inception V3 architecture [40],
which comprises 42 levels, where the resolution of the re-
ceived information by the input layer in pixels is 299 × 299.

3.2.3. Binary Particle Swarm Optimization for Feature
Selection. In processing data, the selection of features is
critical [41–43]. Longer training and overcompliance are
challenges caused by the vast amount of data to be handled
(Deif et al. [12, 44]). Unnecessary features should be re-
moved from the data to avoid situations like this. For feature
selection [7], BPSO is used, where BPSO is the binary form
of PSO [45, 46]. )e BPSO algorithm process was sum-
marized in Figure 7 and described below:

Step (1): Equation (4) is used to update the particle
velocity in the swarm.

Histopathological 
images of OSCC

Image resizing

Image Normalization 

VGG16

Calculate precision , recall and the accuracy
of each classifier model

Images
Enhancement 

Performance
Analysis 

AlexNet ResNet50 Inception V3 

Binary particle swarm optimization (BPSO) 

Feature
Extraction

Feature
Selection

Classification XGBoost KNN ANN

Figure 2: )e proposed model for realizing AIoMT in medical systems.

Table 2: )e input size for each DL architecture [29].

Model Input size (pixels)
VGG16 224× 224
AlexNet 227× 227
ResNet50 224× 224
Inception V3 299× 299
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Histopathological
Image

224x224x64
Block 1

Convolution
Layer+ReLU

Maxpooling
layer

Fully Connected
Layer Output

112x112x128
Block 2

56x56x256
Block 3

28x28x512
Block 4

14x14x512
Block 5

4096

39

Figure 3: Schematic illustration of VGG16 architecture.

Input

Conv 1
Conv 2

Conv 3 Conv 4 Conv 5

FC-6 FC-7 FC-8
Output

4096 4096 39

13x13x384

27x27x256
55x55x96

227x227x3

Convolution
Layer

Fully Connected
Layer Output

Histopathological
Image

Figure 4: Schematic illustration of AlexNet architecture.

Histopathological
images

Convolution

Pooling Output

Addition

39

Figure 5: Schematic illustration of ResNet50 architecture.
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v
d
i (t + 1) � wv

d
i (t) + c1r1 pbestdi (t) − x

d
i (t)􏼐 􏼑

+ c2r2 pbestd(t) − x
d
i (t)􏼐 􏼑.

(4)

Step (2): Equations (5) and (6) are used to modify the
particle’s location.

S v
d
i (t + 1)􏼐 􏼑 �

1
1 + exp −v

d
i (t + 1)􏼐 􏼑

, (5)

x
d
i (t + 1) �

1, ifrand< S v
d
i (t + 1)􏼐 􏼑.

0, otherwise.

⎧⎨

⎩ (6)

Each swarm particle represents a potential solution. A
0/1 (1x feature number) matrix is one conceivable
option, with each column value produced at random.
Selecting the column numbers in the feature matrix
with 1 yields a workable solution (a particle).)e fitness
value of particles in a swarm was calculated using the
kNN classifier error rate. )e particle with the best
objective function value in the swarm is considered as
gbestin the first iteration.
Step (3): )e particle with the highest aim function
value is allocated in subsequent iterations (equation
(7)).

Pbest
id(t + 1) � xi(t + 1), ifF xi(t + 1)( 􏼁<F pbesti(t)( 􏼁.

pbesti(t), otherwise.
􏼨

(7)

If pbest’s aim function value is higher than gbest’s, pbest is
assigned to Gbest (equation (8)).

gbest(t + 1) �
pbesti, (t + 1), ifF pbesti(t + 1)( 􏼁<F(gbest(t)),

gbest(t), otherwise,
􏼨

(8)

where x is the solution, pbest denotes the personal best, Bbest
denotes the global best, F(.) denotes the fitness function, and
t denotes the number of iterations.

)is process is repeated for T iterations, and the algo-
rithm returns the best global solution as output [7].

3.2.4. Classification Stage. Xtreme gradient boosting
(XGBoost) achieves the classification model for dis-
tinguishing between histopathological images for NEOR and
OSCC. )e findings of XGBoost are compared to those of
classic machine learning techniques like artificial neural
networks (ANN) and Random Forest (RF) [47].

3.2.5. Assessment of the Suggested Methodology’s Classifica-
tion Performance. )e suggested methodology is evaluated

Histopathological
images

Convolution

Avgpool

Maxpool
Concat

Output
So�max

Fully Connected

Dropout

39

Figure 6: Inception V3 architecture schematic.

Start

Initialize PSO parameters
(M, N_Iter , C1,C2,r1,r2 and w)

Select features

Calculate fitness function 

Calculate and
evaluate
classifier
accuracy

Calculate local and global
best position

(pbest and gbest) 

Update velocity and position

Maximum iteration

No

Selected Best
featuresYes

Figure 7: BPSO approach for feature selection.
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by calculating sensitivity, precision, and accuracy for clas-
sifiers.)e following formula is used to calculate these terms:

Sensitivity �
TP

TP + FN
× 100%,

Precision �
TP

TP + FP
× 100%,

Accuracy �
TP + TN

TP + TN + FP + FN
× 100%.

(9)

)enumber of correctly classified chest disease images in
the normal and OSCC classes, respectively, is represented by
TP (True Positive) and TN (True Negative).)e numbers FN
(False Negative) and FP (False Positive) in the normal and
OSCC classes, respectively, show the number of misclassified
histopathological images.

4. Experimental Setup and Setting

)e layers of the all deep models would have been trainable
true during the training phase. Softmax was used as the ac-
tivation function of the final CNN layer, andMSEwas used as a
loss function. )e early halting approach was employed, with
patience set at 5 and the minimal loss change set to 0.0001.)e
SGD optimizer was employed in all deep models with a
learning rate of 0.001. )e size of the mini-batch is 32.

Histopathological images were divided into two groups
in the classification stage: 80 percent for training the clas-
sifier models and 20 percent for testing, with 10-fold cross-
validation. All experiments were run on Google Colab [48]
with GPU support. )e whole code was written in Python
3.10.1 [49] using Keras version 2.7.0 [50].

)e algorithms implemented in this research are BPSO,
XGBoost, ANN, and RF, taking into consideration the fact
that these algorithms are varying in the hyperparameters,
and the settings are shown in [51].

5. Results

In the first step, to better understand the impact of stain
normalization approaches on classification performance, all

histopathology images in the dataset were stain-normalized
using the Reinhard technique. )e Reinhard stain nor-
malization approach used in this study is illustrated in
Figure 8. In this diagram, (a) represents the original his-
topathological image used for the Reinhard technique, (b)
represents the target image to be transferred (the techniques
aim to normalize the colors in the target images to those of
the original), and (c) represents the result of using the
Reinhard technique.

In addition, we employed the probability density
function (PDF) to investigate the effect of the Reinhard
normalization method on histopathological images by
comparing the postnormalization image PDF with the
prenormalization image PDF. Figure 9(a) is the original
PDF. )e resultant density functions of the pixels in 3-
channel RGB show that the target image’s distribution is
substantially skewed to the left (Figure 9(b)). Figure 9(c)
shows that, after normalization, the probability distribution
of the three channels resembles that of the original image.

)en, four deep models were used to extract features
from the images: VGG16, AlexNet, ResNet50, and Inception
V3. Figure 10 shows the total number of features got from
each deep model. It can be seen in Table 3 that the smallest
number of extract features was from the AlexNet model and
numerous extract features were got from the ResNet50
model. Meanwhile VGG16 and Inception V3 extracted the
same number of features.

Two experiments were carried out to see if the proposed
feature selection strategy could increase the classification
model’s accuracy. In the first experiment, to train the
classifier, all features were used without applying the feature
selection technique. )e second experiment was performed
by employing the proposed feature selection method, that is,
BPSO, to eliminate the undesired redundant and unrelated
features by looking for the best features used to train the
classifier. )e performance values obtained for the XGBoost
classifier using all extracted features and selected features are
given in Figure 11.

)e findings of the experiments show that when using
the selected technique on features extracted using VGG16
and Inception V3, the classification performance of the
XGBoost model was reduced but not when applying the

(a) (b) (c)

Figure 8: Samples of original and normalized histopathological images: (a) original image; (b) target image; and (c) Reinhard normalized.
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selected approach on features derived using AlexNet.
Meanwhile the XGBoost model delivered outstanding re-
sults when using the selected feature approach on features
that were extracted using ResNet50.

To interpret the performance of XGBoost when using the
features selection technique, Figure 12 was developed to
illustrate the relation between the numbers of extracted
features from all deep models; the number of features was
selected using BPSO and Delta value (δ) that indicates
difference between classification accuracies for XGBoost
before and after applying BPSO.

It is seen that the highest extracted number belongs to
the ResNet50 model, while VGG16 and Inception V3 have

about half extracted number compared to the ResNet50
model. )e lowest extracted number was got from AlexNet.

It is concluded that there is a relationship between the
number of features extracted and the feature selection ap-
proach, where numerous features increase the ability of
BPSO to select the best features and then select from fewer
features. )erefore, we can interpret that the accuracy of
XGBoost increased (δ �11%) when applying BPSO on
features that were extracted from ResNet50 because the
BPSO selects the best features from numerous features
(4099) compared to features extracted from VGG16 (2051)
and Inception V3 (2069), while the XGBoost accuracy has
not changed (δ � 0).
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Figure 9: Samples of the probability density function (PDF) for (a) original histopathological image, (b) target histopathological image, and
(c) Reinhard normalized.
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Figure 13 illustrates a comparison of the BPSO conver-
gence curves algorithm at the feature selection stage. It is
important to note that the fitness is the average of 20 runs.)e
greater the performance, the lower the values of the best fitness,
worst fitness, and mean fitness. It is observed that the features
obtained from VGG16 and Inception V3 models achieved the
lowest fitness value for BPSO, while the best performance is
given by the feature group obtained by using ResNet50.

Because the XGBoost classifier’s histopathological image
classification results with each features extraction method are
the average accuracy got from 20 independent runs, a two-
sample t-test with a 95 percent confidence level was used to
see if the classification performance of the proposed ResNet50
with BPSO was significantly better (p value <0.05) than those
of the other methods on histopathological images.

To assess the XGBoost classifier’s classification perfor-
mance, artificial neural network (ANN) and Random Forest
are two more traditional machine learning techniques that
are compared to the outcomes (RF). )e classifier models
were trained using features taken from the ResNet50 model
and then fed to the classifier by best-selected features using
BPSO, based on previous results. A confusion matrix for all
classifiers is shown in Figure 14.

It is clear from the confusion matrix that the highest TP
results were got from the XGBoost classifier, where 184 of
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Table 3: Performance comparison for XGBoost classifier with
another state-of-the-art traditional machine learning algorithm.

Classifier
name

Overall accuracy
(%)

Sensitivity
(%)

Precision
(%)

XGBoost 96.3 98.9 96.3
RF 93.1 97.8 93.3
ANN 94.1 97.8 94.7
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186 histopathological images with OSCC were detected
correctly, while two were diagnosed as NEOR. On other
hand, the classifier had 7 histopathological images with
NEOR. )e XGBoost classifier has misclassified 7 normal
histopathological images, which is the lowest number of FP
compared to other classifiers.

According to the results shown in the confusion matrix,
overall accuracy, sensitivity, and precision were calculated,
as shown in Table 3. )e XGBoost model delivered out-
standing results compared to the other classifiers. It has
consistently high accuracy, sensitivity, and precision (96.3%,
98.9%, and 96.3% respectively) across all models. )is shows
that this model was the most successful in learning and
extracting essential features from the training data.

Finally, the proposed work investigates whether data
normalization techniques can improve the accuracy of clas-
sification models or not, where all models were trained on
nonnormalized histopathological images and the classification
performance is illustrated in Table 4. It is seen that the accuracy
was decreased when using histopathological images without
applying the Reinhard approach. )ese effective results show
that Reinhard stain normalization can improve the classifier
performance and can produce satisfactory results.

For further evaluation of the proposed approach, it was
compared with several previous research works shown in
Table 5, which shows that the proposed method achieves the
highest accuracy of 96.3% to classify different classes of
histopathological images.
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Figure 14: Confusion matrix of classification results for all classifiers.

Table 4: Accuracy performance for the classifier with non-stain-normalized image and stain-normalized image

Classifier name Without stain normalization (%) With stain normalization (%)
XGBoost 95.1 96.3
RF 91.3 93.1
ANN 94.2 94.1
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6. Conclusion

In this study, traditional classification algorithms are used by
extracting features from the four CNN models (VGG16,
AlexNet, ResNet50, and Inception V3) and selecting the best
features using the BPSO algorithm.)e features extracted with
Inception V3 and selected with BPSO improved the classifi-
cation performance and contributed positively to the results. In
addition, the effects of stain normalization procedures were
investigated and compared with nonnormalized histological
images.)e results showed that the XGBoostmodel performed
better when the Reinhard technique was used. )is break-
through achievement has the potential to be a precious and
rapid diagnostic tool thatmight savemany people who die each
year because of delayed or incorrect diagnoses.
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