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Tau proteins, which stabilize the structure and regulate the 
dynamics of microtubules, also play important roles in axonal 
transport and signal transduction. Tau proteins are missorted, 
aggregated, and found as tau inclusions under many 
pathological conditions associated with neurodegenerative 
disorders, which are collectively known as tauopathies. In the 
adult human brain, tau protein can be expressed in six 
isoforms due to alternative splicing. The aberrant splicing of 
tau pre-mRNA has been consistently identified in a variety of 
tauopathies but is not restricted to these types of disorders as 
it is also present in patients with non-tau proteinopathies and 
RNAopathies. Tau mis-splicing results in isoform-specific 
impairments in normal physiological function and enhanced 
recruitment of excessive tau isoforms into the pathological 
process. A variety of factors are involved in the complex set of 
mechanisms underlying tau mis-splicing, but variation in the 
cis-element, methylation of the MAPT gene, genetic 
polymorphisms, the quantity and activity of spliceosomal 
proteins, and the patency of other RNA-binding proteins, are 
related to aberrant splicing. Currently, there is a lack of 
appropriate therapeutic strategies aimed at correcting the tau 
mis-splicing process in patients with neurodegenerative 
disorders. Thus, a more comprehensive understanding of the 
relationship between tau mis-splicing and neurodegenerative 
disorders will aid in the development of efficient therapeutic 
strategies for patients with a tauopathy or other, related 
neurodegenerative disorders. [BMB Reports 2016; 49(8): 
405-413]

INTRODUCTION

Tau is a microtubule-associated protein that is abundant in the 

brain, particularly in neurons. This protein is primarily located 
in axons, where it binds to microtubules to stabilize these 
structures and support axonal transport (1). In pathological 
conditions, the tau protein commonly aggregates to form 
neurofibrillary tangles – as seen in Alzheimer’s disease (AD) – 
pick bodies in Pick’s disease (PiD), and tau inclusions, such as 
in corticobasal degeneration (CBD), progressive supranuclear 
palsy (PSP), argyrophilic grain disease (AGD), frontotemporal 
dementia (FTD), and myotonic dystrophy type 1 (DM1) (2-6). 
These disorders are collectively known as tauopathies due to 
their distinct tau pathologies, but the most advanced 
understanding of the mechanisms underlying tau pathology 
pertains to AD. 

Post-translational modifications, such as hyperphosphory-
lation, acetylation, and truncation result in tau proteins losing 
their binding affinity with the microtubule, which, in turn, 
allows them to become self-aggregated (7). Subsequently, the 
instability of the neuronal cytoskeleton due to a lack of bound 
tau proteins in conjunction with the toxicity of tau oligomers 
leads to neurodegeneration (8). Furthermore, this process can 
spread into adjacent or connected neurons via synaptic 
connections (9), which explains the characteristic progressive 
pattern of tau pathologies (6). Therefore, a majority of 
therapeutic strategies aimed at treating tauopathies target 
reductions in tau toxicity at the protein level via decreased 
phosphorylation, enhanced clearance, and inhibition of the 
aggregation of tau proteins (10). 

In contrast, therapies aimed at altering tau transcription are 
less common. Based on the alternative splicing of exons 2, 3, 
and/or 10 in the MAPT gene, tau proteins may be present in 
six isoforms in the human brain (11). Furthermore, the 
appearance of tau isoforms differs according to age and brain 
region (11), which is important with respect to normal brain 
development and physiological function. Genetic studies 
investigating the mis-splicing of tau pre-mRNA have shown 
that it plays a role in the pathogenesis of PSP, CBD, PiD, AGD, 
and FTD (12, 13) but progress in terms of understanding this 
process remains limited and further investigation is required. 
Thus, the present paper aimed to review recent knowledge 
regarding tau RNA splicing and examine the role of this 
process in neurodegenerative disorders.
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Fig. 1. Tau protein isoforms in the human brain. Six tau isoforms 
are present in the human brain through different combinations of 
the splicing of exons 2, 3, and/or 10. The aspects of the 
N-terminal projection domain, N1 (green) and N2 (blue), are 
produced from exons 2 and 3, respectively. Exon 10 encodes the 
second aspect of the microtubule-binding repeat domain, R2 (red). 
Depending on the presence of the R2 domain, tau proteins 
become either 3R or 4R tau.

TAU ALTERNATIVE SPLICING AND ISOFORM-SPECIFIC 
FUNCTIONS 

The tau protein is encoded from the MAPT gene, which is 
located at chromosome 17q21 (14). There are 16 exons in the 
MAPT gene and exons 2, 3, 4A, 6, 8, and 10 can be 
alternatively spliced (11). Exons 4A, 6, and 8 are not 
transcribed in the brain; thus, six isoforms are produced in the 
brain through different combinations of the splicing of exons 
2, 3, and/or 10 (Fig. 1). Exons 2 and 3 are translated into the 
N1 and N2 aspects of the N-terminal projection domain, 
respectively (15), which play important roles in signal 
transduction and membrane interactions (16, 17). The encoding 
region of exon 10 is the second aspect of the C-terminal 
microtubule-binding repeat domain, R2, and the resulting tau 
proteins become either 3R or 4R tau, which differ in the 
number of repeats depending on the splicing of exon 10 (15). 
Because the microtubule-binding repeat domain of tau is its 
binding site to a microtubule (18), it is essential for the ability 
of the tau protein to maintain the stability, and regulate the 
dynamics, of microtubules (19), as well as to support axonal 
transport (1). 

The difference in the number of repeats determines the 
strength of the binding of the tau protein to microtubules; 4R 
tau binds to microtubules more tightly than 3R tau, which is 
better for stabilizing the microtubule (20), but the extra repeat 
makes it more likely that 4R tau will aggregate (21, 22). 
Additionally, the dynamics of both retrograde and anterograde 
axonal transport are higher for the 3R isoform than the 4R 
isoform (23). The tau isoform-dependent differences in 
microtubule-binding capacity and axonal transport may 
explain the benefits of changes in tau isoforms during various 
developmental stages; 3R tau is the main isoform present in 
the fetal stage, during which the dynamic nature of the axon is 
an important requirement for synaptogenesis and establishing 
neural pathways (24). On the other hand, the overall ratio of 

3R to 4R in the mature human brain is maintained at 1:1 (11) 
even though the relative amounts of these isoforms vary 
according to brain region and cell type. For example, granule 
cells in the hippocampus only express the 3R tau isoform (24, 
25) and this difference is thought to provide the cells in this 
region with a particular resistance or susceptibility to specified 
tauopathies (25-27). 

Alternative splicing of the tau protein can also occur at 
exons 2 and 3 to produce the 0N, 1N, and 2N tau isoforms, 
which differ in the number of amino-terminal (N-terminal) 
inserts. Interestingly, exon 3 is spliced only when exon 2 is 
present (11, 13); thus, the 1N isoform is produced from a 
combination of exon 2＋/exon3− but not from exon2−/exon 
3＋. The relative amounts of the N-terminal isoforms are 
regulated in the human adult brain such that the 2N isoform is 
the least expressed while the 1N isoform is the most abundant 
(28). This difference does not seem to have a direct impact on 
microtubule assembly (15) but it was recently suggested that 
the N-terminal projection domain plays an active role during 
the regulation of microtubule stabilization (29). When the tau 
protein is truncated at Gln124 in the N-terminal due to the 
deletion of repeat inserts, there is an increase in its binding 
affinity to the microtubule compared to the full-length tau 
protein (29). 

The 1N isoform, which contains an N1 insert from exon 2, 
enhances the self-aggregating tendency of the tau protein (30) 
while the N2 insert from exon 3, which has an additional 
N-terminal domain, attenuates the aggregation-promoting 
effects of the N1 insert (30). The N-terminal repeat inserts 
interact with various molecules in the human brain that are 
involved in synaptic signaling, energy metabolism, and 
cytoskeletal function. When the interaction proteins were 
analyzed according to the individual N-terminal inserts using 
bioinformatics with biological process enrichment, the N2 
insert was shown to interact with several molecules related to 
neurodegenerative disorders including 14-3-3 zeta, ApoA1, 
ApoE, synaptotagmin, and syntaxin 1B (31). These findings 
suggest that the N0, N1, and N2 isoforms behave differently 
under different physiological and pathological conditions; 
thus, it is possible that the mis-splicing of exons 2 and 3 
contributes to various tauopathies. However, direct evidence 
demonstrating this relationship is lacking and more intensive 
studies are needed to further elucidate this issue. 

MECHANISMS UNDERLYING THE SPLICING 
REGULATION OF THE TAU TRANSCRIPT

The assembly of the spliceosome, which is a multi-protein 
complex to the cis-acting pre-mRNA sequence, is an essential 
step in the splicing process (32). The cis-acting element is a 
short and diverse sequence that can be located in either the 
exon or intron; its influence differs depending on location and 
sequence. Based on their effects on splicing, cis-elements are 
classified as splicing enhancers, silencers, or modulators (32). 
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cis-elements Sequence Effect on 
E10 

SC35-like enhancer E10, TGCAGATA Inclusion
Polypurine enhancer 

(PPE)
E10, AAGAAGCTG Inclusion

A/C-rich enhancer 
(ACE)

E10, AGCAACGTCCAGTCC Inclusion

Exonic splicing 
silencer (ESS)

E10, 
TCAAAGGATAATATCAAA

Exclusion

Exonic splicing 
enhancer (ESE)

E10, 
CACGTCCCGGGAGGCGGC

Inclusion

Intronic splicing 
silencer (ISS)

I10, tcacacgt Exclusion

Intronic splicing 
modulator (ISM)

I10, cccatgcg

SR proteins 　
Effect on 

E10 

SRSF1: ASF, SF2, 
SRp30a 

Inclusion

SRSF2: SC35, 
PR264, SRp30b 

Inclusion

SRSF3: SRp20 Exclusion
SRSF4: SRp75 Exclusion
SRSF6: SRp55, B52 Exclusion
SRSF7: SRSF3 9G8 Exclusion
SRSF9: SRp30c Inclusion
SRSF11: P54, SRp54 Exclusion

Other RNA binding 
proteins 　

Effect on 
E10 

RBM4 Inclusion
Tra2 Inclusion
DDX5 (RNA helicase p68) Inclusion
hnRNPE2 and hnRNPE3 Inclusion
hnRNPG Exclusion
SWAP Exclusion
CELF2 Exclusion
CELF3, TNRC4 Inclusion
PTBP2 Inclusion
PSF Exclusion

miRNAs Target SF Effect on 
E10 

miR-9 PTBP1 Exclusion
miR-124 PTBP1 Exclusion
miR-132 PTBP2 Exclusion

Kinases Target SF Effect on 
E10 

CLK2 Exclusion
PKA 9G8 Inclusion

Table 1. Factors regulating the splicing of exon 10 of MAPT pre-mRNA

Kinases Target SF Effect on 
E10 

PKA SC35 Inclusion
DYRK1 SC35 Exclusion
DYRK1 9G8 *Inclusion
DYRK1 ASF Exclusion
DYRK1 SRP55 Exclusion
GSK-3 SC35 Exclusion

DYRK1, dual-specificity tyrosine-phosphorylated and regulated kinase 
1A; E, exon; I, intron; PTBP2, polypyrimidine tract-binding protein 2; 
RBM4, RNA-biding motif protein 4; SF, splicing factors; PKA, cyclic 
AMP-dependent protein kinase; PSF, polypyrimidine tract binding 
protein associated splicing factor; SWAP, suppressor of white apricot 
protein.
*Variable depending on cell type (45). 
Summarized from the literature (12, 13, 33-48).

Table 1. Continued

The MAPT gene mutations that are close to, or within, the 
cis-acting elements result in FTD with Parkinsonism linked to 
chromosome 17 (FTDP-17) and other tauopathies associated 
with mis-splicing (12). Many serine- and arginine-rich (SR) 
proteins possess a specific affinity for the cis-element of the 
MAPT gene and regulate the splicing of exon 10 (33) (Table 1). 
In addition to these proteins, several non-SR proteins also play 
a role in the splicing of exon 10. For example, RNA-binding 
motif protein 4 (RBM4) (34), Tra2 (35), RNA helicase p68 
(36), heterogeneous nuclear (hn) RNP E2 and E3 (37, 38), and 
CUG-binding protein (CELF) (39, 40) are known to be involved. 
The variants that depend on the cis-element and splicing factors 
likely act cooperatively to determine the efficacy and direction 
of the splicing of exon 10 in the MAPT gene. 

The regulation of alternative splicing processes is further 
complicated by variables arising from the altered expression 
and activity of splicing factors following modifications at the 
transcriptional, post-transcriptional, and post-translational levels. 
miRNA-132 is known to regulate the splicing of exon 10 via 
the inhibition of the expression of the PTBP2 protein, which is 
a splicing factor (41). Additionally, various kinases, including 
cyclic AMP-dependent protein kinase (PKA) (42, 43), dual- 
specificity tyrosine-phosphorylated and regulated kinase 1A 
(DYRK1) (44-47), and GSK-3 (48), regulate the activities of 
splicing proteins via phosphorylation and, thereby, exon 10 
splicing. This issue has been well described in a recent review 
article (33). From an epigenetic point of view, the regulation of 
splicing by DNA methylation may also be involved in this 
process (26). The speed of RNA polymerase II during the 
elongation and reposition of splicing factors to alternative 
exons by heterochromatin protein 1 (HP1) is controlled by 
DNA methylation (49). Considering that a CpG island is 
present in exon 9, it is the possible that DNA methylation 
plays a role in regulating the alternative splicing of the MAPT 
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Fig. 2. Causative MAPT gene mutations associated with tauopathies.
The differential impacts of the causative MAPT gene mutations on 
tau-isoform specific pathologies can be demonstrated in three 
ways: 1) tau mis-splicing that increases either 3R tau (green line 
or arrowhead) or 2) 4R tau isoforms (blue line) and 3) 4R tau 
isoform-distinct pathologies without mis-splicing (blue dotted line).

gene (26) but there is a lack of studies investigating this issue.
Relative to the processes associated with the splicing of 

exon 10, the regulatory mechanisms underlying the alternative 
splicing of exons 2 and 3 are less clear. Several spliceosomal 
proteins involved in exon 10 splicing also regulate exon 3 
splicing. For example, SRSF1, SRSF2, SRSF3, SRSF9, SWAP, 
Tra2, and Nova 1 decrease the inclusion of exon 3 while 
SRSF4 and SFSF6 enhance its inclusion (13). According to the 
linkage disequilibrium of nucleotide polymorphisms, the 
MAPT gene has two major haplotypes, H1 and H2, and the 
alternative splicing processes exhibit different patterns 
depending on haplotype. The H2 haplotype of the MAPT gene 
tends to include the exon 3 (27, 50). Furthermore, the 
transcriptional efficacy and DNA methylation patterns of the 
H1 and H2 haplotypes, which are described in detail below, 
also differ. In conjunction, the differential roles of the 
haplotypes are thought to contribute to haplotype-dependent 
tauopathies (51, 52). 

TAU MIS-SPLICING AND NEURODEGENERATIVE 
DISORDERS

Genetic mutations in the MAPT gene
Genetic mutations in the MAPT gene can result in PSP, CBD, 
PiD, and FTDP-17. These pathogenic mutations of the MAPT 
gene are primarily located within exons 9-13 (Fig. 2) but are 
not limited to point missense and deletional mutations in 
exons. In fact, silent, and even intronic, mutations can induce 
a tauopathy (12). The boundary of exon10/intron 10 includes 
an RNA sequence that forms a stem-loop due to self- 
complementary bindings at the stem and this region is a hot 
spot for MAPT gene mutations. Most of the pathogenic 
intronic mutations are clustered in the stem-loop where 
mutations induce the mis-splicing of exon 10 by decreasing 

stem-loop stability, which in turn increases the inclusion of 
exon 10. Subsequently, the altered RNA structure enhances 
the accessibility of the spliceosome to this region and results in 
mis-splicing (36, 53). Ultimately, these intronic mutations 
clinically manifest as FTD in most cases, via increases in either 
the 3R or 4R tau isoform; IVS9-10 G ＞ T, IVS10＋3 G ＞ A, 
IVS10＋11 T ＞ C, IVS10＋12 C ＞ T, IVS10＋13 A ＞ G, 
IVS10＋14 C ＞ T, IVS10＋15 A ＞ C, and IVS10＋16 C ＞ T 
tend to increase 4R tau (53-58) while IVS9-15 T ＞ C, 
IVS10＋4 A ＞ C, and IVS10＋19 C ＞ G inhibit the inclusion 
of exon 10 and increase 3R tau (59, 60). L284L (CTT to CTC), 
N296N (AAT to AAC), and S305S (AGT to AGC) are silent 
point mutations that result in tauopathy, FTD, or PSP (61-63). 
Their location is close to the exon 10/intron 10 interface and 
increases the 4R tau isoform by enhancing the inclusion of 
exon 10. The mechanisms underlying the neurodegeneration 
caused by perturbations of the 3R-4R tau balance remain 
elusive but the isoform-dependent differences in the 
propensity for aggregation are thought to behave patho-
logically when the 3R:4R balance is disordered (64). 

Changes in the tau protein sequence due to exonic missense 
and deletion mutations do not always cause alterations in the 
ratio of the 3R and 4R tau isoforms. Instead, amino acid 
substitutions alter the tau structure into pathological forms 
(65). Interestingly, despite the fact that exon 10 is not 
mis-spliced, distinctive isoform-specific pathologies have been 
noted. R5H (66), R5L (67), I260V (68), P301L (57), G303V 
(69), and K317N (70) result in an increased propensity for 
aggregation and filament formation of 4R tau proteins without 
altering the 3R:4R tau ratio. The dominance of 4R tau 
isoform-specific pathologies in the absence of mis-splicing 
suggests that the 4R tau isoform is susceptible to becoming 
pathological following a mutation of the MAPT gene. 

It is rare that pathogenic MAPT gene mutations will lead to 
the mis-splicing of exons 2 and 3. The E342V mutation in 
exon 12 causes an increased splicing of exon 10, but the 
reduced inclusion of exons 2 and 3 (71), and the tau 
inclusions in the R5L mutation of exon 1, primarily consist of 
4R tau with either no insert or the N1 insert (0N4R or 1N4R) 
(67). The possible role of an altered number of N-terminal 
inserts in tauopathies can be considered based on the 
biological effects of N-terminal inserts in modifying tau 
aggregation and signaling pathways (16, 17, 30, 31). However, 
further studies are needed to clarify this issue.

Without genetic mutations in the MAPT gene
Isoform-specific tau pathologies are also observed in the 
absence of MAPT gene mutations in sporadic cases of PSP, 
CBD, PiD, AGD (4R tau), PiB (3R tau), and FTD (mixture of 3R 
and/or 4R tau). Overt tau mis-splicing can occur in these 
sporadic cases (72) and it has been suggested that the 
preference of haplotype for specified splicing is the 
mechanism underlying the alterations in alternative splicing 
(12). The H1 haplotype, particularly the H1c sub-haplotype, is 



 Tau mis-splicing and neurodegenerative disorders
Sun Ah Park, et al.

409http://bmbreports.org BMB Reports

thought to increase the risk of PSP and CBD by increasing 
exon 10 splicing (73-76). However, a recent study that 
included a large sample size of brains found opposite results 
for the H1 haplotype but a protective influence of the H2 
haplotype against PSP, CBD, and PD via increases in exon 3 
(27), as has been previously suggested (50). Various 
combinations of haplotype-dependent genetic variations are 
known to modulate DNA methylation (77), transcription, and 
mRNA splicing (75, 78). Thus, the complicated interactions of 
these factors are thought to cooperatively determine the 
direction of tau exon splicing. 

Differences in the expression and activity of spliceosomal 
proteins result in aberrant splicing and contribute to the 
manifestation of a tauopathy. In PSP patients, increases in 
SRSF2 and Tra2 in the locus coeruleus are associated with 
increases in the 4R tau isoform (79). And the decreases of 
miRNA-132 thereby increase of PTBP2 was shown to enhance 
4R tau pathology in the PSP brain (41). The pathogenic role of 
tau mis-splicing in AD is controversial and has been previously 
reviewed (12), but recent reports have raised the possibility 
that its contribution to AD is due to increased DYRK2 activity 
in the brain, which continuously increases 3R tau expression 
and tau pathology (44). 

Recent, accumulating evidence suggests the there is a 
discriminative relationship between tau isoforms and 
neurodegenerative disorders, which means that certain tau 
isoforms are more vulnerable to specific pathogenic factors and 
explains why there are isoform-specific pathologies and regional 
selectivity in tauopathies (27, 80). The relative ratio of tau 
isoforms varies across cell types and brain regions (27, 80) and 
specified cells and/or regions that contain greater amounts of 
specified tau isoforms tend to be more easily affected by 
corresponding disorders (7, 81). For example, the quantity of 
the 4R tau isoform is higher in the globus pallidum, which may 
explain why this region is particularly affected by the 
pathological processes of PSP (81). Likewise, granule cells in the 
hippocampus exclusively express 3R tau isoforms and the 3R 
tau-positive pick body is most abundant in PiD patients (25).

Tau mRNA mis-splicing may develop as a co-phenomenon 
of widespread RNA dysregulation during neurodegenerative 
processes. As a prime example, 4R tau aggregates have been 
identified in the striatum and cortex of Huntington’s disease 
(HD) patients (82) while 0N3R tau inclusions are found in 
DM1 patients (83, 84). DM1 and HD are caused by CTG 
repeats in the DMPK gene (85) and CAG repeats in the HTT 
gene (86), respectively. In these disorders, tau mRNA 
mis-splicing is due to impairments in normal alternative 
splicing that occur subsequent to the sequestration of splicing 
factors by the abnormally expanded CUG transcripts (82, 87). 
Tau mis-splicing in conjunction with isoform-specific tau 
pathologies is thought to induce pathogenic cognitive deficits 
and behavioral changes (82, 84). The toxic aggregates of fused 
in sarcoma (FUS) and TAR DNA-binding protein (TDP-43) in 
the cytoplasm are observed in patients with amyotrophic 

lateral sclerosis (ALS) and FTD (88, 89). Furthermore, there are 
mutations in the corresponding genes, FUS and TARDBP, 
respectively, in familial ALS and FTD (90, 91), which 
demonstrates the pathogenic roles of FUS and TDP-43 in 
neurodegenerative disorders. FUS and TDP-43 are nuclear 
proteins involved in RNA processes such as transcription and 
the splicing of multiple genes (92, 93). In pathological 
conditions, the inclusion of FUS and TDP-43 as RNA 
processing proteins results in impaired physiological processes. 
The altered splicing of exons 3 and 10 in tau pre-mRNA has 
been observed in FUS-related proteinopathies (94) and it is 
thought that decreases in the propensity of FUS to directly 
bind to tau pre-mRNA alters the regulation of the splicing of 
exons 3 and 10 (94). In contrast, the TDP-43 proteinopathy 
does not impair tau pre-mRNA alternative splicing (95) despite 
the extensive RNA mis-processing exerted by the aggregation 
of TDP-43 proteins, which hinders its normal function as an 
RNA binding protein (96). Thus, the perturbation of tau 
pre-mRNA processing by neurodegenerative disorders is 
determined by the types of proteinopathies and RNAopathies. 
Future investigations will provide a clearer understanding of 
the relationship between tau mis-splicing and individual 
neurodegenerative disorders. 

CONCLUSIONS

The pathogenic contributions of tau mis-splicing are likely 
highly correlated with the manifestation of neurodegenerative 
disorders via tauopathies as well as non-tau proteinopathies. 
This type of mis-splicing leads to an imbalance of tau isoforms 
that impairs isoform-specific, normal physiological function 
and enhances vulnerability to pathological processes. Current 
understanding of the relationship between tau mis-splicing and 
neurodegenerative disorders is originated from cases of MAPT 
gene mutations, which widened existing knowledge about the 
mechanisms underlying tau splicing. Several trials corrected 
exon 10 mis-splicing in MAPT gene mutations using small 
molecules (97), modified antisense oligonucleotides (98), or 
spliceosome-mediated RNA trans-splicing (99) but none of 
these studies progressed to clinical trials. 

A variety of complex factors are involved in the regulation of 
the alternative splicing of tau. Differences in the integrity of 
the cis-element, methylation of the MAPT gene, genetic 
polymorphisms, quantity and activity of spliceosomal proteins, 
and patency of other RNA binding proteins appear to 
cooperatively impact alternative tau splicing. In sporadic cases 
of tauopathy that present with tau-isoform specific pathologies, 
these variables operate together to influence tau mis-splicing; 
thus, therapeutic strategies should be much more delicately 
designed. Current understanding of tau mis-splicing remains 
limited, especially in terms of its pathological role in non-tau 
proteinopathies, RNAopathies, and sporadic cases. Further 
studies should be performed to develop efficient therapeutic 
strategies for the treatment of these disorders. 
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