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Abstract: A variety of malignant cancers affect the global human population. Although a wide variety
of approaches to cancer treatment have been studied and used clinically (surgery, radiotherapy,
chemotherapy, and immunotherapy), the toxic side effects of cancer therapies have a negative impact
on patients and impede progress in conquering cancer. Plant metabolites are emerging as new leads
for anti-cancer drug development. This review summarizes these plant metabolites with regard to
their structures and the types of cancer against which they show activity, organized by the organ or
tissues in which each cancer forms. This information will be helpful for understanding the current
state of knowledge of the anti-cancer effects of various plant metabolites against major types of cancer
for the further development of novel anti-cancer drugs.
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1. Introduction

Cancer is characterized by uncontrolled/unlimited cell growth, which can result in death [1].
Although a variety of methods to overcome and treat cancers have been researched, the number of
cancer patients continues to increase each year. Furthermore, an estimated 15.5 million people in
the world will become cancer patients by 2030, and 11.5 million of these cases are expected to be
fatal [2]. Therefore, cancer is the leading cause of mortality and morbidity worldwide [3]. Cancers
have been reported to be caused by the dysregulation of key cellular processes, such as growth
signaling, anti-apoptotic signaling, immune response, gene stability, and regulation of the stromal
microenvironment [1,4]. The treatment of cancer has been focused on re-regulating these cellular
functions. Up to the present date, numerous clinical trials have investigated potential cures for
cancer via radiation, chemotherapy, antibody treatment, and immunotherapy [5]. Radiation and
chemotherapy have severe side effects due to their cytotoxicity to normal cells [3]. Antibody treatment
and immunotherapy show highly specific cancer targeting ability, but have a limited target range
and can be very expensive [5]. Additionally, many types of cancer tend to relapse and acquire
resistance after treatment [3,5]. Currently, combination therapies involving several drugs or therapies
are being used to attempt to overcome the limitations and the drawbacks of individual therapies [3,5].
Furthermore, to reduce the side effects of anti-cancer drugs and to discover more effective drugs,
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new approaches have been developed to identify novel molecules with anti-cancer activity from new
sources [3].

Plant species have been used in medical treatment for millennia [3,4]. Additionally, plant-derived
metabolites have been reported to be useful for a variety of therapeutic purposes and biotechnological
applications [6]. Plant metabolites exhibit a wide range of biological functions, including anti-cancer,
analgesic, anti-inflammation, and anti-microbial activities [3]. Plants have generated about 25% of
clinically used drugs [7]. More than 60% of drugs with anti-cancer activity originated from plants [8].
As discussed above, the development of new molecules for cancer treatment with fewer side effects and
greater efficacy is essential. Plant-derived metabolites are good sources of new anti-cancer drugs with
reduced cytotoxicity and increased activity [9]. In this review, we categorize such plant metabolites
according to their structure and summarize their activity according to type of cancer.

2. Phytochemicals as Bioactive Metabolites

Phytochemicals are constitutive metabolites that are produced by various parts of plants through
their primary or secondary metabolism, and have essential functions in the plant for general growth
and defense against animals, insects, microorganisms, and abiotic stress [10,11]. Primary metabolites
such as carbohydrates, lipids, and proteins have a direct relationship to the growth and metabolism of
the plant. Secondary metabolites, which are biosynthetically derived from primary metabolites, are
not necessary for survival, but are involved in important functions in the plant, such as protection,
competition, and species interactions [12,13]. These can be classified into three major groups based
on their biosynthetic origins: phenolic compounds, terpenoids, and nitrogen/sulfur-containing
compounds [14]. These compounds have been investigated for use in carcinomatous-related diseases,
and have been reported to have diverse anti-cancer properties, such as anti-proliferation and apoptotic
cell death activity. In this review, we categorize these plant metabolites according to their structure
and discuss their structure and anti-cancer activity.

2.1. Phenolic Compounds

Phenolic compounds (Figure 1), a type of plant secondary metabolites, are polyhydroxylated
phytochemicals found in plant, fruits, vegetables, spices, nuts, and grains [15]. They are one of the
most abundant and widely distributed groups of natural compounds available to human beings [16].
Secondary metabolites with phenolic structures play key roles in various ecological relationships
between plants and other living things and their physical environment [15,16]. The structures of
polyphenol compounds are characterized by at least one aromatic ring with one or more hydroxyl
groups [17]. They are categorized by the structural components binding these rings to one another,
and by the number of phenol rings that they contain. Polyphenolic compounds are believed to have
anti-cancer activity, and include flavonoids, stilbenes, and phenolic acids [18].
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Figure 1. Structure of phenolic compounds.

2.1.1. Flavonoids

Flavonoids (Figure 1a) are the largest and most diverse sub-group of polyphenolic compounds
that are produced as plant secondary metabolites [19]. These compounds are found in various fruits
and vegetables, including several medicinal plants, and they also have critical roles in the growth,
development, and defense of plants [19]. The basic structure of flavonoids consists of two benzene
rings (A and B) linked by a heterocyclic ring (C) with a carbon bridge [20]. Most of the more than
6,000 flavonoids that have been identified from a variety of plants can be categorized into the flavonol,
flavone, flavanol, isoflavone, flavanone, or anthocyanidin subclasses according to their structure [21].

Flavonols (Figure 1b) are the most ubiquitous subclass of flavonoids, and are found in plants and
fruits such as olives, onions, kale, apples, beans, and green leaves [22]. The main representatives of
this subclass are quercetin, kaempferol, myricetin, isorhamnetin, and rutin. Flavonols have a hydroxyl
group (-OH) on the 3-position of the C-ring. These hydroxyl groups are present in a glycosylated
form in plants in combination with a sugar (commonly glucose or rhamnose) [23,24]. The biological
activities of flavonols have been reported to play an important role in preventing carcinogenesis
through anti-proliferation, anti-oxidation, and apoptosis activity in various cancer cell lines [25].

Flavones are mainly found in fruits, spices, and vegetables such as celery, olives, onion, garlic,
citrus fruits, pepper, and parsley [22,23]. Although the flavone 2-phenyl-4H-1-benzopyran-4-one
is the core structure of flavonoids, flavones are much less common than flavonols among plant
metabolites [26]. Flavones (Figure 1c) are present chiefly as 7-O-glycosides. They are mainly
present in forms such as luteolin and apigenin, while less abundant flavones include tangeretin,
nobiletin, baicalein, wogonin, and chrysin [23]. The chemical structure of these flavones consists
of a 3-hydroxyflavone backbone, which is the simplest flavone structure, and may contain a broad
range of functional groups, including hydroxyl groups, carbonyl groups, and conjugated double
bonds [18]. Flavones have been reported to have a variety of biological activities, including antioxidant,
anti-proliferative, anti-tumor, anti-microbial, estrogenic, acetyl cholinesterase, and anti-inflammatory
activities, and are used for controlling various types of disease, such as cancer, cardiovascular disease,
and neurodegenerative disorders [26].

Flavanols, which are sometimes referred to as flavan-3-ols, are derivatives of flavans (Figure 1d).
Flavanols have a hydroxyl group at the C3 position [27]. They are the most varied and complex
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subgroup of flavonoids, and exist in states ranging from single molecules to oligomers, polymers, and
other derivatives [28]. Flavanol compounds include catechin, epicatechin, epicatechin-3-O-gallate,
theaflavins, epigallocatechin-3-O-gallate, proanthocyanidins, and thearubigins [27,29]. Moreover,
they are present in fruits and vegetables such as pears, green leaves, berries, cherries, red grapes,
currants, and apples [30]. The flavanols have been reported to exhibit several biological activities
such as anti-oxidation, anti-carcinogenesis, cardioprotective, and anti-viral effects [31]. However,
most flavanol-related data has been derived from medium/small-scale and short-term (from weeks to
several months) dietary intervention studies [32].

Isoflavones (Figure 1e) are secondary metabolites of flavonoids that occur naturally in members
of the Leguminosae/Fabaceae family, such as kudzu, lupine, soybeans, red clover, peanuts, chickpeas,
broccoli, cauliflower, barley, fava beans, and alfalfa [33,34]. The benzene ring (B) of isoflavones is linked
to C3 of the heterocyclic ring by a carbon bridge. The isoflavone compounds include genistein, daidzein,
biochanin A, glycitein, and formononetin [34]. Isoflavones are also classified as phytoestrogens because
of their structural similarities with estrogen, particularly 17-β-estradiol (a human female hormone),
and can bind to both alpha and beta estrogen receptors [24,33,35]. Therefore, they can exert various
bioactivities in some hormone-dependent diseases by modulating the expression of genes that control
cell survival [35,36].

Flavanones (Figure 1f) are non-planar flavonoids that are derived chiefly in mono- and
di-glycoside forms, but are less frequently present in aglycone form [23]. Although flavanones
are found in tomatoes and selected aromatic plants such as mints, they are almost exclusively present
in high concentrations in citrus fruit [24]. The most common flavanone glycosides, which are generally
glycosylated by a disaccharide, are neohesperidin, naringenin, and hesperetin [18]. These glycosides
are abundant in the fruit of oranges, grapefruit, and tomatoes, and also found in the peels of citrus,
bitter oranges, and grapefruit [37,38].

Anthocyanins (glycosylated forms of anthocyanidin (Figure 1g)) are polyphenolic pigments that
belong to the water-soluble flavonoid group, and impart red, blue, and purple colors to plants in a
pH-dependent manner [39,40]. They are found in plant organs such as fruits, flowers, and leaves,
including those of grapes, berries, pomegranate, red cabbage, purple corn, apples, radishes, tulips,
roses, and orchids [39]. More than 700 anthocyanin derivatives have been verified in nature [41].
Anthocyanins vary in their number of hydroxyl groups and the degree of methylation of the aglycone
molecule. Additionally, the number and the location of sugars connected to the aglycone molecule,
and the number and the character of aliphatic or aromatic acids connected to these sugars, can also
vary [23,42]. The most abundant anthocyanins are cyanidin, peonidin, pelargonidin, delphinidin,
petunidin, and malvidin [43]. Although anthocyanins are non-essential nutrients, they may promote
the maintenance of health and can confer protection against chronic diseases [41]. Recently, research
into anthocyanins has been highlighted due to their potential preventative and/or therapeutic effects
for a variety of diseases [40].

2.1.2. Stilbenes

Stilbenes (Figure 1h) are a class of nonflavonoid polyphenol phytochemicals [18]. Their molecular
backbone consists of 1,2-diphenylethylene units. Stilbenes can be categorized as monomeric and
oligomeric stilbenes [44]. These compounds are somewhat limited in plants, since the core enzyme
in stilbene biosynthesis, stilbene synthase, is not universally expressed [45]. However, due to their
bioactive properties and low toxicity, stilbenes have a remarkable potential for the prevention and
treatment of a variety of diseases, including cancer [46,47]. The most representative stilbene derivatives
are the stilbenoids, which are hydroxylated derivatives of stilbene that can act as phytoalexins.
Such compounds include resveratrol, pterostilbene, gnetol, and piceatannol, and are derived from
grapes, berries, peanuts, and other plant sources [45,46]. Among these, resveratrol is the most widely
studied stilbenoid. Resveratrol is found as cis- and trans-isomers, as well as conjugated derivatives
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(trans-resveratrol-3-O-glucoside) [18]. In addition, resveratrols have been reported to show cancer
chemopreventive properties by blocking carcinogenesis [48–50].

2.1.3. Phenolic Acids

Phenolic acids are secondary metabolites that are present in almost all plant-derived foods
including mushrooms, berries, black currants, kiwis, plums, apples, pears, chicory, and potatoes [30,51].
These compounds can be classified into two major groups, hydroxybenzoic and hydroxycinnamic
acids, which are derived from the non-phenolic benzoic and cinnamic acids [51]. The most common
hydroxybenzoic acids (Figure 1i) are gallic, p-hydroxybenzoic, syringic, vanillic, and protocatechuic
acid, while the corresponding hydroxycinnamic acids (Figure 1j) are caffeic, chlorogenic, coumaric,
ferulic, and sinapic acid [24]. These compounds are present in both free and bound forms in
all plant-derived foods. The bound forms are most frequently esters, glycosides, and bound
complexes [52]. Phenolic acids have been reported to have powerful antioxidant properties and
biological activities including cardioprotective, anti-carcinogenic, antimicrobial, and hepatoprotective
properties [53].

2.2. Terpenoids

Terpenoids (Figure 2), which are also known as isoprenoids, are one of the most numerous and
structurally diverse classes of metabolites [54]. They are flammable non-saturated hydrocarbons that
exist in the liquid state, and are typically found in essential oils, resins, or oleoresins [55]. Terpenoids
are based on linear arrangements of isoprene, and their carbon skeletons consist of two or more carbon
units [56,57]. In particular, terpenoids can be classified as mono-, di-, or tetraterpenoids based on
isoprenoid biosynthesis in the plastid [18].

Figure 2. Structure of terpenoids.

2.2.1. Monoterpenoids

Monoterpenoid structures comprise two isoprene units (C10) and can be divided into three
sub-groups: acyclic, monocycles, and bicycles (Figure 2a) [56]. The monoterpenoids within each
group are simple unsaturated hydrocarbons and can have functional groups such as alcohols,
aldehydes, and ketones [56]. The most important representatives are myrcene, citral, linalool,
α-terpineol, limonene, thymol, menthol, carvone, eucalyptol, α/β-pinene, borneol, and camphor [58].
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Monoterpenoids can be isolated from the fragrant oils of many plants, and are also found in
many marine organisms, where they are generally halogenated. In addition, they are well known
as components of the essential oils of flowers and herbs, pollinator attractants, and defense
compounds [18]. Moreover, monoterpenoids have been reported to potentially act as antioxidants
and are widely used as medicines with antimicrobial, antiseptic, disinfectant, and wound-healing
properties [59].

2.2.2. Diterpenoids

Diterpenoids constitute a large group of compounds derived from geranylgeranyl pyrophosphate
(Figure 2b) [18]. Their structure comprises a C20 carbon skeleton based on four isoprene units [56],
and they can be classified into linear, bicyclic, tricyclic, tetracyclic, pentacyclic, or macrocyclic
subgroups based on their skeletal core [58]. Diterpenoids are present in higher plants, fungi, insects,
and marine organisms [57]. They are typically found in polyoxygenated form with ketone and hydroxyl
groups [56]. Typical compounds of this group include phytol, sclareol, marrubiin, salvinorin A, abietic
acid, 9-geranyl-α-terpineol, gibberellin A1, ginkgolide A, and taxol [18,60]. Diterpenoids have been
reported to have cytotoxic and anti-proliferative properties [61].

2.2.3. Tetraterpenoids (Carotenoids)

Tetraterpenoids consist of eight isoprene units and have a 40-carbon backbone [56]. Carotenoids
(Figure 2c), the most common class of tetraterpenoids, are a group of natural pigments produced in
plants, algae, bacteria, and fungi [62]. They are the key source of the yellow, orange, and red colors in
many plants, including the orange-red colors of oranges, tomatoes, and carrots and the yellow colors of
many flowers [62,63]. Carotenoids are essential both in plants and animals. However, they cannot be
synthesized in animals, and therefore must be obtained from dietary sources. In addition, carotenoids
are known to have protective activity against some forms of cancer, particularly lung cancer [64]. Their
beneficial effects are thought to be due to their role as antioxidants [65]. Based on their chemical
structure, carotenoids can be generally classified into two classes, carotenes and xanthophylls [58].
Carotenes are non-oxygenated carotenoids that may be linear or possess cyclic hydrocarbons, and
include β-carotene, α-carotene, and lycopene [56]. Xanthophylls are the oxygenated derivatives
of carotenes, and include β-cryptoxanthin, lutein, zeaxanthin, meso-zeaxanthin, astaxanthin, and
canthaxanthin [64]. Carotenoids play a critical role in various biological processes such as the immune
response, prevention of cell propagation, induction of apoptosis, and suppression of several cancers [66,
67]. Therefore, carotenoid deficiency can cause health problems in human beings.

2.3. Nitrogen-Containing Alkaloids and Sulfur-Containing Compounds

2.3.1. Alkaloids

Alkaloids are secondary metabolites containing a basic nitrogen, and are found primarily in
plants [68]. The most common forms are derived from amino acids, whereas others originate from
the modification of various classes of molecules such as polyphenols, terpenes, or steroids [14].
Alkaloids are produced by a large variety of organisms including bacteria, fungi, and animals [69].
Alkaloids have diverse biological functions, including anti-cancer, anti-microbial, anti-inflammatory,
and antinociceptive properties [70]. Therefore, they play roles as protective agents against various
diseases [70,71]. Individual plant species produce only a few kinds of alkaloids [68]. Certain plant
species, such as Papaveraceae, Ranunculaceae, Solanaceae, and Amaryllidaceae, are particularly rich in
alkaloids [68,72]. Although there is no uniform classification scheme for alkaloids, they can be generally
divided into the following major groups: true alkaloids, protoalkaloids, and pseudoalkaloids [69,73].
True alkaloids (Figure 3a) are derived from amino acids, and have a nitrogen-atom-containing
heterocyclic ring [74]. This group is further divided into 14 sub-groups according to the ring structure:
pyrrolidine, pyrrolizidine, piperidine, tropone, quinoline, isoquinoline, acridine, quinolizidine,
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benzopyrrole, indolizidine, imidazole, purine, quinolizidine, and oxazole. The second group,
protoalkaloids (Figure 3b), are derived from amino acids but do not contain a nitrogen-atom-bearing
heterocyclic ring. These are less commonly found in nature in comparison with true alkaloids.
The protoalkaloids include hordenine, mescaline, ephedrine, colchicine, erythromycin, jurubin,
pachysandrine A, and taxol. Finally, although pseudoalkaloids (Figure 3c) are not derived from
amino acids, they contain a nitrogen atom in a heterocyclic ring, and include subclasses such as
terpene- and steroid-like alkaloids: delphinine, aconitine and solanidine [69,73].

Figure 3. Structure of nitrogen-containing alkaloids and sulfur-containing compounds.

2.3.2. Organosulfur Compounds

Organosulfur compounds (OSC) are sulfur-containing organic compounds (Figure 3d) [75].
Some essential amino acids and enzymes, sulfides, disulfides, and other OSCs are generated in
the bodies of all living creatures and the natural environment [75,76]. OSCs can both maintain
normal health in the human body and contribute to the development of disease by determining
the thiol/disulfide redox states in body [75,77]. There are two major groups of vegetables that
contain OSCs with special properties [75,76]. One is the Allium genus (family Amaryllidaceae), which
produces S-alk(en)yl-L-cysteine sulfoxides, and includes plants such as garlic, onions, shallots, leeks,
and chives. The second group includes members of the Brassica genus, including cabbage, cauliflower,
Brussels sprouts, and kale and the members of the Eruca genus of the mustard or cruciferous family,
which includes plants such as rucola; this group contains S-methyl cysteine-l-sulfoxide. The OSCs of
vegetables from the Allium, Eruca, and Brassica genera include cycloalliin, thiosulfonates, cysteine alkyl
disulfides, glucosinolates, goitrin, and epithionitrile [75,76]. There is an abundance of epidemiological
and experimental evidence that indicates that OSCs have protective effects against several cancers,
including breast cancer [75,76].

3. Anti-Tumor Activity of Plant Metabolites in Various Malignant Cancers

3.1. Colorectal Cancer

Colorectal cancer is the major cause of cancer-mediated death worldwide. Nutrients and food
play an important role in the development of colorectal cancer, and eating mostly food of plant origin
rather than red and processed meat is recommended for cancer prevention [6]. Secondary metabolites
from potatoes have been found to inhibit the growth of colon NSCLC cells [78]. The maximum
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cancer cell growth inhibition was achieved when HT-29 colon NSCLC cells were exposed to extracts
of potatoes with red-and purple-fleshed tubers. This indicates that some metabolites of potatoes
with red and purple tubers could be valuable as a dietary intervention against developing the
colon cancer [79]. Dichamanetin, a secondary metabolite from Piper sarmentosum, which is an
edible herb used as a spice in Southeast Asia, was reported to reduce cell viability in HT-29
colon NSCLC cells [80]. This metabolite showed dose-dependent cytotoxic effects on this cancer
cell type via the induction of ROS, and also arrested their cell cycle, suggesting that it could be
used to block cancer cell proliferation [80]. Active oxyprenylated natural products from citrus
fruits belonging to the Rutaceae family have been considered as interesting phytochemicals for
several decades [81]. For example, 4′-geranyloxyferulic acid (GOFA) has been reported to have
chemopreventive activity against cancer since it was first extracted in 1966 from Acronychia baueri Schott
(Fam. Rutaceae) [82]. 3-(4′-Geranyloxy-3′-methoxyphenyl)-L-alanyl-L-proline (GAP), a peptide prodrug
of GOFA, was discovered to suppress colitis-related carcinogenesis in the colon in the azoxymethane
(AOM)/dextran sodium sulfate (DSS)-induced cancer model in animals [83]. Similarly, GOFA/β-CD
(the β-cyclodextrin inclusion compound of GOFA) inhibited the development of colonic carcinoma
in the AOM/DSS model [84]. Auraptene (7-geranyloxycoumarin, AUR), one of the lead anti-cancer
compounds from the Rutaceae family, was also found to inhibit the growth of both wild-type and
chemo-resistant colon NSCLC cells and suppress the formation of colonospheres, suggesting that it
could prevent the recurrence of cancer stem cells [85]. Curcumin is the main secondary metabolite
derived from Curcuma longa and other Curcuma spp, and has been widely studied as a therapeutic agent
having antiangiogenic, anti-inflammatory, and antioxidant activity [86]. Recently, curcumin was found
to suppress the oncogenicity of human colon NSCLC cells by reducing the stability of SIRT1 (a NAD+

dependent histone/protein deacetylase) and to suppress the growth of HCT-116 tumor xenografts [87].
Genistein, a phenolic compound found in soybeans, is known to act as a chemopreventive agent
against various tumors [88].

This had inhibitory effects on colorectal NSCLC cells HCT 116 and LoVo; it inhibited cell
proliferation and induced apoptosis [89,90]. It also inhibited the invasion and migration of colorectal
NSCLC cells and inhibited the metastasis of human colorectal NSCLC cells implanted in nude mice [91].
Combinatorial treatment of genistein and indole-3-carbinol synergistically induced apoptosis of HCT
116 cells [92]. Benzyl isothiocyanate (BITC), an organosulfur compound, suppressed the viability
of HCT 116 cells and activated the PI3K/Akt/forkhead box O pathway, which influences drug
resistance in various human NSCLC cells [93]. A combination treatment with an inhibitor of the
PI3K/Akt/forkhead box O pathway potentiated cell death of colorectal NSCLC cells induced by
BITC [93]. Sulforaphane, another isothiocyanate, has an anticancer effect on the human colon cancer
cell line HT-29. It downregulates the expression of microsomal prostaglandin E synthase-1, which is
involved in the synthesis of prostaglandin E2 known to be highly expressed in colorectal cancer [94].
Dietary phenethyl isothiocyanate (PEITC) improved adenocarcinoma in azoxymethane (AOM) and
dextran induced colitis associated cancer mouse models [95]. Recently, 6-(methylsulfinyl)hexyl
isothiocyanate (6-MSITC), obtained from Wasabia japonica, was found to induce apoptosis in human
colorectal NSCLC cells ( HCT 116 p53+/+ and HCT 116 p53−/− ) via p53-independent mitochondrial
dysfunction [96].

3.2. Gastric Cancer

Gastric cancer, also known as stomach cancer, is one of the most common cancers, and has
a poor prognosis [97]. Although many other factors contribute to gastric tumorigenesis, there
is strong evidence that H. pylori infection is the predominant etiological factor in the induction
of gastric cancer [98]. Many plant phytochemicals used as anti-gastric-cancer agents have
been found to not only affect NSCLC cells directly but also to inhibit H. pylori. Resveratrol
(3,4,5′-hydroxystilbene), a polyphenol flavonoid, is known to be produced by a limited number
of plants (about 31 genera), and has the ability to inhibit H. pylori growth and the proliferation of
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gastric NSCLC cells [99]. Isothiocyanates (ITCs) are phytochemicals derived from cruciferous plants,
including allyl isothiocyanate, sulforaphane (SFN), benzyl isothiocyanate (BITC), and phenethyl
isothiocyanate (PEITC). ITCs have been reported not only to have bactericidal activity toward H.
pylori and to reduce the colonization of H. pylori in the stomach, but also to have chemopreventive
effects on gastric cancer in vitro and in vivo [100]. SFN was found to eradicate extracellular and
intracellular H. pylori and block benzo[a]pyrene-induced stomach tumors in mice [101]. PEITC induced
cell cycle arrest and apoptosis by disrupting microtubule filaments in MKN74 and Kato-III human
gastric NSCLC cells [102]. Another group demonstrated that PEITC reduced the invasion and the
migration of AGS human gastric NSCLC cells through blocking the mitogen-activated protein kinase
(MAPK) signaling pathways that regulate the expression of matrix metalloproteinases (MMPs)-2
and -9 [103]. BITC was also found to inhibit the migration and invasion of AGS human gastric
NSCLC cells in a dose-dependent manner [104]. In addition to colorectal cancer, curcumin has also
been extensively investigated for its chemopreventive effects on gastric cancer. In an in vitro study,
curcumin was shown to inhibit the proliferation of SGC-7901 human gastric NSCLC cells by facilitating
the collapse of the mitochondrial membrane potential, and in an in vivo study, the growth of xenograft
tumors was reduced by curcumin [105]. In addition, another in vivo study showed that curcumin
reduced lymphatic vessel density (LVD) in gastric-tumor bearing nude mice [106]. Quercetin, a
natural flavonoid present in various fruits, was reported to induce apoptosis in BGC-823 human
gastric NSCLC cells [107]. Recently, a combined treatment with curcumin and quercetin was found
to significantly inhibit proliferation and induce apoptosis in BGC-823 cells [108]. Allicin, an active
compound derived from garlic, was found to have chemopreventive effects on gastric cancer by
inhibiting cell growth, arresting the cell cycle, and inducing apoptosis [109].

3.3. Lung Cancer

Lung cancer is the most common cancer, and has the highest cancer-related mortality
worldwide [110]. Several secondary metabolites have been discovered to have inhibitory activity
against lung cancer. Epigallocatechin gallate (EGCG), a major component of green tea from Camellia
sinensis, has been reported to have preventive effects on carcinogenesis [111]. There are several
reports that EGCG can inhibit lung cancer in vitro. Recently, EGCG was shown to inhibit the
growth of several types of human lung NSCLC cells via upregulating p53 expression, increasing
p53 stability, and inhibiting p53 ubiquitination [112]. Another study indicated that EGCG was
involved in increasing miR210, a major miRNA (micro RNA) regulated by HIF-1α, resulting in a
significant reduction of the proliferation and growth of mouse and human lung NSCLC cells [113].
Liu et al. reported that EGCG inhibited not only TGF-β-induced cell migration and invasion but also
TGF-β-induced epithelial-to-mesenchymal transition (EMT) via inhibition of the Smad2 and ERK1/2
signaling pathways in nonsmall cell lung cancer (NSCLC) cells [113]. EGCG has also been found
to inhibit telomerase and induce apoptosis in both drug-sensitive and drug-resistant small cell lung
cancer (SCLC) cells [114].

In addition to their activity against gastric cancer discussed above, ITCs have also been reported to
have anti-lung cancer activity via various molecular mechanisms [111]. There are three different types
of ITCs [115]: BITC, PEITC, and SFN. All three ITCs arrested the growth of human lung cancer A549
cells by binding to tubulin, with their relative activities following the order BITC > PEITC > SFN [115].
BITC inhibited the growth of NSCLC cells that are resistant to gefitinib, which is widely used in
treatment of NSCLC, via cell cycle arrest and reactive oxygen species generation [116]. BITC was
also reported to inhibit tumorigenesis of A/J mice induced by the polycyclic aromatic hydrocarbons
(PAHs) found in cigarette smoke [117]. In addition, PEITC induced the apoptosis of NSCLC cells by
inducing the disassembly of actin stress fibers and degradation of tubulin, resulting in the inhibition of
NSCLC cell growth [118]. In another study, both BITC and PEITC were shown to induce the apoptosis
of highly metastatic lung cancer L9981 cells by activating three mitogen-activated protein kinases
(MAPKs): JNK, ERK1/2, and p38 [113]. Oral SFN treatment of mice with lung cancer induced by
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benzo(a)pyrene (B(a)P) was proved to rehabilitate carcinogenic lungs via decreasing H2O2 production
and inducing apoptosis [119]. Combination treatment with SFN and tumor necrosis factor-related
apoptosis-inducing ligand (TRAIL) induced apoptosis in A549 lung adenocarcinoma cells, which are
resistant to the apoptotic effect of TRAIL, through downregulation of ERK and Akt [120].

Indole-3-carbinol (I3C) is a hydrolysis product of glucosinolate, which is a natural component in
members of the Brassica family including broccoli, cabbage, cauliflower, and Brussels sprouts, and is
known to have various anti-tumor activities [111]. I3C has lung cancer-preventive activity during the
progression of tobacco carcinogen induced lung adenocarcinoma in mice and is involved in the modulation
of apoptosis-related proteins in lung cancer A549 cells [121]. Choi et al. showed that I3C induced cell cycle
arrest at the G0/G1 phase through increasing the expression of phosphorylated p53 and cyclin D1 and
activated caspase-8 mediated apoptosis via increasing Fas mRNA in lung cancer A549 cells [122]. The
anti-lung cancer activity of I3C in combination with silibinin, the major active constituent of Silybum
marianum, is stronger than that of single treatment and avoids undesirable side effects in A549 and
H460 lung NSCLC cells and in vivo 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced
lung tumors [123]. The overexpression or underexpression of microRNAs (miRNAs), which function
as tumor suppressors, during tumorigenesis has been studied. It has been reported that I3C can inhibit
carcinogenesis by modulating the expression of several miRNAs in the vinyl carbamate (VC)-induced
lung cancer model [124].

Genistein inhibits SCLC cell proliferation and migration and induces apoptosis in the SCLC cells
H446 through downregulation of FoxM1, whose target genes regulate the cell cycle and apoptosis [125].
Several reports have also indicated that genistein has synergistic effects with other well-known
anti-cancer drugs. The combination of genistein with gefitinib, a drug widely used in the treatment of
various cancers, can inhibit cell proliferation and induce apoptosis in drug resistant H1975 NSCLC cells,
which harbor an epidermal growth factor receptor (EGFR) mutation [126]. Another report showed
that treating H460 lung NSCLC cells with a combination of genistein and the chemotherapeutic
agents cisplatin, docetaxel, or doxorubicin inhibited cell growth and induced apoptosis with greater
anti-cancer activity than single treatment alone. Furthermore, genistein can inhibit the induction of
nuclear factor kappaB (NF-κB) activity by chemotherapeutic agents, which enables NSCLC cells to
become drug resistant [127].

Fisetin (3,3′,4′,7-tetrahydroxyflavone) is a polyphenolic flavonoid found in many fruits and
vegetables, and has been reported to possess anti-inflammatory, antiangiogenic, and anti-tumor
activities [128]. It has dual inhibitory effects on phosphatidylinositol-3 kinase (PI3K)/Akt and
the mammalian target rapamycin (mTOR) signaling in A549 human NSCLC cells and inhibits the
cell viability and colony-forming ability of A549 cells [129]. Fisetin is also involved in inhibiting
the invasion and migration of A549 NSCLC cells through the inactivation of the extracellular
signal-regulated kinase (ERK) signaling pathway and reducing the expression of MMP-2 and
urokinase-type plasminogen activator (u-PA) [130]. Orally administered fisetin inhibits lung
carcinogenesis by alleviating mitochondrial dysfunction and inducing apoptosis in the B(a)P-induced
lung cancer mouse model [131]. In another in vivo study, fisetin inhibited angiogenesis and tumor
growth in Lewis lung carcinoma bearing mice, and the combination of fisetin with cyclophosphamide
(CPA), a medication used as chemotherapy, showed markedly improved anti-tumor activity over
fisetin or CPA alone without toxic side effects [132].

Punicalagin (PC) is an ellagitannin, a type of phenolic compound found in Punica granatum
(pomegranate), which has been shown to exert antioxidant, anti-mutagenic, and anti-cancer
activity [133]. PC has anti-mutagenic potential and shows dose-dependent anti-proliferative effects
in A549 and H1299 human lung NSCLC cells [134]. Pomegranate fruit extracts (PFE) inhibit not
only the growth and viability of A549 lung NSCLC cells in vitro but also the growth of A549 lung
NSCLC cells in nude mice in vivo [135]. Additionally, PFE has been reported to inhibit tumorigenesis
in the B(a)P-induced lung cancer mice model [136].
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Curcumin has also been reported to have anti-cancer activity in both NSCLC and SCLC cell
lines [111]. In NSCLC cells, curcumin inhibits cell growth and invasion by suppressing the expression
of Metastasis-associated protein 1 (MTA1) and subsequently inactivating the Wnt/β-catenin pathway,
which has a cooperative role in promoting lung tumorigenesis [137]. Curcumin downregulates the
expression of Cdc42, which is known to be involved in the proliferation, metastasis, and invasion
of NSCLC cells, resulting in inhibition of the invasion of lung NSCLC cells [126]. One of the
underlying mechanisms for the inhibition of lung cancer cell growth by curcumin was the induction
of autophagy via activating the AMP-activated protein kinase (AMPK) signaling pathway [138].
In addition, curcumin is involved in lowering the resistance of NSCLC cells against erlotinib, a
drug used for NSCLC [139]. In SCLC cells, curcumin suppressed cell proliferation, migration,
invasion, and angiogenesis through inhibiting the signal transducer and activator of transcription 3
(STAT3) and downregulating the expression of STAT3-regulated gene products (Cyclin B1, Bcl-XL,
survivin, vascular endothelial growth factor, MMP-2, -7, and intercellular adhesion molecule-1) [140].
Curcumin-induced apoptosis was accompanied by mechanisms that increased the intracellular reactive
oxygen species (ROS) level [141].

3.4. Breast Cancer

Breast cancer represents the most common and highest-mortality malignancy in females around
the world [142]. Naturally occurring compounds have been studied for their chemopreventive effects
on breast cancer. Tomatine is a glycoalkaloid secondary plant metabolite occurring in the Solanaceae
family of plants that is known to have defensive activities against phytopathogens [143]. It can also
induce cell cytotoxicity and apoptosis and decrease metastasis-related MMP-2, -9 activity in MCF-7
human breast NSCLC cells [144].

I3C shows effective anti-tumor properties in estrogen receptor α (ERα)-positive breast NSCLC cells
through the ligand-activated aryl hydrocarbon receptor (AhR), which amplifies ERα signaling via ROS
induction by the upregulation of cyclic-AMP-dependent transcription factor (ATF)-3 and downstream
pro-apoptotic BH3-only proteins [145]. Also, I3C inhibits tumor sphere formation in breast NSCLC cells
with stem/progenitor cell-like character by selectively stimulating the interaction of nucleostemin
(a cancer stem/progenitor cell marker highly expressed in breast cancer stem cells) with MDM2 (an
inhibitor of p53 tumor suppressor) [146].

Triterpenoids are secondary metabolites found in various plants, and are known to have
antioxidant, anti-microbial, anti-allergic, and anti-angiogenic activity. Dozens of triterpenoids have
been reported to have chemopreventive potential against breast cancer [147]. Curcubitane-type
triterpenoids isolated from Cucurbitaceae family inhibit the growth of several types of human breast
NSCLC cells [148–150], exhibit cytotoxicity against these cells [151,152], and induce apoptosis [153–155].
Dammarane triterpenoids isolated from the tropical plant Chisocheton penduliflorus exhibit weak
cytotoxicity in breast NSCLC cells [156]. Two major friedelane triterpenoids, pristimerin and celastrol,
have been found to be active against breast NSCLC cells. Pristimerin acts as a mitochondrial-targeting
compound and induces caspase-mediated apoptosis and cytochrome c release in MDA-MB-231 breast
NSCLC cells [157]. Celastrol has been shown to not only inhibit the growth and induce apoptosis
of W256 rat breast NSCLC cells, but also suppress their migration by acting as an inhibitor of IκB
kinase (IKK) [158]. Meliavolkenin, a limonoid triterpene isolated from Melia volkensii (Meliaceae),
has cytotoxic effects on MCF-7 breast NSCLC cells [159]. Betulinic acid (BA), a pentacyclic triterpenoid,
has anti-proliferative activity in MCF-7 and T47D breast NSCLC cells [160], in which a decrease in bcl2
and cyclin D1 gene expression and an increase in the bax gene were also observed [161]. In another
study, most breast cancer cell lines (SKBR3, MDA231, MDL13E, BT483, BT474, T47D, and BT 549)
except for MCF7 and ZR-75-1 cells were sensitive to BA treatment [162]. Lupeol, another natural
pentacyclic triterpenoid, inhibits proliferation in estrogen receptor alpha (ERα)-negative MDA-MB-231
cells [163]. Ursolic acid, a pentacyclic triterpenoid widely found in the peels of fruits, has been
studied as a potential inhibitor of breast tumors. Ursolic acid inhibits MCF-7 cell proliferation through
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arresting the cell cycle at G1 [164] and possesses cytotoxic activity against MCF-7 and MDA-MB-231
cells [165–167]. Additionally, ursolic acid is involved in inducing apoptosis through modulation of the
glucocorticoid receptor (GR) and Activator protein 1 (AP1) in MCF-7 cells [168]. Yeh et al. observed that
it has suppressing effects on migration and invasion through inactivation of c-Jun N-terminal kinase
(JNK), Akt, and mTOR signaling in highly metastatic MDA-MB-231 breast NSCLC cells [169]. Another
pentacyclic triterpenoid, asiatic acid, which is extracted from the tropical medicinal plant Centella
asiatica, was found to inhibit cell growth by inducing S-G2/M phase cell cycle arrest and executing
apoptosis through the activation of mitochondrial pathways in MCF-7 and MDA-MB-231 cells [170].
Remangilones A and C, which are oleanane triterpenoids isolated from Physena madagascariensis,
exhibit cytotoxicity against two breast cancer cell lines, MDA-MB-231 and MDA-MB-435, and induce
apoptosis [171]. Amooranin (AMR), a triterpene acid isolated from the tropical tree Amoora rohituca,
was shown to have cytotoxicity against MCF-7 cells [172]. Also, in studies of the mechanism of
AMR-related cell death, AMR was reported to induce apoptosis through elevating caspase activity in
MCF-7 and multidrug resistant MCF-7/TH cells, to suppress cell growth by arresting the cell cycle,
and to induce apoptosis by regulating Bcl-2 family proteins and caspases in MDA-468 and MCF-7
cells [173,174]. Tirucallane-type triterpenoids extracted from Amphipterygium adstringens had cytotoxic
effects on MCF-7 cells [175]. A newly discovered triterpenoid, Ailanthus excelsa chloroform extract-1
(AECHL-1) from Ailanthus excelsa Roxb, was shown to regress tumor volume in nude mice injected
with MCF-7 cells [176].

Recently, curcumin has been also studied as an inhibitor of breast cancer cell proliferation.
It was found to prevent the proliferation of Bisphenol A (BPA) induced MCF-7 cells by suppressing
BPA-upregulated expression of miRNA-19, a key oncogenic miRNA [177]. Resveratrol and resveratrol
sulfates reduced the cell viability of breast NSCLC cells (MCF-7, ZR-75-1, and MDA-MB-231) [178].
Avicennia marina extracts, used in traditional medicine, were shown to induce apoptosis in
breast NSCLC cells (AU565, MDA-MB-231, and BT483) and inhibit tumor growth in MDA-MB-231
transplanted nude mice [179]. Additionally, these extracts were found to be rich in polyphenols [179].
In a recent study, hydroxycinnamic acid and flavonol derivatives, present in Bursera copallifera, were
shown to be involved in inhibiting the migration of MCF-7 and MDA-MB-231 cells [180]. As in the
case of colorectal cancer, dichamanetin also reduced the cell viability of MDA-MB-231 cells [80].

3.5. Prostate Cancer

Prostate cancer is one of the most commonly diagnosed cancers in men worldwide. Diet and
lifestyle are thought to be major contributors to prostate cancer development, and therefore, the
ability of bioactive natural plant chemicals to inhibit prostate cancer has been widely studied [181].
Recently, decursinol, a metabolite of Angelica gigas, has been shown to decrease tumor growth in
mice with xenografts of human DU145 and PC3 prostate NSCLC cells [182], and another group
has reported that decursin and decursinol angelate (DA) from Angelica gigas Nakai (AGN) have
inhibitory effects on the growth of prostate epithelium in the transgenic adenocarcinoma of mouse
prostate (TRAMP) model [183]. Both resveratrol and γ-viniferin, a tetramer of resveratrol, inhibit
the growth of LNCaP prostate NSCLC cells by arresting the cell cycle at the G1 phase; γ-viniferin
has more potent growth-inhibiting activity than resveratrol [184]. Another plant polyphenol, fisetin,
has been found to be involved in regulating microtubule stability through increasing the amount of
acetylated α-tubulin and microtubule associated proteins (MAP)-2 and 4 in PU3 and DU145 cells
and downregulating nuclear migration protein (NudC), which plays an essential role in mitosis and
cytokinesis [185]. Prostate-cancer-associated mortality is mainly caused by metastasis. Therefore,
it is important to develop anti-cancer compounds to inhibit its metastasis. Genistein was found
to act as an anti-metastatic agent to inhibit cellular invasion in prostate NSCLC cells through
decreasing MMP expression and decreasing the formation of metastases in mice implanted with
the PC3-M human prostate cancer cell line [186]. Curcumin was discovered to inhibit cancer-associated
fibroblast (CAF)-induced EMT and invasion in PC3 cells by suppressing the monoamine oxidase A
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(MAOA)/mTOR/HIF-1α signaling pathway [187]. Additionally, it has anti-cancer effects through
the inhibition of prostate cancer cell growth and metastasis [188,189]. Both SFN and I3C attenuate
Akt/NKκB signaling and induce growth arrest and apoptosis in prostate cancer [181].

3.6. Hematologic Cancer

Hematologic cancer, also called blood cancer, develops in blood-forming tissue or in
immune-system-related cells and includes leukemia, myeloma, and lymphoma [190]. Its overall
prognosis is poor despite extensive research into cytotoxic agents to combat it. Recently, hypericin,
a secondary metabolite from Hypericum (Saint John’s wort), was discovered to potentiate the
mitoxantrone (MTX)-induced death of the HL-60 subclone human leukemia cells, in which the ABC
transporter is overexpressed [191]. The anti-cancer mechanisms of the natural polyphenol resveratrol
have been widely studied. Azmi et al. showed that resveratrol induces DNA breakage in the presence
of copper in human peripheral lymphocytes, suggesting a novel anti-cancer mechanism involving the
mobilization of endogenous copper, which is known to be increased in various malignancies [192].
Another group discovered that resveratrol inhibited cell proliferation, arrested the cell cycle in the
S-phase, and induced apoptosis in the acute myeloid leukemia cells OCI-ANK3 and OCIM2 [193].
Similarly to in lung cancer, EGCG also induced the apoptotic death of the human B lymphoblastoid
cell line (Ramos cells) in a dose- and time-dependent manner [194]. In addition, I3C was found to have
anticancer properties in B cell precursor acute lymphoblastic leukemia in NALM-6 cells. It caused the
arrest of the G1 phase in cell cycle and triggered apoptosis [195].

3.7. Skin Cancer

Skin cancer is one of the tumors causing malignancies around the world, and its incidence
is increasing alarmingly [196]. Skin cancer is believed to develop through co-carcinogenic effects,
and many natural metabolites have been widely studied as anti-carcinogens. In particular, allyl
sulfides including diallyl sulfide (DAS), diallyl disulfide (DADS), and diallyl trisulfide (DATS)
have been reported to prevent the progression of skin cancer [197]. DAS was found to have
anti-mutagenic properties against 7,12-dimethylbenz[a]anthracene (DMBA), a carcinogenic polycyclic
aromatic hydrocarbon that induces DNA strand breaks in mouse skin [198]. Additionally, DAS
induced apoptosis in DMBA-mediated mouse skin tumors through multiple mechanisms, including
the up-regulation of tumor suppressor protein p53, its downstream proteins, and proapoptotic proteins
such as Bax, and the reduction of Ras onco-protein expression [199,200]. Pomolic acid, a triterpenoid
found in Polylepis racemosa, was reported to have cytotoxic effects on M-14 melanoma cells [167].

3.8. Head and Neck Cancer

Head and neck cancer is one of the leading causes of death worldwide [201]. Current medical
and surgical treatments for these malignancies result in functional morbidity and side effects; thus,
chemopreventive phytochemicals have been widely studied [201]. β-Carotene is one of the most
abundant carotenoids, which are natural pigments found in plants and that are well known to be
effective antioxidants [202]. Recently, β-carotene has been reported to enhance the inhibitory effect
of 5-FU, a medication used against cancer, on tumor growth of xenografts of Eca109 esophageal
squamous cell carcinoma (ESCC) cells in nude mice and to inhibit cell proliferation in the ESCC cells
EC1 and Eca109 [203]. EGCG has been found to have cytotoxic effects via arrest of the cell cycle at
G1 and the induction of apoptosis in the human head and neck squamous cell carcinoma (HNSCC)
cell lines YCU-N861 and YCU-H891 [204]. It has also been reported to synergistically inhibit the
growth of HNSCC cells via inhibition of the NF-κB signaling pathway when used in conjunction with
erlotinib, a tyrosine kinase inhibitor of EGFR, which is frequently overexpressed in HNSCC cells [205].
In addition, EGCG was shown to inhibit the invasion and migration of the human oral cancer cell line
OC2 through decreasing MMP-2, -9, and uPA in a dose dependent manner without cytotoxicity [206].
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Table 1. Structural classification of active metabolites with anticancer activity.

Class Active Metabolite Structure

Phenolic compounds

Curcumin

Decursin

Decursinol

Decursinol angelate

Dichamanetin

Epigallocatechin gallate
(EGCG)

Fisetin

Genistein

Hydroxycinnamic acid

Hypericin
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Table 1. Cont.

Class Active Metabolite Structure

Phenolic compounds

Quercetin

Resveratrol

Punicalagin (PC)

γ-viniferin

Terpenoids

Asiatic acid

Ailanthus excelsa chloroform
extract-1 (AECHL-1)



Int. J. Mol. Sci. 2018, 19, 2651 16 of 33

Table 1. Cont.

Class Active Metabolite Structure

Amooranin (AMR)

Auraptene (AUR)

Terpenoids

Betulinic acid (BA)

Celastrol

Curcubitane-type triterpenoids
(Balsaminapentaol)

Dammarane triterpenoid
(Cabraleadiol)

Lupeol

Meliavolkenin
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Table 1. Cont.

Class Active Metabolite Structure

Pomolic acid

Terpenoids

Pristimerin

Remangilones A

Remangilones C

Tirucallane-type triterpenoids

Ursolic acid

β-carotene

Nitrogen-containing
alkaloids &

sulfur-containing
compounds

Allicin

Benzyl isothiocyanate (BITC)

Diallyl sulfide (DAS)
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Table 1. Cont.

Class Active Metabolite Structure

Indole-3-carbinol (I3C)

Nitrogen-containing
alkaloids &

sulfur-containing
compounds

Phenethyl isothiocyanate
(PEITC)

Sulforaphane (SFN)

Tomatine

6-MSITC

Table 2. Anti-cancer effects of active metabolites from plants in different types of cancer.

Type of Cancer Active Metabolites In Vitro or In Vivo Effects IC50 & Effective
Concentration (EC) (µM). Ref.

Colorectal cancer

Dichamanetin Induction of ROS and cell cycle
arrest in HT-29 colon NSCLC cells IC50: 13.8 [80]

GAP Suppression of colon carcinogenesis
in DSS mice EC: 0.01 % or 0.05 % in diet [83]

Auraptene
Inhibition of the growth of colon
NSCLC cells and suppression of
colonosphere formation

EC: 10 [85]

Curcumin

Suppression of the oncogenicity of
human colon NSCLC cells and the
growth of HCT-116 tumor
xenografts

EC: 10 [87]

Genistein

Inhibition of cell proliferation and
induction of apoptosis in HCT 116
and LoVo cells EC: 135 [89–91]

Inhibition of metastasis in colorectal
cancer cell implanted nude mice

I3C+Genistein Induction of apoptosis in HT 29
colon NSCLC cells

I3C EC: 300
Genistein EC: 40 [92]

BITC Suppression of viability in HCT 116
colon NSCLC cells EC: 5–20 [93]

SFN
Induction of apoptosis and
inhibition of proliferation in HT 29
colon NSCLC cells

EC: 5–20 [94]

PEITC Reduction of colon carcinogenesis
in AOM/DSS induced mice EC: 0.12 % in diet [95]

6-MSITC Induction of apoptosis in HCT 116
colon NSCLC cells IC50: 0.92–10.01 [96]
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Table 2. Cont.

Type of Cancer Active Metabolites In Vitro or In Vivo Effects IC50 & Effective
Concentration (EC) (µM). Ref.

Gastric cancer

Resveratrol Inhibition of proliferation in gastric
NSCLC cells EC: 50–200 [99]

SFN
Prevention of
benzo[a]pyrene-induced stomach
tumors in mice

EC: 1.33 mg per mouse [101]

PEITC

Induction of cell cycle arrest and
apoptosis in gastric NSCLC cells
MKN74 and Kato-III EC: 17.8 [102,103]

Inhibition of migration and invasion
in AGS gastric NSCLC cells

BITC Inhibition of migration and invasion
in AGS gastric NSCLC cells EC: 0.25–0.5 [104]

Curcumin

Inhibition of proliferation in
SGC-7901 gastric NSCLC cells

EC: 15–60 [105,106]Reduction of xenograft tumor
growth in mice
Reduction of LVD in gastric cancer
bearing nude mice

Quercetin Induction of apoptosis in BGC-823
gastric NSCLC cells EC: 30–120 [107]

Allicin Inhibition of gastric cancer cell
growth EC: 184.88 [109]

Lung cancer

EGCG

Induction of cell cycle arrest and
apoptosis in lung NSCLC cells
Reduction of proliferation and
growth in lung NSCLC cells
Inhibition of TGF-β-induced cell
migration, invasion, and EMT in
NSCLC cells

IC50: 70 [112–114]

BITC

Inhibition of growth in A549 lung
NSCLC cells EC: 10

[115–117]

Inhibition of tumorigenesis in
PAH-induced A/J mice

PEITC Induction of apoptosis in NSCLC
cells EC: 12.5–20 [113,118]

SFN

Induction of apoptosis in NSCLC
cells EC: 10 [119,120]
Alleviation of carcinogenic lung in
B(a)P induced lung cancer bearing
mice

I3C

Induction of apoptosis in A549 lung
adenocarcinoma cells in
combination with TRAIL

EC: 100–500

[121–124]Inhibition of progression of tobacco
carcinogen induced lung
adenocarcinoma progression
Induction of cell cycle arrest and
apoptosis in A549 lung NSCLC cells
Inhibition of NNK-induced lung
tumors in combination with
silibinin in mice

Genistein

Inhibition of carcinogenesis in mice
with VC-induced lung cancer
Inhibition of cell proliferation and
induction of apoptosis in H446
SCLC cells

IC50: 81
[125–127]
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Table 2. Cont.

Type of Cancer Active Metabolites In Vitro or In Vivo Effects IC50 & Effective
Concentration (EC) (µM). Ref.

Lung cancer

Genistein

Inhibition of cell proliferation and
induction of apoptosis in
combination with gefitinib in H1975
NSCLC cells

Fisetin

Inhibition of cell growth and
induction of apoptosis in
combination with chemotherapeutic
agents in H460 NSCLC cells

IC50: 59

[129–132]Inhibition of cell viability and
colony-forming activity in A549
NSCLC cells
Inhibition of the invasion and
migration of A549 NSCLC cells
Inhibition of lung carcinogenesis in
B(a)P-induced mice
Inhibition of angiogenesis and
tumor growth in Lewis lung
carcinoma bearing mice

Punicalagin

Anti-proliferative effects on A549
and H1299 NSCLC cells
Inhibition of tumor growth in mice
with xenografts of A549 NSCLC
cells
Inhibition of B(a)P-induced
tumorigenesis in A/J mice

EC: 11.52–184.3 [134–136]

Curcumin

Inhibition of cell growth and
invasion in NSCLC cells
Lowering the resistance of NSCLC
cells against erlotinib
Suppression of cell proliferation, the
cell cycle, migration, invasion, and
angiogenesis in SCLC cells
Induction of apoptosis in SCLC cells

EC: 30 [137–141]

Breast cancer

Tomatine
Induction of cell cytotoxicity and
apoptosis in MCF-7 breast
NSCLC cells

IC50: 7.07 [144]

I3C

Increasing apoptotic cell death and
decreasing the proliferation of the
ERα-positive breast NSCLC cells
Disruption of in vitro 10AT-Her2
cell tumorsphere formation and
in vivo tumor xenograft growth

IC50: 204 [145,146]

Curcubitane-type
triterpenoids

Inhibition of cell growth and
induction of apoptosis in human
breast NSCLC cells

EC: 0.5–35.7 [148–155]

Dammarane
triterpenoids

Cytotoxicity against breast
NSCLC cells EC: 20.97 [156]

Pristimerin Induction of apoptosis in
MDA-MB-231 breast NSCLC cells EC: 1–3 [157]

Celastrol
Inhibition of cell growth and
invasion and induction of apoptosis
in W256 breast NSCLC cells

EC: 1 [158]

Meliavolkenin Cytotoxicity against MCF7 breast
NSCLC cells EC: 6.05 [159]

Betulinic acid Induction of anti-proliferation in
MCF7 and T47D breast NSCLC cells IC50: 2.4 [160–162]

Lupeol Inhibition of MDA-MB-231
ERα-negative cell proliferation EC: 1–30 [163]
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Table 2. Cont.

Type of Cancer Active Metabolites In Vitro or In Vivo Effects IC50 & Effective
Concentration (EC) (µM). Ref.

Breast cancer

Ursolic acid

Inhibition of proliferation and
induction of apoptosis in
MCF7 cells
Suppression of migration and
invasion in MDA-MB-231 cells

IC50: 3.26 [164–169]

Asiatic acid
Inhibition of cell growth and
induction of apoptosis in MCF7 and
MDA-MB 231 cells

IC50: 5.95–8.12 [170]

Remangilones A
and C

Cytotoxicity against MDA-MB-231
and MDA-MB-435 cells

RemangilonesA IC50: 6.6–8.5
RemangilonesC IC50: 1.6–2.0 [171]

Amooranin
Induction of apoptosis and
suppression of cell growth in
MDA-468 and MCF7 cells

IC50: 3.82-7.22 [172–174]

Tirucallane-type
triterpenoids Cytotoxicity against MCF7 cells IC50: 41.33–86.14 [175]

AECHL-1 Regression of MCF7 xenograft
tumors in nude mice EC: 5–100 [176]

Curcumin Anti-proliferation of BPA-induced
MCF7 cells EC: 1 [177]

Resveratrol
Reduction of cell viability in breast
NSCLC cells (MCF-7, ZR-75-1, and
MDA-MB-231)

IC50: 67.6–82.2 [178]

Hydroxycinnamic
acid

Inhibition of migration in MCF-7
and MDA-MB-231 cells IC50: 75.71 [180]

Dichamanetin Induction of ROS and cell cycle
arrest in MDA-MB-231 cells EC: 8.7 [80]

Prostate cancer

Decursinol
Suppression of tumor growth in
mice with xenografted DU145 and
PC3 prostate cancers

EC: 4.5 mg per mouse [182]

Decursin &
Decursinol angelate

Inhibition of prostate epithelium
growth in the TRAMP model EC: 3 mg per mouse [183]

Resveratrol &
γ-viniferin

Inhibition of the growth of LNCaP
prostate cancer cell

Resveratrol IC50: 10.23-228.3
γ-viniferin IC50: 8.93–90.1 [184]

Fisetin
Inhibition of cell growth and
proliferation in PU3 and DU145
cells

EC: 20–80 [185]

Genistein

Inhibition of cellular invasion in
in vitro prostate cancer and in vivo
metastasis formation in mice with
xenografts of PC3-M prostate cancer

EC: 10 [186]

Curcumin

Inhibition of CAF-induced EMT
and invasion in PC3 cells
Induction of cell cycle arrest and
apoptosis in in vitro prostate
NSCLC cells and the in vivo
TRAMP model

EC: 25 [187–189]

SFN and I3C
Induction of cell cycle arrest and
apoptosis of PC3, LNCaP, and
DU145 cells in vitro

SFN EC: 40
I3C EC: 30–100 [181]

Hematologic
cancer

Hypericin Attenuation of MTX cytotoxicity in
HL-60 promyelocytic leukemia cells EC: 0.1–0.5 [191]

Resveratrol

Induction of DNA breakage in
human peripheral lymphocytes
Induction of apoptosis in
OCI-ANK3 and OCIM2 acute
myeloid leukemia cells

EC: 10–75 [192,193]
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Table 2. Cont.

Type of Cancer Active Metabolites In Vitro or In Vivo Effects IC50 & Effective
Concentration (EC) (µM). Ref.

Hematologic
cancer

EGCG Induction of apoptotic death in
Ramos B lymphoblastoid cells EC: 60–100 [194]

I3C
Inhibition of cell growth and
induction of apoptosis in pre-B
acute lymphoblastic leukemia cells

EC: 60 [195]

Skin cancer
Diallyl sulfide

Reduction of DNA strand breaks in
DMBA induced mouse skin
Induction of apoptosis in
DMBA-induced mouse skin tumors

EC: 25 [197–200]

Pomolic acid Cytotoxic effects against M-14
melanoma cells EC: 14.6 [167]

Head and neck
cancer

β-carotene
Inhibition of tumor growth in nude
mice with xenografts of Eca109
ESCC cell xenografts

EC: 30 [203]

EGCG

Induction of cell cycle arrest and
apoptosis in YCU-N861 and
YCU-H891 HNSCC cells
Inhibition of cell growth in
combination with erlotinib in
HNSCC cells
Inhibition of the invasion and
migration in oral cancer cell OC2

EC: 30–60 [204–206]

4. Conclusions and Perspectives

Up to the present date, several thousands of different metabolites have been identified in
plants and studied for their effectiveness in a wide variety of applications [6]. We have categorized
plant-derived metabolites into several major classes based on their structure, and the structural
characteristics of each class were discussed. Also, natural compounds with anti-cancer activity
were summarized according to type of cancer (Tables 1 and 2). Medicinal plants have been used
since ancient times, and are still used as a primary source of medical treatment in developing
countries [3]. Plant-derived substances have advantages including their low cost and the rapid
speed of discovery of new drugs; their main disadvantage is the absence of common international
standards for evaluating their quality, efficacy, and safety [3]. Additionally, the incidence of various
malignant cancers has been growing, and conventional cancer therapies have limitations, including the
high toxicity and side effects of anti-cancer drugs [3]. For this reason, a broad multidisciplinary
research approach involving ethnopharmacology, botany, pharmacognosy, and phytochemistry is
required for the successful application of phytochemicals in the treatment or prevention of cancer [207].
Also, the biotechnological production of secondary metabolites of naturally occurring plant substances
and the combination of phytochemicals with existing anti-cancer drugs or other chemical compounds
represent alternative approaches to natural-product-based drug development. Furthermore, besides
the cytotoxic effects of plant metabolites, additional therapies that treat cancers by different mechanisms
are required for the development of new drugs from plant metabolites. One of the new cancer
treatment method focuses on the immunomodulation of the tumor microenvironment. Therefore,
the development of natural-product-based drugs that can regulate the functioning of the immune
system in the tumor microenvironment will be a novel cancer treatment option in the future. This
review provides comprehensive information on the various classes of plant-derived metabolites and
bioactive plant compounds that have shown anti-cancer activity in vitro or in vivo models of different
types of cancer. The data we have summarized clearly suggests that natural metabolites from plants
play a major role as the most prominent source of anti-cancer treatments.
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Abbreviations

OSC Organosulfur compounds
GOFA 4′-geranyloxyferulic acid
GAP 3-(4′-geranyloxy-3′-methoxyphenyl)-L-alanyl-L-proline
AOM Azoxymethane
DSS Dextran sodium sulfate
β-CD β-cyclodextrin
AUR Auraptene
SIRT1 Sirtuin 1
ITCs Isothiocyanates
SFN Sulforaphane
BITC Benzyl isothiocyanate
PEITC Phenethyl isothiocyanate
MMPs Matrix metalloproteinases
LVD Lymphatic vessel density
EGCG Epigallocatechin gallate
miRNA micro RNA
HIF-1α Hypoxia-inducible factor 1alpha
TGF-β Transforming growth factor β
EMT Epithelial-to-mesenchymal transition
ERK1/2 Extracellular signal–regulated kinases 1/2
NSCLC Nonsmall cell lung cancer
SCLC Small cell lung cancer
MAPK Mitogen-activated protein kinase
B(a)P Benzo(a)pyrene
TRAIL Tumor necrosis factor-related apoptosis-inducing ligand
I3C Indole-3-carbinol
VC Vinyl carbamate
EGFR Epidermal growth factor receptor
NF-κB Nuclear factor kappaB
mTOR mammalian target of rapamycin
u-PA urokinase-type plasminogen activator
CPA Cyclophosphamide
PC Punicalagin
PFE Pomegranate fruit extracts
MTA1 Metastasis-associated protein1
AMPK AMP-activated protein kinase
STAT3 Signal transducer and activator of transcription 3
ROS Reactive oxygen species
ERα Estrogen receptor α
AhR Aryl hydrocarbon receptor
ATF-3 cyclic AMP dependent transcription factor
IKK Inhibitor against IκB kinase
BA Betulinic acid
GR Glucocorticoid receptor
AP1 Activator protein 1
JNK c-Jun N-terminal Kinase
AMR Amooranin
AECHL-1 Ailanthus excelsa chloroform extract-1
BPA Bisphenol A
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miRNA-19 microRNA-19
AGN Angelica gigas Nakai
TRAMP Transgenic adenocarcinoma of mouse prostate
MAP Microtubule associated proteins
NudC Nuclear migration protein
CAF Cancer associated fibroblast
MAOA Monoamine oxidase A
MTX Mitoxantrone
DAS Diallyl sulfide
DADS Diallyl disulfide
DATS Diallyl trisulfide
DMBA 7,12-dimethylbenz[a]anthracene
ESCC Esophageal squamous cell carcinoma
HNSCC Head and neck squamous cell carcinoma
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