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Wnt signaling in cancer: therapeutic targeting of
Wnt signaling beyond β-catenin and the
destruction complex
Youn-Sang Jung1 and Jae-Il Park 1,2,3

Abstract
Wnt/β-catenin signaling is implicated in many physiological processes, including development, tissue homeostasis,
and tissue regeneration. In human cancers, Wnt/β-catenin signaling is highly activated, which has led to the
development of various Wnt signaling inhibitors for cancer therapies. Nonetheless, the blockade of Wnt signaling
causes side effects such as impairment of tissue homeostasis and regeneration. Recently, several studies have
identified cancer-specific Wnt signaling regulators. In this review, we discuss the Wnt inhibitors currently being used in
clinical trials and suggest how additional cancer-specific regulators could be utilized to treat Wnt signaling-associated
cancer.

Introduction
Wnt signaling orchestrates various biological processes,

such as cell proliferation, differentiation, organogenesis,
tissue regeneration, and tumorigenesis1–5. Classically,
Wnt signaling is divided into β-catenin-dependent
(canonical, Wnt/β-catenin pathway) and β-catenin-inde-
pendent (noncanonical, Wnt/planar cell polarity [PCP]
and calcium pathway) signaling6,7. Canonical Wnt sig-
naling mainly regulates cell proliferation, and non-
canonical Wnt signaling controls cell polarity and
movement. However, this terminological distinction is
unclear, and has been questions by studies proposing the
involvement of both β-catenin-dependent and β-catenin-
independent Wnt signaling in tumorigenesis8. For
instance, APC and β-catenin are not only involved in cell
proliferation but have also been linked to cell-to-cell
adhesion9. In this review, we will discuss an ongoing effort
to inhibit Wnt signaling and suggest potential approaches

to target Wnt signaling for cancer therapies proposed
from recent studies.

Wnt signaling and clinical trials in human cancers
β-Catenin is a crucial signaling transducer in Wnt

signaling10,11. The β-catenin protein destruction com-
plex composed of adenomatous polyposis coli (APC),
casein kinase 1 (CK1), glycogen synthase kinase 3α/β
(GSK-3α/β), and AXIN1 tightly controls β-catenin via
phosphorylation-mediated proteolysis10,12–16. In this
section, we briefly describe how genetic alterations of
Wnt signaling contribute to tumorigenesis and introduce
recent clinical trials that have aimed to inhibit Wnt
signaling for cancer treatment.

The β-catenin destruction complex
Colorectal cancer (CRC) is the representative of human

cancer caused by Wnt signaling hyperactivation17,18. CRC
displays a high mutation frequency in APC (~70%)19–21. In
1991, APC mutation was identified as the cause of heredi-
tary colon cancer syndrome, also called familial adenoma-
tous polyposis22. APC forms the β-catenin destruction
complex in association with CK1, AXIN1, and GSK-3 and
interacts with β-catenin15,23,24. This protein destruction
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complex downregulates β-catenin through phosphorylation
and ubiquitin-mediated protein degradation10,12–16. Genetic
mutations causing the loss of function of the destruction
complex or gain of function of β-catenin lead to nuclear
translocation of β-catenin, resulting in T-cell factor (TCF)4/
β-catenin-mediated transactivation of Wnt target genes25,26.
The Vogelstein group established a multistep tumorigenesis
model of CRC. APC mutation is an early event that initiates
CRC adenoma27. CRC progression also requires additional
genetic alterations in KRAS, PI3K, TGF-β, SMAD4, and
TP5327. Moreover, epigenetic silencing of negative reg-
ulators of Wnt signaling was also frequently found in the
absence of APC mutations28,29. APC is a multifunctional
protein. In addition to its role in β-catenin degradation,
APC binds to actin and actin-regulating proteins30–33,
which controls the interaction between E-cadherin and α-/
β-catenin and various physiological processes, including
migration and chromosomal fidelity34–38. Importantly,
recent studies revealed that APC mutation is insufficient to
fully activate Wnt signaling. Furthermore, even if APC is
mutated, mutant APC still negatively regulates β-catenin to
some extent39,40, which will be discussed later.
AXIN1 is a multidomain scaffolding protein that forms

the β-catenin destruction complex in association with
APC, CK1, and GSK310,41,42. In human cancer, AXIN1
mutations are scattered throughout the whole coding
sequence of the AXIN1 gene43,44, which results in dis-
assembly of the β-catenin destruction complex. As a
priming kinase, CK1 initially phosphorylates β-catenin
(Ser45), which induces the sequential phosphorylation of
β-catenin by GSK3. Subsequently, phosphorylated
β-catenin is recognized and degraded by E3 ubiquitin
ligase (β-TrCP)10,12–16. GSK3 is a serine/threonine kinase
that phosphorylates three serine/threonine residues of
β-catenin (Ser33, Ser37, and Thr41)45,46. Since GSK3 does
not bind to β-catenin directly, AXIN1 and APC facilitate
the interaction of GSK3 with β-catenin47,48. Moreover,
unphosphorylated AXIN1 shows a low binding affinity to
β-catenin, which is increased by phosphorylation of
AXIN1 via GSK3 kinase activity49,50. Low-density lipo-
protein receptor-related protein 5/6 (LRP5/6) coreceptor
is also phosphorylated by CK1 and GSK3, leading to the
recruitment of AXIN1 to the membrane51–53.

WNT ligands and receptors
Under physiological conditions, Wnt signaling is acti-

vated by the binding of secreted WNT ligands to LRP5/6
coreceptors and frizzled (FZD) receptors54, which induces
the recruitment of the protein destruction complex to the
LRP receptors and the subsequent phosphorylation of the
Ser/Pro-rich motif of the LRP cytoplasmic domain via
GSK315,55,56. This event activates dishevelled (DVL) and
inhibits GSK3, resulting in the inhibition of the
phosphorylation-mediated β-catenin protein degradation

and the stabilization/accumulation of β-catenin. Then,
β-catenin undergoes nuclear translocation and transacti-
vates Wnt target genes57. The secretion of WNT ligands
mainly depends on acylation by Porcupine (PORCN)58,59.
PORCN is a membrane-bound O-acyltransferase that
mediates the palmitoylation of WNT ligands to induce
their secretion. In line with this observation, PORCN
shows increased genetic alterations in various human
cancers, including esophageal, ovarian, uterine, lung, and
cervical cancers60.

Mutations in CTNNB1/β-catenin
Unlike CRC, in which the APC gene is frequently

mutated, the CTNNB1 gene encoding β-catenin is pre-
dominantly mutated in hepatocellular carcinoma, endo-
metrial cancer, and pancreatic cancer61–63. The CTNNB1/
β-catenin gene harbors 16 exons. β-Catenin is mainly
composed of three domains (N-terminal [~150 aa],
armadillo repeat [12 copies; 550 aa], and C-terminal
[~100 aa]). The N-terminal domain contains the phos-
phorylation sites for GSK3 and CK112,14,45,46, which
induces β-TrcP-mediated β-catenin degradation. The C-
terminal domain is involved in transactivation of Wnt
target genes via TCF/LEF interactions25,64–66. The arma-
dillo repeat domain interacts with various proteins,
including E-cadherin, APC, AXIN1, and PYGOs/Pygo-
pus67,68. In human cancer, the phosphorylation sites (Ser/
Thr) in the N-terminal domain of CTNNB1/β-catenin are
mutational hotspots14,69,70, demonstrating that escape
from destruction complex-mediated β-catenin protein
degradation is a key process for Wnt signaling-induced
tumorigenesis.

Therapeutic targeting of Wnt/β-catenin signaling
To suppress WNT ligands or receptors for cancer

treatment, PORCN inhibitors, WNT ligand antagonists,
and FZD antagonists/monoclonal antibodies have been
examined in clinical trials of various Wnt signaling-
associated human cancers (Table 1 and Fig. 1).

(i) PORCN inhibitors
WNT974 (LGK974; NIH clinical trial numbers [clin-

icaltrials.gov]: NCT02278133, NCT01351103, and
NCT02649530), ETC-1922159 (ETC-159; NCT02521844),
RXC004 (NCT03447470), and CGX1321 (NCT02675946
and NCT03507998) are orally administered PORCN inhi-
bitors that commonly bind to PORCN in the endoplasmic
reticulum71–74. Therefore, PORCN inhibitors block the
secretion of WNT ligands through inhibition of post-
translational acylation of WNT ligands. However, similar to
other cancer therapies targeting the Wnt pathway, skeletal
side effects such as impairment of bone mass and strength
and increase in bone resorption were caused by PORCN
inhibitor administration75.
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(ii) SFRP and SFRP peptides
SFRPs (secreted frizzled-related proteins) are soluble

proteins. Given the structural homology of SFRPs with the
WNT ligand-binding domain in the FZD receptors, SFRPs
function as antagonists that bind to WNT ligands and
prevent Wnt signaling activation76–78. Indeed, SFRPs or
SFRP-derived peptides showed tumor suppressive activity
in preclinical models79,80.

(iii) FZD antagonist/monoclonal antibody
Vantictumab (OMP-18R5; NIH clinical trial numbers

[clinicaltrials.gov]; NCT02005315, NCT01973309,
NCT01345201, and NCT01957007) is a monoclonal

antibody directly binding to FZD receptors, which blocks
the binding of WNT ligands to FZD 1, 2, 5, 7, and 881.
Ipafricept (OMP-54F28; NIH clinical trial numbers:
NCT02069145, NCT02050178, NCT02092363, and
NCT01608867) is a recombinant fusion protein that binds
to a human IgG1 Fc fragment of FZD882,83. These
reagents negatively regulate Wnt/β-catenin signaling
through their direct binding to FZD, which thereby dis-
rupts the function of LRPs/FZDs. Alternatively, a way of
targeting and killing cancer cells that express high FZD
receptors is also being examined. OTSA101 is a huma-
nized monoclonal antibody against FZD10. OTSA101-
DTPA-90Y (NIH clinical trial number [clinicaltrials.gov]

Table 1 Wnt/β-catenin signaling inhibitors in current and past clinical trials.

Drug Mechanism of action Cancer type Phase Identifier

*WNT974 (with LGX818 and Cetuximab) PORCN inhibitor Metastatic CRC Phase 1 NCT02278133

WNT974 PORCN inhibitor Squamous cell cancer
Head&Neck

Phase 2 NCT02649530

WNT974 PORCN inhibitor Pancreatic cancer
BRAF mutant CRC
Melanoma
TNBC
H&N
Squamous cell cancer (cervical,
esophageal, lung)

Phase 1 NCT01351103

ETC-1922159 PORCN inhibitor Solid tumor Phase 1 NCT02521844

RXC004 PORCN inhibitor Solid tumor Phase 1 NCT03447470

CGX1321 PORCN inhibitor Colorectal adenocarcinoma
Gastric adenocarcinoma
Pancreatic adenocarcinoma
Bile duct carcinoma
HCC
Esophageal carcinoma
Gastrointestinal cancer

Phase 1 NCT03507998

*CGX1321 (with Pembrolizumab) PORCN inhibitor Solid tumors
GI cancer

Phase 1 NCT02675946

OTSA101-DTPA-90Y FZD10 antagonist Sarcoma, Synovial Phase 1 NCT01469975

*OMP-18R5 (with Docetaxel) Monoclonal antibody against FZD
receptors

Solid tumors Phase 1 NCT01957007

OMP-18R5 Monoclonal antibody against FZD
receptors

Metastatic breast cancer Phase 1 NCT01973309

OMP-18R5 Monoclonal antibody against FZD
receptors

Solid tumors Phase 1 NCT01345201

*OMP-18R5 (with Nab-Paclitaxel and
Gemcitabine)

Monoclonal antibody against FZD
receptors

Pancreatic cancer
Stage IV pancreatic cancer

Phase 1 NCT02005315

*OMP-54F28 (with Sorafenib) FZD8 decoy receptor Hepatocellular cancer
Liver cancer

Phase 1 NCT02069145

*OMP-54F28 (with Paclitaxel & Carboplatin) FZD8 decoy receptor Ovarian cancer Phase 1 NCT02092363

*OMP-54F28 (with Nab-Paclitaxel and
Gemcitabine)

FZD8 decoy receptor Pancreatic cancer
Stage IV pancreatic cancer

Phase 1 NCT02050178

OMP-54F28 FZD8 decoy receptor Solid tumors Phase 1 NCT01608867

PRI-724 CBP/β-catenin antagonist Advanced pancreatic cancer
Metastatic pancreatic cancer
Pancreatic adenocarcinoma

Phase 1 NCT01764477

PRI-724 CBP/β-catenin antagonist Advanced solid tumors Phase 1 NCT01302405

PRI-724 CBP/β-catenin antagonist Acute myeloid leukemia
Chronic myeloid leukemia

Phase 2 NCT01606579

*PRI-724 (with Leucovorin Calcium, Oxaliplatin,
or Fluorouracil)

CBP/β-catenin antagonist Acute myeloid leukemia
Chronic myeloid leukemia

Phase 2 NCT02413853

SM08502 β-catenin-controlled gene
expression inhibitor

Solid tumors Phase 1 NCT03355066
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NCT01469975) is labeled with a β-radiation delivering-
yttrium Y90 for OSTA10184. OTSA101-DTPA-90Y selec-
tively killed cancer cells highly expressing FZD10. The side
effects of vanctumab include tiredness, diarrhea, vomiting,
constipation, and abdominal pain. Vantictumab and ipa-
fricept might also cause bone metabolism disorders81,82.

(iv) Targeting of LRP degradation and FZD endocytosis
Salinomycin, rottlerin, and monensin induce the phos-

phorylation of LRP6, resulting in the degradation of
LRP685–87. In addition, niclosamide promotes FZD1
endocytosis, which downregulates WNT3A-stimulated
β-catenin stabilization88. However, these reagents do not
specifically target cancer-specific molecules, leading to
side effects, including itchiness, abdominal pain, vomiting,
dizziness, skin rash, and unpleasant taste88,89.
Given that the β-catenin protein destruction complex plays

a crucial role in negatively regulating Wnt signaling, the
restoration of this protein destruction complex may effec-
tively inhibit Wnt/β-signaling. Tankyrase interacts with and
degrades AXIN via ubiquitin-mediated proteasomal degra-
dation90–92. Tankyrase inhibitors have been developed90,93–95.
Indeed, Tankyrase inhibitors have been shown to negatively
regulate Wnt signaling in APC-mutated cancer cells93–95.

(i) Tankyrase inhibitors
Tankyrase inhibitors downregulate β-catenin stabiliza-

tion. In preclinical studies, Tankyrase inhibitors, including

XAV939, JW-55, RK-287107, and G007-LK, stabilized
AXIN by inhibiting the poly-ADP-ribosylating enzyme
Tankyrase90–92. However, currently, no clinical trials are
being conducted with Tankyrase inhibitors.

(ii) CK1 agonist
Pyrvinium is an FDA-approved anti-helminthic drug.

Pyrvinium binds to CK1 family members in vitro and
promotes CK1 kinase activity96.
β-Catenin contributes to tumorigenesis via transacti-

vation of Wnt target genes such as CCND1, CD44,
AXIN2, and MYC97–100. Thus, approaches inhibiting
either β-catenin transcriptional activity or β-catenin target
genes have been developed as potential therapeutic can-
didates for Wnt signaling-associated cancers (Table 1).

(i) Inhibitors of β-catenin transcriptional activity
β-Catenin/CBP binds to WRE (Wnt-responsive ele-

ment; 5′-CTTTGA/TA/T-3′) and activates target gene
transcription101,102. PRI-724 (ICG-001; NIH clinical trial
numbers: NCT01302405, NCT02413853, NCT01764477,
and NCT01606579) inhibits the interaction between CBP
and β-catenin and prevents transcription of Wnt target
genes103. Moreover, various inhibitors of TCF/LEF and
β-catenin interactions have been identified and evaluated
in preclinical settings104.
To transactivate Wnt target genes, β-catenin forms a

transcriptional complex with coactivators, including

Fig. 1 Wnt/β-catenin signaling inhibitors in current and past clinical trials (also see Table 1).
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BCL9 and PYGO105,106, which is inhibited by carnosic
acid, compound 22, and SAH-BLC9107,108. In addition,
Pyrvinium downregulates Wnt transcriptional activity
through the degradation of PYGO96.

(ii) Inhibitor of Wnt target genes
SM08502 (NIH clinical trial number NCT03355066) is a

small molecule that inhibits serine and arginine-rich splicing
factor (SRSF) phosphorylation and disrupts spliceosome
activity. Upon oral administration, SM08502 was shown to
downregulate Wnt signaling-controlled gene expression.

(iii) Proteasomal degradation of β-catenin
MSAB (methyl 3-[(4-methylphenyl)sulfonyl]amino-benzo-

ate) binds to β-catenin and facilitates the ubiquitination-
mediated proteasomal degradation of β-catenin108,109.
However, since β-catenin controls various physiological

processes, downregulation of the transcriptional activity
β-catenin was shown to induce diarrhea, hypopho-
sphatemia, reversible elevated bilirubin, nausea, fatigue,
anorexia, and thrombocytopenia59,110.

Additional layers of Wnt/β-catenin signaling
activation
The β-catenin paradox
Wnt signaling hyperactivation by mutations in

β-catenin destruction complex components or β-catenin
itself contributes to tumorigenesis. In addition to APC
mutations, β-catenin can be further activated by addi-
tional layers of regulation39,40,111–117, which demonstrated
the complexity of Wnt signaling deregulation in cancer.
Accumulating evidence supports the notion that addi-
tional regulatory processes contribute to Wnt signaling
hyperactivation in cancer, as demonstrated in the fol-
lowing examples. (a) Mutant APC is still able to down-
regulate β-catenin39,40. (b) Even in the presence of APC
mutations, blockade of WNT ligands triggers apoptosis or
growth inhibition40,113,118. (c) β-Catenin fold induction is
essential for the activation of β-catenin target genes119–121.
(d) Increased AXIN1 by Tankyrase inhibitor suppresses
cell proliferation of cancer cells where Wnt/β-catenin
signaling is genetically hyperactive43,90,93,95,122. (e) Muta-
tions in RNF43 and ZNRF3 E3 ligases that degrade Wnt
receptors contribute to tumor development111,115. (f) Ras/
MAPK signaling is also required for Wnt signaling acti-
vation112,123. These reports suggest that additional layers
further enhance Wnt signaling activation in cancer.

The lysosome and Wnt signaling
The lysosome contains 40 types of hydrolytic enzymes,

including cathepsins, which become active under acidic
conditions124. Lysosomal hydrolytic enzymes mediate the
degradation of phagocytosed material and proteolysis of

cytosolic proteins through fusion with the multivesicular
body (MVB). Luminal acidification of the lysosome is
required for lysosomal protein degradation, which is
mainly controlled by vacuolar H+ transporters in the
lysosomal membrane125.
Recently, this classical view of lysosomal functions has

evolved into new perspectives highlighting the roles of
lysosomes in transcriptional regulation and metabolic
homeostasis126. In human cancer, lysosomal dysfunction
is involved in the generation of building blocks, cell pro-
liferation, metastasis, angiogenesis, and tumor suppressor
degradation39,127.
It has been reported that Wnt signaling is involved in

the endocytosis-mediated formation of the LRP signalo-
some into the MVB123,128. GSK3 in the LRP signalosome
is sequestered into the MVB, which leads to an increase in
the level of cytosolic β-catenin and inhibition of Wnt
signaling129. However, decreased GSK3 kinase activity by
MVB sequestration lasts approximately 1 h129,130. More-
over, it is unclear how sequestrated APC, GSK3, AXIN,
and CK1 in MVB are processed. A recent study showed
that clathrin-mediated endocytosis is required for Wnt
signaling activation, which is inhibited by APC131. These
studies suggest that vesicular acidification and trafficking
also play crucial roles in controlling Wnt/β-catenin sig-
naling through modulation of the protein destruction
complex. Next, we discuss how APC is deregulated for
Wnt signaling hyperactivation in cancer cells.
Wnt signaling activation requires v-ATPase (vacuolar

H+-ATPase; an electrogenic H+ transporter)125,132,133.
Previous studies imply that in cancer cells, the upregula-
tion of v-ATPase activity might trigger abnormal Wnt/
β-catenin signaling and contribute to Wnt signaling-
dependent tumorigenesis. Growing evidence has demon-
strated the effect of v-ATPase on various oncogenic
processes, including cellular signaling, survival, drug
resistance, and metastasis125,134. Moreover, the v-ATPase
subunits are highly expressed in colorectal, breast, pros-
tate, liver, ovarian, and pancreatic cancer cells135–138. The
v-ATPase complex is composed of the V1 domain (in the
cytosol) and V0 domain (on the membrane)139,140. The V1
domain shows reversible disassociation from the V0
domain under physiological conditions, including glucose
concentration, starvation of amino acids, and infection of
cells by influenza virus141–144. Recently, TMEM9 (trans-
membrane protein 9) was identified as an activator of v-
ATPase and is highly expressed in cancer39. TMEM9
amplifies Wnt signaling through the v-ATPase-mediated
lysosomal protein degradation of APC39. Given that
TMEM9 is highly expressed in CRC cells and that Tmem9
knockout mice are also viable39, molecular targeting of
TMEM9 may selectively suppress Wnt signaling activity
in cancer cells.
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Novel therapeutic target: v-ATPase
Conventional approaches targeting Wnt/β-catenin have

led to various side effects, as mentioned above. Therefore,
cancer-specific Wnt signaling regulators such as v-
ATPase may be attractive molecular targets for Wnt sig-
naling blockade. Chloroquine (CQ) and hydroxy-
chloroquine (HCQ), inhibitors of lysosomes and
autophagy, are clinically used for the treatment of diseases
such as malaria and rheumatoid arthritis145. While the
mechanism of action of CQ and HCQ is somewhat
unclear, other v-ATPase inhibitors, such as bafilomycin
(BAF) and concanamycin (CON), directly bind to and
inhibit v-ATPase146,147. Compared with CQ and HCQ,
BAF and CON showed marked inhibition of Wnt/
β-catenin signaling in CRC. In addition, BAF and CON
displayed an antiproliferative effect in CRC patient-driven
xenograft and animal models without toxicity to normal
cells and animals39. In addition, BAF and CON also
strongly inhibit Wnt signaling activity in CRC cells,
regardless of APC mutations. Thus, further research may
lead to the development of not only safer but also more
potent anti-v-ATPase drugs as cancer-specific Wnt/
β-catenin inhibitors (Fig. 2).

Conclusion
Genetic and epigenetic deregulation of Wnt/β-catenin

signaling contributes to human cancer, which has led to

the development of extensive approaches targeting Wnt/
β-catenin signaling as cancer therapies. Nonetheless, the
blockade of Wnt signaling impairs tissue homeostasis and
regeneration, which needs to be resolved. Recent studies
have identified several Wnt signaling regulators whose
expression is specific to cancer cells. These cancer-specific
regulatory processes of Wnt signaling may be druggable
vulnerabilities of Wnt signaling-associated cancer.
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