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Animal immunization merges with innovative technologies: A new paradigm shift in 
antibody discovery
Ponraj Prabakaran , Sambasiva P Rao , and Maria Wendt

Biologics Research US, Global Large Molecules Research, Sanofi, Framingham, MA, USA

ABSTRACT
Animal-derived antibody sources, particularly, transgenic mice that are engineered with human immu-
noglobulin loci, along with advanced antibody generation technology platforms have facilitated the 
discoveries of human antibody therapeutics. For example, isolation of antigen-specific B cells, microflui-
dics, and next-generation sequencing have emerged as powerful tools for identifying and developing 
monoclonal antibodies (mAbs). These technologies enable not only antibody drug discovery but also lead 
to the understanding of B cell biology, immune mechanisms and immunogenetics of antibodies. In this 
perspective article, we discuss the scientific merits of animal immunization combined with advanced 
methods for antibody generation as compared to animal-free alternatives through in-vitro-generated 
antibody libraries. The knowledge gained from animal-derived antibodies concerning the recombina-
tional diversity, somatic hypermutation patterns, and physiochemical properties is found more valuable 
and prerequisite for developing in vitro libraries, as well as artificial intelligence/machine learning 
methods to discover safe and effective mAbs.
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Recently, Gray et al.1 raised scientific and ethical concerns 
toward animal immunization for antibody generation, and 
claimed that non-animal derived universal or naive libraries 
can generate antibodies with greater versatility and reproduci-
bility than immunization-based methods. Scientific concerns 
were mainly raised on the use of unsequenced animal-derived 
polyclonals and hybridomas, which are now commonly 
replaced with monoclonal antibodies (mAbs) and well- 
characterized hybridomas, respectively, for affinity reagents 
and therapeutic applications. Further in their 
correspondence,1 Gray et al. stated that non-animal-derived 
universal antibody libraries contain an enormous repertoire of 
structurally diverse antibody genes that is equal or greater than 
that of a naive immune system, from which binders against 
essentially any target can be generated. In our view, however, 
mAbs generated from animal-derived methods are highly 
diverse, antigen-specific, developable and unmatched to those 
that are derived from the in vitro methods. This is because 
in vivo-generated mAbs evolve through highly orchestrated 
B cell immune mechanisms, such as clonal selection specific 
to antigens with diverse lineages and somatic hypermutation in 
germinal center B cells, particularly, for complex antigens.2 In 
addition, other secondary mechanisms of diversification3 and 
rare chromosomal integrations into variable regions4 also con-
tribute to antibody diversification that cannot be recapitulated 
by in vitro methods. Specifically, hybridoma technology has 
a unique advantage in retaining their native heavy and light 
chain paired assembly, and consequently high solubility.5 

Further, technological advances have blurred species bound-
aries as the hybridoma approach was made widely applicable 
across phylogenetically distinct species.6 This may have an 

important application in the isolation of mAbs against 
human targets that could be otherwise limited by self- 
tolerance to mammalian-conserved epitopes.7

In-vitro display-derived libraries cannot yet be regarded as 
universal, but only as complementary to animal-derived meth-
ods. For example, Saggy et al.8 performed a comparative ana-
lysis that evaluated hits from the in vitro phage display vs. next- 
generation sequencing (NGS) methods using antibodies pro-
duced by B cells from immunized mice. Remarkably, they 
found that phage display hits were often low-abundance 
sequences in the NGS, whereas NGS-derived high-abundance 
sequences did not express well in the phage, and thus were not 
recovered. In another study, it was shown that phage display 
and hybridoma methods yield antibodies with distinct 
mechanisms and epitopes.9 Therefore, these studies demon-
strated that, while both the in vivo and in vitro strategies could 
result in antigen-specific mAbs, they were quite complemen-
tary in terms of sequences, targeted epitopes, and functions.

Furthermore, among several in vitro phage display-derived 
human antibodies approved by the US Food and Drug 
Administration (FDA),10,11 adalimumab (Humira®) was the 
first, and it became the best-selling antibody drug on the 
market. However, importantly, Humira® was discovered by 
a process known as “guided selection” using a murine mAb 
as the original template.12 Most of the mAbs currently 
approved by the FDA are from hybridoma technology derived 
either from wild type or more recently using human immuno-
globulin (Ig) transgenic mice, and the list also includes the first 
immunization-derived, humanized nanobody caplacizumab.10 

At one instance, it was reported that phage display-derived 
therapeutic antibodies are enriched with aliphatic contents 
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along antibody loops and exhibit higher aggregation and poly- 
specificity compared to non-phage display-derived 
antibodies.13 The successful development of any antibody ther-
apeutic, whether animal-derived or non-animal-derived, ulti-
mately depends on key properties such as manufacturability 
and clinical tolerability of the molecules. The larger number of 
approved animal-derived antibodies are proven to have these 
properties as compared to in vitro-derived antibodies.14

Gray et al.1 also viewed animal immunization as the tip of 
an antibody iceberg and in vitro recombinant antibody gen-
eration methods as larger submerged fractions. In doing so, 
they largely undervalued scientific merits and recent techno-
logical innovations that have greatly revolutionized immuni-
zation-based methods and enabled the exploration of the 
antibody repertoire space (Figure 1). Mainly, human immu-
noglobulin transgenic mice and technological developments, 
including microfluidic chip-based hybridomas,15 antigen- 
specific single B cell isolation,16–18 single-cell droplet micro-
fluidic screening for antigen-specific antibodies,19,20 natively 
paired immune libraries,21 and NGS-based immune reper-
toire mining,22 have allowed a more efficient sampling and 
capturing of the animal-derived antigen-specific antibody 
repertoire landscape, which has deepened our understanding 
of antibody biology. Particularly, the large-scale natively 
paired VH-VL antibody discovery technologies23–25 have the 
capacity to impact antibody biological developments. These 
technologies have enabled merging the benefits of animal 
immunization with the power of display library screening 
and human antibody repertoire mining. More recently, we 
established the use of small volumes of blood from immu-
nized mice to isolate antigen-specific antibodies for potential 
therapeutic use (unpublished data). Such a cutting-edge anti-
body discovery approach can be useful in generating antibo-
dies to multiple antigens using the same cohort of mice, 
thereby potentially restricting the number of animals needed. 
All these indicate that there is a universe of possibilities yet to 
be explored in animal-derived antibody repertoire using new 
technologies.

Recently, in silico rational design of antibodies in a modular-
26 and epitope-specific manner27 and computational method 
for immune repertoire mining28 have emerged as third- 
generation antibody discovery methods. These newly devel-
oped in silico methods have utilized the sequence and struc-
tural information from antibodies derived from immunization 
and in vitro methods. More recently, immune organoids from 
human tonsils and other lymphoid tissues have been developed 
with a potential for the discovery of antigen-specific antibodies, 
mimicking key germinal center features including somatic 
hypermutation and affinity maturation.29 We expect that arti-
ficial intelligence (AI)- and machine learning (ML)-based 
methods30–32 could essentially exploit the best of both worlds 
of in vivo- and in vitro-generated methods, large-scale naïve 
and antigen-specific antibody sequence and structure data,33–35 

knowledge of immune repertoire and literacy,36–38 help design 
feature-controlled antibody libraries and developable 
antibodies,39,40 which, in turn, would ultimately solve scientific 
and ethical problems in antibody generation.

In conclusion, any advanced biomedical scientific research in 
general can raise ethical concerns when involving the in vivo use 
of animals or patients as data subjects. As of now, animal-free 
antibody universal libraries exist only as utopian alternatives to 
immunization methods and are neither well-defined nor matured 
enough for the replacement of animal immunization. In contrast, 
there has been a substantial and concerted effort in academic and 
biopharmaceutical research communities to improve immuniza-
tion strategies. In this regard, DNA-based immunization has 
evolved as a powerful technology platform for mAb generation 
using animals.41 In addition, use of animals has benefited the 
development and validation of mRNA immunization,42 which 
has contributed to the successful development of COVID-19 
vaccines. Several anti-SARS-CoV-2 neutralizing human mAbs 
that are now in clinical studies were identified from immuniza-
tion strategies, such as VelocImmune® (Regeneron), and through 
use of convalescent blood samples from patients.43 Thus, immu-
nization-based methods along with the evolution and advent of 
new technologies will lead to the rapid identification and 

Figure 1. Advanced technologies expose the vastness of animal-derived antibody repertoire. Recent developments using humanized mouse, advanced 
hybridomas, isolation of antigen specific bulk and single B cells, immunized display libraries, droplet microfluidics technique and immune repertoire data mining 
through NGS have paved the way for capturing the expanding universe of animal-derived antibodies that are schematically shown as isolated, clustered and networks 
of dots within the growing spheres.
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generation of mAbs in the areas of therapeutics and other appli-
cations. Because the knowledge of complete immunogenetic 
diversity and other characteristics required for developing large, 
universal in vitro libraries are not yet substantiated and still in its 
infancy, immunization-dependent antibody generation will con-
tinue to be a powerful method that can complement and co-exist 
with in vitro and in silico methods. We envisage that in the 
future, advanced experimental and AI/ML-enabled technologies 
may merge the unique capabilities of in vivo, in vitro and in silico 
methods for antibody discovery.
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