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Treatment of neuropsychiatric disorders relies on the effective delivery of therapeutic
molecules to the target organ, the brain. The blood–brain barrier (BBB) hinders such
delivery and proteins acting as transporters actively regulate the influx and importantly
the efflux of both endo- and xeno-biotics (including medicines). Neuropsychiatric
disorders are also characterized by important sex differences, and accumulating
evidence supports sex differences in the pharmacokinetics and pharmacodynamics
of many drugs that act on the brain. In this minireview we gather preclinical and
clinical findings on how sex and sex hormones can influence the activity of those BBB
transporter systems and affect the brain pharmacokinetics of psychotropic medicines.
It emerges that it is not well understood which psychotropics are substrates for
each of the many and not well-studied brain transporters. Indeed, most evidence
originates from studies performed in peripheral tissues, such as the liver and the
kidneys. None withstanding, accumulated evidence supports the existence of several
sex differences in expression and activity of transport proteins, and a further modulating
role of gonadal hormones. It is proposed that a closer study of sex differences in
the active influx and efflux of psychotropics from the brain may provide a better
understanding of sex-dependent brain pharmacokinetics and pharmacodynamics of
psychotropic medicines.

Keywords: sex differences, blood–brain barrier, psychotropics drugs, transporters and channels, brain, females,
transporters, mental disorders

INTRODUCTION

Neuropsychiatric disorders carry a significant burden and disproportionally affect more women
than men (Wittchen et al., 2011). Their treatment relies on effective drug delivery to the brain.
However, such drug delivery is challenging, as the blood–brain barrier (BBB) allows only endo-
and xeno-biotics (including medicines) with specific physicochemical characteristics (lipophilicity,
molecular weight, and charge) to enter. This barrier is achieved as brain capillary endothelial cells
(BCECs), in very close proximity between them, form complex and tight junctions (Figure 1).
The BBB functions within the context of the neurovascular unit (McConnell et al., 2017), a
structure consisting of neurons, interneurons, astrocytes, pericytes, basal lamina covered with
smooth muscular cells, microglia as well as endothelial cells and extracellular matrix, and regulates
the cerebral blood flow (Muoio et al., 2014). Although some substances may diffuse passively
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FIGURE 1 | Graphical representation of the blood–brain barrier and its transporters.

though the BBB, the influx and efflux of most substances
is actively regulated by a complex system of transporters
expressed on the BBB. Emerging evidence suggests that brain
pharmacokinetics, and thus psychotropic pharmacodynamics is
greatly influenced by these transport systems (O’Brien et al.,
2012). However, such knowledge is relatively new and now
unfolding for many of those systems, especially with the help
of evidence gathered from the presence of those transporters
in peripheral barriers, such as in the gastrointestinal tract,
the liver, and the kidneys. On the other hand, there is
strong evidence that many neuropsychiatric disorders present
significant sex differences (Balta et al., 2019) and preclinical
research is progressing into incorporating sex as an important
biological variable (Butlen-Ducuing et al., 2021). Moreover,
psychotropic medication present noteworthy pharmacodynamic
and interestingly, pharmacokinetic sex differences (Kokras et al.,
2011; Seeman, 2021). Given that psychotropic medication must
reach the brain to exert their therapeutic action, it emerges
that potential sex differences in the brain’s transport systems
might be involved in the action of psychotropic medicines
in men and women. Therefore, in this minireview, we gather
preclinical and clinical findings on how sex and sex hormones can
influence the activity of BBB transporters and, discuss the current
state of the art.

P-GLYCOPROTEIN

The ABCB1 gene expresses P-glycoprotein (P-gp) (or multi-
drug resistance protein 1) in humans and two homologs in
rodents, the abcb1a and abcb1b (O’Brien et al., 2012). P-gp has
a broad binding site for a wide range of substances, as it is
not restricted stereochemically and currently is the most studied
transport protein. Regarding psychiatric disorders, P-gp plays
an important role in CNS drugs bioavailability (De Klerk et al.,
2011). Several antidepressants, like citalopram/escitalopram,

paroxetine, imipramine, and venlafaxine are substrates of P-gp
(Uhr and Grauer, 2003; Karlsson et al., 2010; O’Brien et al.,
2013a,b). Thus, their brain pharmacokinetics are altered by
P-gp and response to treatment is affected (Lin et al., 2011).
However, other drugs appear not affected by P-gp, like fluoxetine
and mirtazapine (Uhr et al., 2000, 2003). Interestingly, some
psychotropic medications show a complex interaction with P-gp.
For example, sertraline displays a biphasic and time-dependent
interaction, fluctuating between inhibition and stimulation of
P-gp (Kapoor et al., 2013). Another example is that high
doses of nortriptyline saturate the P-gp-dependent transport
and thus decrease its clearing effectiveness (Ejsing and Linnet,
2005). Abundant evidence indicates sex differences in the P-gp
transport (Baris et al., 2006; Lifschitz et al., 2006; Ueno and Sato,
2012; Tornatore et al., 2013). However, there are also reports
showing no significant sex differences (Dagenais et al., 2001;
Gottschalk et al., 2011; Long et al., 2016). Such discrepancies, as
discussed later, are probably explained by several factors, such as
differences in species, the studied substrate, the tissue sampled,
etc. Moreover, many P-gp polymorphisms affecting therapeutic
drug efficacy are reported (Dizdarevic et al., 2014; Peng et al.,
2015; Skalski et al., 2017; Rahikainen et al., 2018). Some are
linked with sex-differentiated drug responses and development
of specific side effects (Alzoubi et al., 2013; Rahikainen et al.,
2018). This highlights the importance of sex segregation in
pharmacogenetic research. Lastly, there is evidence that gonadal
hormones, such as estrogens, testosterone and progesterone affect
the activity of P-gp, and its activity may vary across the menstrual
cycle (Axiotis et al., 1991; Peng et al., 2015; Kanado et al., 2019).

BREAST CANCER RESISTANT PROTEIN

Breast cancer resistant protein (BCRP) is an ABC transporter
expressed in different tissues, including the brain epithelial
cells, and may be responsible for the low bioavailability of
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several psychotropics. A recent study showed that sertraline is a
BCRP substrate along with its P-gp inhibiting properties (Feng
et al., 2019). Venlafaxine dose-dependently induces the BCRP
expression (Bachmeier et al., 2011). Moreover, BCRP is known to
work in synergy with P-gp, cooperatively eliminating xenobiotics
from the brain and thus impeding treatment (Kodaira et al., 2010;
Agarwal et al., 2011). Several preclinical studies highlight sex
differences in BCRP, whose regulation is testosterone-induced
and estradiol-inhibited, and point to a higher expression of
BCRP in males (Teo et al., 1993; Fu et al., 2012). Hormonal
manipulations, such as gonadectomy or hormonal treatment
significantly affected its expression, and in general lower BCRP
expression in females led to higher drug exposure (Merino et al.,
2005; Gulilat et al., 2020). However, most results are obtained
from tissues other than the brain. Interestingly a single study
showed that specifically in the brain, BCRP expression is higher
in female than male mice (Tanaka et al., 2005).

MULTIDRUG RESISTANCE-ASSOCIATED
PROTEINS

Multidrug resistance-associated protein (MRP) is a family
of ABC transporters comprising of currently seven known
members which are located at luminal membranes, and also
found at the BBB (Ueno et al., 2010). Although considered to
be an important drug transport mechanism, there is limited
information regarding most psychotropics. One study showed
that phenytoin and carbamazepine brain levels were lower
following upregulation of MRP1 (Chen et al., 2013). Interestingly,
no sex differences were identified regarding Mrp1 and Mrp2
mRNA expression in the choroid plexus. However, after its
removal, BBB expression levels of Mrp1, Mrp2, and Mrp4 were
twice as higher in female mice than in males (Flores et al., 2017).
Studies in tissues such as the liver and the kidneys generally
corroborate that females have higher MRP expression (Maher
et al., 2005; Lu and Klaassen, 2008) and some evidence points to
a progesterone and/or dehydroepiandrosterone regulation of this
sex difference (Rost et al., 2005; Evseenko et al., 2007).

ORGANIC ANION TRANSPORTERS

Organic anion transporter (OAT) is an heterogenous family
of negatively charged proteins, mainly located in kidneys and
the liver, but OAT1/OAT3 are also found in the brain and
are responsible for transporting hydrophobic organic anions.
Evidence suggests that valproate, used as a mood stabilizer,
is a substrate of OAT1 and homovanillic acid, a metabolite
of dopamine, is a substrate of OAT3 (Sekine et al., 2000;
Mori et al., 2003). In the kidneys and the liver, OAT
expression is affected by androgens, and perhaps different
OAT isoforms are stronger expressed in males and females
in these tissues. Overall, renal Oat1 expression is androgen-
regulated, renal Oat2 expression is modulated by female GH
secretion pattern, and hepatic Oat3 expression is influenced by
both androgens and female GH secretion pattern (Buist et al.,

2003). Although OAT sex differences have been demonstrated
in rodents, the direction of sex difference is not consistent
and are not confirmed in other species, such as in rabbits
(Groves et al., 2006) and in human cells (Breljak et al., 2016).
Moreover, regarding specifically the brain, an in vivo BBB
preclinical study did not identify a sex difference in OAT3
(Ohtsuki et al., 2005).

ORGANIC ANION TRANSPORTING
POLYPEPTIDES

These transporters form a superfamily of membrane-solute
carriers characterized by significant functional diversity and a
widespread role in the transport of endo/xenobiotics (Hagenbuch
and Meier, 2004). There is scarce data on whether they are
involved in the brain transport of psychotropics, but we know
that transport of DHEA-S and opioids occurs via OATP1A2 and
a small sex difference favoring women was recently reported
(Asaba et al., 2000; Gao et al., 2000; Taniguchi et al., 2020).
However, DHEA administration led to a gender-neutral Oatp1a1
and Oatp1b2 decrease and a further decrease in Oatp1a4
expression only in males (Rost et al., 2005). Evidence on sex
differences is convoluted because there are many organic anion
transporting polypeptide (OATP) transporters with a broad tissue
distribution. Most preclinical evidence converges that activity
of Oatp1a4, which is also expressed in the BBB, is higher
in females, with testosterone probably suppressing it (Zhang
et al., 2013; Brzica et al., 2018). However, several preclinical
studies showed a tissue-specific variability in the direction or
even absence of sex differences regarding various members
of the OATP family (Cheng et al., 2005, 2006; Fu et al.,
2012; Muzzio et al., 2014; Prasad et al., 2014; Badee et al.,
2015).

ORGANIC CATION TRANSPORTERS

Organic cation transporter (OCT) are responsible
for transporting cationic substances, like monoamine
neurotransmitters, nicotine, the opioid agonist oxycodone,
and antipsychotics like amisulpride and haloperidol (Bostrom
et al., 2006; Okura et al., 2008; Sekhar et al., 2019). Interestingly,
OCT2 and rOCT are found in the brain, and regulate the
concentration of neurotransmitters in the neurons rather
than the BBB (Busch et al., 1998). Very few data exist on
potential sex differences, mostly on renal OCT2, which is
expressed more strongly in males than females and it is
upregulated by androgens (Alnouti et al., 2006; Groves et al.,
2006; Basit et al., 2019). Plasma membrane monoamine
transporter (PMAT/SLC29A4), a known transporter for
cationic substances, is implicated in the efflux of amisulpride
and haloperidol from the brain and is inhibited by nicotine
(Tega et al., 2018; Sekhar et al., 2019). Some evidence on
sex differences exist for PMAT, as behavioral changes were
noted only in female, but not male, PMAT knockout mice
(Gilman et al., 2018).

Frontiers in Behavioral Neuroscience | www.frontiersin.org 3 May 2022 | Volume 16 | Article 844916

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


fnbeh-16-844916 May 21, 2022 Time: 12:8 # 4

Dalla et al. BBB Transporters: Sex Differences

MONOCARBOXYLATE TRANSPORTERS

Monocarboxylate transporter (MCT) mediate the transport of
short chain monocarboxylates such as lactate and pyruvate,
indicating their involvement in regulating brain energy
substrates. Of 14 MCT members identified, MCT1, MCT2,
MCT4, and the sodium-coupled SMCT1 have been described
in the brain (Pierre and Pellerin, 2005). They are implicated
in the brain transport of several drugs, including notably
statins, salicylates and in relation to psychotropics, valproic
acid, and γ-hydroxybutyrate (GHB) (Vijay and Morris, 2014).
Sex differences have been identified, and are attributed in a
tissue-specific regulation by both male and female sex hormones
(Felmlee et al., 2020). Hepatic MCT1 and MCT4 regulation
appears dependent on both estrogens and androgens (Cao et al.,
2017). In muscles testosterone increases MCT1/4 expression
but decreases testicular MCT2/4. However, there is a paucity of
data regarding sex-dependent patterns of brain MCT regulation,
which is important given the tissue-specific profile that emerges.

MULTIDRUG AND TOXIN EXTRUSION
PROTEINS

Multidrug and toxin extrusion protein (MATE) family
transporters function in concert with OCT, are mostly expressed
in the liver and the kidneys, but they are also found in the brain,
and are involved in the transport of cationic drugs (Lickteig
et al., 2008). Amisulpride and haloperidol, both antipsychotics,
as well as nicotine, have been identified as possible substrates of
MATE1 (Tsuda et al., 2007; Sekhar et al., 2019). This family of
transporters is very recently discovered, and few data exist on
potential sex differences. No data is available for the brain, but
it appears that hepatic mRNA of MATE1 was notably increased
in females in relation to males, but on the contrary, renal mRNA
expression was found notably lower in females compared to
males (Lickteig et al., 2008; Fu et al., 2012).

OTHER TRANSPORTERS

Several other transporters, of which relatively little is known,
are located at the BBB. Alanine/serine/cysteine transporter 2
(ASCT2) is located at the abluminal membrane of BACEs
and is the only transporter of the Solute Carrier 1A (SLC1A)
family to transport glutamine (Albrecht and Zielinska, 2019).
BBB also expresses Betaine/GABA transporter-1, which in mice
can be found as GAT2 transporter, regulating the efflux of
GABA, and is different from GABA transporters, GAT1/3, that
mediate transport across neurons and astrocytes (Takanaga et al.,
2001). Enkephalins and AVP are effluxed by Peptide Transport
System 1 and 2, respectively (Banks, 2006; Ueno et al., 2010).
Several sodium-coupled transporters (NHE1, NHES, NBCn1,
and NKCC1) are implicated in the active transport of lithium, a
mood stabilizer across the BBB (Luo et al., 2018). System A and
System L are transport systems of small and large neutral amino
acids, respectively. Several drugs are carried by system L into

the brain, and there is a strategy to design drugs that resemble
the amino acids L-histidine and L-tryptophan for enhanced CNS
delivery through LAT1 transporter (Hall et al., 2019). However,
for all those transport systems little is known about their potential
sex differences.

DISCUSSION

In this minireview we summarized findings about sex differences
in brain transport systems. These may affect pharmacokinetics
of psychotropic medications in a sex-dependent manner and are
important for precision medicine and treatment. In summary,
for many transporter systems little is known about their function
and the role of sex and gonadal hormones. Some protein
transporters are indeed recently discovered, but for many other,
evidence accumulates at a slow pace. Moreover, data are more
abundant for the peripheral expression and function of these
transporters, and less is known about the BBB, with the exception
perhaps of the P-gp. This is surprising, as brain-transport
systems regulate the influx and massively the efflux (clearance) of
psychotropics. Moreover, BBB dysfunction has been implicated
in many neuropsychiatric disorders and other diseases which
are sex-differentiated (Greene et al., 2020; Profaci et al., 2020;
Dion-Albert et al., 2022b). Admittedly, studies on peripheral
transporters are methodologically easier, especially in humans
where access to the BBB is significantly hindered. However,
preclinical studies are also lacking, and more research is needed
on which psychotropics are substrates of which BBB transporter
system and whether this is sex-differentiated. This research could
lead to clinical important findings regarding the treatment of
psychiatric disorders in a more precise way.

Despite the paucity of evidence, preclinical studies collectively
support the notion of male and female predominant transporters
mainly in the periphery (Maher et al., 2005; Klaassen and
Aleksunes, 2010; Zhu et al., 2017; Basit et al., 2019). The
existence of protein transporter systems in the periphery also
adds another layer of complexity in understanding their impact
on pharmacokinetics. Most, if not all, of those transporters
are heavily expressed in peripheral tissues (intestine, liver, and
kidneys) that are crucially implicated in absorption, distribution,
and metabolism of drugs. Peripheral transporters play as much an
important role in psychotropic pharmacokinetics as do the BBB
transporters in delivering to and clearing psychotropics from the
brain. Therefore, a psychotropic that is a substrate for a specific
transporter may be more extensively absorbed, more broadly
distributed and at the same time more readily cleared from the
brain and then metabolized and excreted. It remains unknown
whether these effects cancel themselves out and, in the context of
this review, whether male or female sex affects those transporters
equally, in all of their expression sites (brain and periphery)
(Cummins et al., 2002; Gottschalk et al., 2011). It is possible that
their function is also influenced locally by estrogens – or other
steroid – receptors in the BBB. These local interactions represent
an interesting new research pathway that could promote our
understanding of the BBB and its transporter proteins in the
healthy and diseased brain in a sex-dependent way.
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Indeed, transporter function, and thus potential sex
differences, are not necessarily identical in peripheral tissues
(such as in liver, kidneys, and intestine) and the brain. Although
transporters present significant, but not absolute conservation
across species, some sex differences observed in one species are
not confirmed in another. Therefore, future research should
focus on whether findings from one species to another are
translatable, regarding both substrates for each transporter,
as well as on the significance of potential sex differences
of transporters in relation to human disease and treatment.
A recent study on P-gp comparing gastro-intestinal tissue
from Wistar rats and humans confirmed the translatability
of experimental findings on discovered sex differences (Mai
et al., 2021). P-gp activity is altered in patients with depression
and recent evidence, in post mortem brain, suggest that
vascular alterations in the BBB are present in women with
depression (de Klerk et al., 2009; Dion-Albert et al., 2022b).
Interestingly, BBB dysfunction has been associated with many
other diseases, such as dementia, autoimmune disorders,
epilepsy, and stroke, that also present sex differences and
often co-exist with depression (Greene et al., 2020; Profaci
et al., 2020). Therefore, future studies should investigate sex
differences in specific transport proteins of the BBB in relation
to its dysfunction during depression and other comorbidities.
Moreover, transporter activity may be affected by factors
such as stress, disease, exercise, or diet in a brain-region
specific manner. Indeed, chronic variable stress altered BBB
integrity in female, but not in the male mouse prefrontal
cortex and this could have contributed to stress vulnerability
(Dion-Albert et al., 2022b).

This mini-review focused on sex differences in psychotropic
transport across the BBB. As the purpose of such sex
differences remains unclear, it is postulated that the mammalian
reproductive process exerted a selection pressure that explains
those sexual dimorphisms (Gilks et al., 2014; Della Torre
and Maggi, 2017). As elegantly reviewed elsewhere, this is
reflected to several sex differences at the BBB in health
and disease, regarding, but not limited to BBB strength,

metabolism, response to stressors and involvement of several
pathways, classic and non-classic genomic, as well as non-
genomic, involving NO signaling, matrix metalloproteinases,
the RhoA/Rho-kinase-2 pathway and other estrogens-mediated
pathways (Weber and Clyne, 2021; Dion-Albert et al.,
2022a).

In conclusion, accumulated evidence supports the existence
of several sex differences in expression and activity of
BBB transporters, and a further modulating role of gonadal
hormones. A closer study of sex differences in the active influx
and efflux of psychotropics from the brain may provide a
better understanding of sex-dependent brain pharmacokinetics
and pharmacodynamics of psychotropics. This would have
a significant impact in precision medicine and treatment.
Furthermore, in combination with BBB permeability studies,
research on sex differences in BBB transporters will contribute
to our understanding of the neurobiology and treatment of
psychiatric diseases and their relationship with other disorders,
such as autoimmune and neurological.
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