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Abstract
Retinal degenerative diseases are a major cause of blindness. Retinal gene therapy is a trail-blazer in the
human gene therapy field, leading to the first FDA approved gene therapy product for a human genetic disease.
The application of Clustered Regularly Interspaced Short Palindromic Repeat/Cas9 (CRISPR/Cas9)-mediated gene
editing technology is transforming the delivery of gene therapy. We review the history, present, and future pro-
spects of retinal gene therapy.

Introduction
The eye is an intricate sensory organ, loosely designed
like a camera, in which the retina captures high resolution
images functioning similar to the film (Fig. 1). The retina
is composed of multiple layers of neurons which convert
visible light images into electrical signals and transmit
them to the brain (Fig. 2). The retinal photoreceptors are
the primary light detecting cells (Fig. 2), whereas pigment
epithelial cells play a crucial role in supporting photo-
receptor cell functions including phagocytosis and regen-
eration of visual pigments via the visual cycle.

Loss of vision caused by inherited or acquired retinal
diseases can significantly impact on quality of life. In
the past several decades, scientists and physicians have
begun to unravel the underlying molecular and genetic

factors contributing to the onset and progression of
these diseases. This review discusses recent early-stage
clinical trials and a variety of preclinical studies in
which the gene editing techniques resulted in signifi-
cant functional improvement in the retina. It focuses
mostly on the gene therapies that have showed the
most progress and the greatest clinical potential. We
list all retinal gene therapy trials that have been regis-
tered in ClinicalTrial.org in Table 1.

RPE65-Leber Congenital Amaurosis
RPE65 is a retinal pigment epithelial-specific protein (65
kDa), which is almost exclusively found in the retinal pig-
ment epithelium (RPE) as a retinoid isomerase and is
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responsible for converting all-trans retinoid to 11-cis retinal
during pigment regeneration.1–3 Absence or deactivation
of RPE65 results in an accumulation of all-trans-retinyl
esters, which promotes pigment degeneration, disabling
the formation of visual pigments, rhodopsin and cone
opsin because of a lack of 11-cis retinal.4–6 Therefore,
mutations in Rpe65 associate strongly with RPE65-Leber
Congenital Amaurosis (LCA2), retinitis pigmentosa (RP),
and early-onset severe retinal dystrophies.7–10

The absence of this isomerase activity along with
pigment degeneration and significant visual impair-
ment were observed in Rpe65 knockout mice, mutant
knock-in mice, and naturally occurring Rpe65 mutant
mouse.11–13 Gene therapies using adeno-associated
virus (AAV), adenovirus, and lentivirus-mediated Rpe65
delivery have all resulted in improvement in electro-
retinogram (ERG) response and visual function test in
RPE65 deficient mice models (Fig. 3).14,15 Subretinal

Figure 1. Structure of the eye comparing to a camera. Illustration adapted from American Academy of Ophthalmology.

Figure 2. Schematic of the eye and retina structure. The magnified area represents different cell types in the retina. Most of retinal gene ther-
apy trials are directed to defective genes affecting photoreceptors or RPE.
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Table 1. Information on recent gene therapy clinical trials adapted from ClinicalTrials.gov.

Condition Identifier Status Study Title Interventions Sponsor

RPE65 - Leber
Congenital
Amaurosis

NCT00643747 Completed Safety Study of RPE65 Gene Therapy to Treat
Leber Congenital Amaurosis

rAAV 2/2.hRPE65p.
hRPE65 (tgAAG76)

University College,
London

NCT00749957 Completed Phase 1/2 Safety and Efficacy Study of AAV-
RPE65 Vector to Treat Leber Congenital
Amaurosis

rAAV2-CB-hRPE65 Applied Genetic
Technologies Corp

NCT00821340 Completed Clinical Trial of Gene Therapy for Leber
Congenital Amaurosis Caused by RPE65
Mutations

rAAV2-hRPE65 Hadassah Medical
Organization

NCT01496040 Completed Clinical Gene Therapy Protocol for the
Treatment of Retinal Dystrophy Caused by
Defects in RPE65

rAAV2-hRPE65 Nantes University
Hospital

NCT00481546 Active Phase I Trial of Gene Vector to Patients With
Retinal Disease Due to RPE65 Mutations

rAAV2-CBSB-hRPE65 University of
Pennsylvania

NCT00516477 Active Safety Study in Subjects with Leber
Congenital Amaurosis

AAV2-hRPE65v2 Spark Therapeutics

NCT00999609 Active Safety and Efficacy Study in Subjects With
Leber Congenital Amaurosis

AAV2-hRPE65v2 Spark Therapeutics

NCT01208389 Active Phase 1 Follow-on Study of AAV2-hRPE65v2
Vector in Subjects With Leber Congenital
Amaurosis (LCA) 2

AAV2-hRPE65v2 Spark Therapeutics

NCT02946879 Recruiting Long-Term Follow-Up Gene Therapy Study
for Leber Congenital Amaurosis OPTIRPE65
(Retinal Dystrophy Associated with Defects
in RPE65)

AAV OPTIRPE65 MeiraGTx UK II Ltd

NCT02781480 Recruiting Clinical Trial of Gene Therapy for the
Treatment of Leber Congenital Amaurosis
(LCA)

AAV RPE65 MeiraGTx UK II Ltd

MERTK-
associated
retinitis
pigmentosa

NCT01482195 Recruiting Trial of Ocular Subretinal Injection of a
Recombinant Adeno-Associated Virus
(rAAV2-VMD2-hMERTK) Gene Vector to
Patients With Retinal Disease Due to
MERTK Mutations

rAAV2-VMD2-
hMERTK

Fowzan Alkuraya

Usher syndrome NCT01505062 Recruiting Study of UshStat in Patients With Retinitis
Pigmentosa Associated With Usher
Syndrome Type 1B

EIAV-CMV-MYO7A
(UshStat)

Sanofi

NCT02065011 Enrolling by
invitation

A Study to Determine the Long-Term Safety,
Tolerability and Biological Activity of
UshStat® in Patients With Usher Syndrome
Type 1B

EIAV-CMV-MYO7A
(UshStat)

Sanofi

Stargardt disease NCT01367444 Recruiting Phase I/II Study of SAR422459 in Patients
With Stargardt’s Macular Degeneration

EIAV-ABCA4
(SAR422459)

Sanofi

NCT01736592 Recruiting Phase I/II Follow-up Study of SAR422459 in
Patients With Stargardt’s Macular
Degeneration

EIAV-ABCA4
(SAR422459)

Sanofi

Choroideremia NCT01461213 Completed Gene Therapy for Blindness Caused by
Choroideremia

rAAV2.REP1 University of Oxford

NCT02553135 Completed Choroideremia Gene Therapy Clinical Trial AAV2-REP1 Byron Lam
NCT02077361 Completed An Open Label Clinical Trial of Retinal Gene

Therapy for Choroideremia
rAAV2.REP1 vector Ian M. MacDonald

NCT02671539 Active THOR - Tübingen Choroideremia Gene
Therapy Trial

rAAV2.REP1 STZ eyetrial

NCT02341807 Active Safety and Dose Escalation Study of AAV2-
hCHM in Subjects with CHM
(Choroideremia) Gene Mutations

AAV2-hCHM Spark Therapeutics

NCT02407678 Recruiting REP1 Gene Replacement Therapy for
Choroideremia

AAV-REP1 University of Oxford

NCT03496012 Recruiting Efficacy and Safety of AAV2-RPE1 for the
Treatment of Choroideremia

AAV2-RPE1 Nightstar
Therapeutics

NCT03507686 Recruiting A Safety Study of Retinal Gene Therapy for
Choroideremia (GEMINI)

AAV2-REP1 Nightstar
Therapeutic

Continued
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Table 1. Continued

Condition Identifier Status Study Title Interventions Sponsor

Wet age-related
macular
degeneration

NCT01494805 Completed Safety and Efficacy Study of rAAV.sFlt-1 in
Patients With Exudative Age-Related
Macular Degeneration

rAAV.sFlt-1 Lions Eye Institute

NCT00109499 Completed Study of AdGVPEDF.11D in Neovascular Age-
related Macular Degeneration (AMD)

AdGVPEDF.11D GenVec

NCT01301443 Completed Phase I Dose Escalation Safety Study of
RetinoStat in Advanced Age-Related
Macular Degeneration (AMD) (GEM)

RetinoStat (EIAV-
CMV-hEndo-
hAngio)

Oxford BioMedica

NCT01024998 Active Safety and Tolerability Study of AAV2-
sFLT01 in Patients with Neovascular Age-
Related Macular Degeneration (AMD)

AAV2-sFLT01 Genzyme, a Sanofi
Company

NCT03066258 Recruiting RGX-314 Gene Therapy for Neovascular AMD
Trial

AAV-VEGF (RGX-314) Regenxbio Inc.

NCT01678872 Enrolling by
invitation

A Follow-up Study to Evaluate the Safety of
RetinoStat® in Patients With Age-Related
Macular Degeneration

RetinoStat (EIAV-
CMV-hEndo-
hAngio)

Oxford BioMedica

Achromatopsia NCT03278873 Recruiting Long-Term Follow-Up Gene Therapy Study
for Achromatopsia CNGB3

AAV - CNGB3 MeiraGTx UK II Ltd

NCT02599922 Recruiting Safety and Efficacy Trial of AAV Gene
Therapy in Patients With CNGB3
Achromatopsia

rAAV2tYF-PR1.7-
hCNGB3

Applied Genetic
Technologies Corp

NCT03001310 Recruiting Gene Therapy for Achromatopsia (CNGB3) AAV-CNGB3 MeiraGTx UK II Ltd
NCT02935517 Recruiting Safety and Efficacy Trial of AAV Gene

Therapy in Patients With CNGA3
Achromatopsia

AGTC-402 Applied Genetic
Technologies Corp

NCT02610582 Active Safety and Efficacy of a Single Subretinal
Injection of rAAV.hCNGA3 in Patients with
CNG3-linked Achromatopsia

rAAV.hCNGA3 STZ eyetrial

X-linked
retinoschisis

NCT02317887 Recruiting Study of RS1 Ocular Gene Transfer for X-
linked Retinoschisis

AAV RS1 National Eye
Institute (NEI)

NCT02416622 Recruiting Safety and Efficacy of rAAV-hRS1 in Patients
With X-linked Retinoschisis (XLRS)

rAAV2tYF-CB-hRS1 Applied Genetic
Technologies Corp

Figure 3. Diagrams of gene delivery vectors including adeno-associated virus (AAV), adenovirus, and second-generation lentivirus. ITR,
inverted terminal repeats; Rep, Replication; Cap, Capsid; E2A/E3/E4/VA, adenovirus genes that mediate replication. LTR, long terminal repeats;
ψ/RRE, Rev response element; VSV-G, vesicular stomatitis virus G protein; GAG, Group-specific antigen; pol, DNA polymerase; tat, Trans-
Activator of Transcription.
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injection with AAV1-RPE65 to a Rpe65 knockout (Rpe65−/−)
mouse model of LCA2 as early as in-utero resulted in
substantial improvements in ERG responses lasting as
late as 24 months of age.16 Another study in which
AAV5-RPE65 was subretinally delivered to a naturally
occurring Rpe65 mutant mouse model, rd12, also showed
improvements in ERG responses and visual guided beha-
viors.17 Additional experiments with the rd12 mice receiv-
ing subretinal AAV2-RPE65 delivery attempted to establish
an in vivo bioassay to evaluate the stability of vectors used
in clinical trials of LCA2.18

Although cone photoreceptors use a pathway inde-
pendent of the RPE for chromophore recycling that
enables them to function in continuous bright light,
studies of patients affected with LCA2 suggest that cone
survival is still dependent on RPE65 isomerase activity,
regardless of the residual cone activity in the absence of
the enzyme.19–21 This is consistent with observations of
rapid cone degeneration in Rpe65−/− and rd12 models.3,22

Self-complementary AAV-RPE65 vectors have been
shown to be capable of restoring cone function and pre-
venting cone degeneration in both rd12 mice and Rpe65
and Rhodopsin double knockout (Rpe65−/− Rho−/−) mice.23,24

The first gene therapy for LCA2 in a large animal mod-
el gained widespread attention in 2001 using a recombin-
ant adeno-associated virus (rAAV2) vector containing
Rpe65 cDNA to treat three Rpe65 mutant dogs (Fig. 3).25 In
this study, a subretinal delivery of the canine Rpe65 gene
carried by the rAAV2 vector, under the control of the
hybrid cytomegalovirus/chicken β-actin (CBA) promoter,
resulted in substantial visual improvements as assessed
by ERG (Fig. 4). Follow-up studies found that subretinal
delivery of recombinant AAV1, AAV4, and AAV5-
mediated RPE65 expression driven by a human promoter

were also capable of restoring visual function, which
remained stable over time.26–33 Additional follow-ups
found that cortical responses, assessed by functional
magnetic resonance imaging (fMRI), were significantly
improved and visually guided behavior was recovered in
treated dogs, suggesting that retinal signals were cor-
rectly propagated to the visual processing centers of the
brain.28,31,32,34

Unlike most conventional treatment methods, the
efficacy of gene therapies for LCA2 is not heavily affected
by the disease stage. The previously mentioned studies,
which demonstrated significant therapeutic efficacy,
included animals exhibiting mid-to-late stage disease,
such as dogs treated at 30 months of age and rd12 mice
treated at 3 months of age.26,35 Even Rpe65−/− mice trea-
ted as late as 24 months of age resulted in mild but sig-
nificant (16%) ERG improvements.36 These results
indicate that an adult patient qualified for Phase I trials
would have a reasonable chance of obtaining improved
visual function after treatment.

Previous animal studies laid a foundation of proof-of-
concept studies that allowed researchers to conduct
multiple phase I/II trials which eventually led to an FDA-
approved gene therapy after a successful phase III trial in
late 2017/early 2018.37–43 The studies delivered an AAV2
vector carrying a normal human Rpe65 cDNA through
subretinal injection. All trials reported clinically measur-
able visual improvement, albeit with varied magnitude
and significance. In addition, no vector-related adverse
events or toxic immune responses were elicited despite
differences in postoperative steroid use, doses delivered,
promoters used, vector specifics, and anesthesia during
delivery.41 Improvement in vision was maintained 3
years after treatment,42,44 but progressively declined

Figure 4. Delivery of a viral vector via intraocular injection. Maximal 1–2 μl of viral mixture in rodents or 200 μl in large eyes can be injected
into the subretinal space through a small scleral incision. A successful injection was judged by creation of a small subretinal fluid bleb.
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after 6 years because of photoreceptor degeneration in
the treated retina as in the untreated retina.45 Moreover,
in cases where vector was delivered subfoveally and
caused a foveal detachment, patients with LCA2 typically
reported no change in foveal light sensitivity but instead
reported improvement extrafoveally.39,46 In a 3-year
study, nearly half of the patients experienced a detached
fovea caused by a vector bleb and further foveal thick-
ness loss.44 A follow-up with optical coherence tomog-
raphy (OCT) analysis suggested that the loss of thickness
resulted from foveal cone loss, which can occur from
potentially damaging effects of subretinal vector-
mediated foveal detachment,45 suggesting that subret-
inal vector delivery in this locale should be approached
cautiously. Notably, in this study, a few patients with
improved extrafoveal function experienced a shift of
their visual fixation away from the fovea into the
superior-temporal retina, known as the ‘pseudo-fovea’,
that coincided with the locale of the vector bleb.47 This
phenomenon results in a change in cortical control of
the ocular muscles such that images are positioned on
this new, more light-sensitive pseudo-fovea.

In summary, human gene therapy for RPE65-LCA2
has been shown to be safe, free of serious complica-
tions, and effective at improving impaired vision, yet
still needs more investigation and exploration.

MERTK-associated autosomal recessive
retinitis pigmentosa
Retinitis pigmentosa (RP) is a retinal rod photoreceptor
specific disease characterized by primary rod photo-
receptor death and degeneration, followed by secondary
cone death.48 RP is one of the most common inherited
blinding retinal diseases, affecting more than one mil-
lion patients worldwide.49,50 The mer receptor tyrosine
kinase (MERTK) is a member of the Axl/Mer/Tyro3
receptor tyrosine kinase family and is necessary for
proper phagocytosis of photoreceptor outer segments
by the RPE. The MERTK-associated form of autosomal
recessive retinitis pigmentosa (arRP) is caused by an
absence of functional MERTK expression, leading to sig-
nificant degeneration of the retina.51 This disease is
very rare; it is only found in isolated populations identi-
fied in the Middle East and the Faroe Islands.
Nevertheless, the profound impact it has on a patient’s
quality of life has attracted the attention of the scien-
tific community.52–54 Since then, several groups have
reported numerous isolated cases of MERTK-associated
arRP in other parts of the world.51,55 Studies simultan-
eously identifying patients with RP and homozygous
mutations in Mertk conclusively linked this gene to the
disease.56 Degeneration of the retina is caused by accu-
mulation of subretinal debris of shed photoreceptor out-
er segments resulting from inability of the RPE to
perform phagocytosis, leading to consequent apoptosis
of retinal cells and progressive deterioration of visual
function as evaluated by ERG.57–59

The most successful gene-replacement study for
MERTK-associated arRP used a lentivirus expressing
MERTK and was successful at preserving retinal struc-
ture and function, as observed by microscopy and ERG
up to 7 months post-injection (Fig. 3).60 A later study
used a fast-acting AAV8 Y733F capsid mutant vector as
early treatment for long-term preservation of retinal
function in a mouse model; this treatment method can
quickly restore MERTK expression before a significant
debris field can incite apoptosis in photoreceptors.61

The effect of Mertk gene therapy was shown to be
improved with a co-administration of AAV expressing
glial cell derived neurotropic factor (GDNF).62 Most
recently, a new method, homology-independent tar-
geted integration (HITI), was reported to treat a Royal
College of Surgeons (RCS) rat, a well-established animal
model for RP resulting from a homozygous 1.9-kb dele-
tion from intron 1 to exon 2 in the Mertk gene.63 The
HITI used CRISPR/Cas9-mediated gene editing to
endogenously insert a wild-type exon 2 at Mertk locus.
Subretinal injection of HITI-AAVs led to statistically sig-
nificant increases in Mertk mRNA and protein expres-
sion levels, preservation of the retina outer nuclear
layer (ONL) thickness, and significant improvement in
ERG b-wave responses.63

A phase I clinical trial of six patients showed no com-
plications that could be attributed to the gene vector
and resulted in improved visual acuity in three of the
patients (ClinicalTrials.gov Identifier: NCT01482195).
However, at 2-year follow-up, two of these patients lost
these improvements, although disease progression
could have caused this. Based on the established safety
profile, the trials are still recruiting to assess the efficacy
of this approach, especially in the population with high-
er starting visual acuity.64

Usher syndrome
Usher syndrome (USH) is a heterogeneous collection of
autosomal recessive disorders, causing a combination
of deafness and blindness in people with an estimated
three-to-six-person prevalence per 100 000 indivi-
duals.65–67 It accounts for 15–20% of RP cases, and 50%
of combined blindness and deafness cases.68,69 The
three clinical subtypes of USH (USH1, USH2, USH3) are
distinguished by severity and the progression of hearing
loss, presence or absence of vestibular dysfunction, and
vision loss from RP, with USH1 being the most severe in
terms of onset, extent of hearing loss, and RP.70–72

Currently, there are 11 protein-encoding genes asso-
ciated with USH reported in the literature. They are con-
sidered to be important for stability and development of
the inner hair bundle, photoreceptor cilium, and phago-
cytosis of the RPE.73–75

The most prevalent causative gene for USH is myosin
VIIa (Myo7A), which encodes a critical actin-base protein
functioning in the inner ear and retina.70,76 Mutations in
Myo7A (USH1b gene) account for approximately 60% of
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all USH1 cases, causing deafness, vestibular dysfunc-
tion, and retinal degeneration with onset during child-
hood.71,77 MYO7A has been found to be expressed in the
RPE, the photoreceptor connecting cilia and synapses. It
is proposed to play a role in intracellular transport,
endocytosis, and cell-cell adhesion.78–81

There are several reported mouse models containing
mutations in the Myo7A gene.82 While they all display
deafness and vestibular dysfunction phenotypes, their
photoreceptors do not undergo degeneration as do
human ones.83,84 However, shaker1 mice, which carry a
mutated Myo7A gene, have been shown to exhibit ret-
inal degeneration when exposed to cycles of bright
light.85,86 This is thought to be caused by pathologies in
melanosome localization, opsin transport through the
collecting cilium, and dysregulation of transducin trans-
location.87–90

Before human trials began, some studies demon-
strated both the requirement of MYO7A for the apical
localization of melanosomes in human RPE cells and that
RPE melanosome localization and opsin transport could
be restored in the shaker1 mouse using a lentivirus con-
taining Myo7A delivered through subretinal injection.91,92

After these findings, Oxford Biomedica UK launched a
phase I clinical trial to evaluate the safety of subretinally
delivered Myo7A using an equine infectious anemia
virus (EAIV) with lentiviral vector (UshStat) in patients
with USH1b (ClinicalTrials.gov Identifier: NCT01505062).93

This was followed by a long-term study of UshStat
safety, tolerability, and biological activity (ClinicalTrials.
gov Identifier: NCT02065011). Concurrently with the
ongoing clinical trials, the safety profile of the EAIV-based
Myo7A gene therapy was assessed in rhesus monkeys.93

However, lentiviral transduction is limited mostly to the
RPE after subretinal delivery of postnatal retina. There is a
clear need to effectively transduce photoreceptors in
patients with USH1b as photoreceptors are the site of the
earliest disease expression. Studies on mice showed that
a photoreceptor mutant phenotype was corrected with
HIV-MYO7A.94,95 As AAV capsid capacity is only approxi-
mately 4.7 kb, one approach is to split the full-length
Myo7A cDNA (6.6kb) into two and package them separ-
ately. Depending on the design, these incomplete cDNAs
are reconstituted into the full gene through recombination
between internal homologous sequences, or trans-splicing,
or a hybrid mix of the two strategies.96–99 Dual AAV vector
delivery methods have since been used to deliver Myo7A to
the subretinal space of C57BL/6 mice,100 shaker1 mice,96 as
well as pigs.101 These approaches have shown promising
results in terms of MYO7A expression in RPE and photore-
ceptors, but require further investigation to establish a
long-term safety profile and therapeutic efficacy before
clinical trials.

Stargardt disease
Stargardt disease, an inherited form of juvenile macular
degeneration, is both clinically and genetically highly

heterogeneous.102 This disease is commonly caused by
recessive mutations in ATP-binding cassette, sub-family A,
member 4 (ABCA4) gene, which encodes a transporter
protein present in photoreceptors and RPE.103 ABCA4
actively transports retinylidene phosphatidylethanol-
amine, and phosphatidylethanolamine from the lumen
to the cytoplasm of photoreceptor outer segments, play-
ing an important role in the visual cycle.104 Mutations
on ABCA4 gene reduce or terminate this transporter
activity, leading to a buildup of potentially toxic bisreti-
noid compounds in the lumen and outer segment mem-
branes of photoreceptors.105,106 The accumulation of
toxic bisretinoid compounds leads to lipofuscin accu-
mulation in the RPE,107 followed by degeneration of RPE
and later of photoreceptors.108 Mice missing ABCA4 also
exhibit formation of lipofuscin granules.109

There are several gene therapy approaches under
investigation to treat Stargardt disease, including the
use of AAV and lentiviruses. Although, similar to
Myo7A, the size of ABCA4 cDNA exceeds the usual pack-
aging capacity of AAVs (4.7 kb) for gene replacement,
different procedures have attempted to surmount this
challenge. Successful expression of ABCA4 using over-
sized AAVs in photoreceptors of Abca4−/− mice resulted
in improved morphology and function of retina.110

Later, a dual AVV trans-splicing strategy that efficiently
reconstituted ABCA4 gene in mice was used and
demonstrated significant phenotype improvement.96

Moreover, lentivirus was also used to infect photorecep-
tors in Abca4−/− mice, which showed better results than
AAV-based methods when subretinal injections of the
vector were performed on postnatal Days 4 and 5.111

Experiments by Binley et al. achieved even more effi-
cient photoreceptor transduction in retinae of non-
human primates using EIAV lentivectors.112

In light of these good results, currently there are two
ongoing Phase I/II clinical trials using gene therapy to
treat Stargardt disease (ClinicalTrials.gov Identifiers:
NCT01367444, NCT01736592). Since 2012, Oxford
BioMedica has performed subretinal injections of EIAV
lentivirus to deliver the ABCA4 gene to patients with
homozygotic mutation of ABCA4 and significant visual
impairment, to assess safety and tolerability of ascend-
ing doses of the virus in both the short and long term.

Choroideremia
Choroideremia is an X-linked recessive progressive reti-
nochoroidal degenerative disease associated with muta-
tions within the choroideremia (CHM) gene. It affects
males in early life, causing night blindness, peripheral
visual field loss, and in most cases, complete blindness
within the first 30 years of onset.113–117 Chorioretinal
atrophy, RPE degeneration, and abnormal ERG responses
of retina sensitivity are seen even before patients report
visual loss.116 Female carriers often present with altered
ERGs and irregular areas of pigmentation on fundus. For
females, this disease is generally asymptomatic in early
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years, although some females can present with severe
disease resulting from unequal inactivation of the X
chromosome.115,118,119

The CHM gene encodes Rab escort protein 1 (REP1),
which recognizes Rab proteins and delivers them to Rab
geranylgeranyl transferase (RabGGTs), thereby participat-
ing in intracellular vesicular transport and in modifica-
tion of Rab via addition of geranylgeranyl groups. This
process, referred to as prenylation, allows Rabs to attach
to lipid bilayers.120,121 Additionally, REP1 escorts preny-
lated Rabs to their destination membrane.117 Mutations
in the CHM gene lead to truncation or absence of REP1,
resulting in defects in delivery of opsin to photoreceptor
outer segments, in phagocytosis of photoreceptor outer
segments by the RPE, and in apical migration of RPE mel-
anosomes.122 As indicated by experimental evidence, the
severity of the CHM phenotype correlates with the sever-
ity of defects in intracellular trafficking processes.123

Chm knockout mice models showed that disease patho-
genesis is associated with independent Rab prenylation
defects that trigger photoreceptor and RPE degeneration.124

A study also found that regardless of whether CHM was
knocked out in photoreceptors or the RPE, defects in the
RPE accelerate degeneration of photoreceptors.125

In vitro and animal studies with Chm knockout mod-
els have been performed using a number of AAV sero-
types. Restoration of REP1 expression and function have
been observed in lymphocytes, fibroblasts, and induced
pluripotent stem cells (iPSCs) derived from choroidere-
mia patients using AAV vectors in vitro.126,127 In 2013,
AAV2-mediated Chm gene was used to achieve func-
tional expression of REP1 in human cells ex vivo and
ChmNull/WT female carriers in vivo.128 AAV8 has also been
demonstrated to reverse the biochemical defects both
in vitro and in the conditional Chm knockout mice.129

There are several clinical studies ongoing evaluating
efficacy and safety of subretinal injections of AAV2-
hCHM (Table 1). A completed phase I/II clinical trial
(ClinicalTrials.gov Identifier: NCT01461213) showed ret-
ina sensitivity, visual improvement, and treatment
safety in patients treated with subfoveal injections of
AAV-REP1.130

Wet age-related macular degeneration
Wet (exudative) age-related macular degeneration
(AMD) is the leading cause of blindness for people over
65 years of age. Current treatments for AMD involve
inhibition of vascular endothelial growth factor (VEGF)
with antibodies, RNA aptamers, or soluble receptors.131–133

VEGF is implicated in intraocular neovascularization
associated with diabetic retinopathy and age-related
macular degeneration, promoting damaging neovascu-
larization in the choroidal vasculature.134,135 The cur-
rent VEGF antibody treatment used in practice requires
long-term repetitive intravitreal injections, which
places significant financial and psychological burden on
the patient.

All VEGF isoforms bind to two type III receptor tyro-
sine kinases, FLT1 and KDR (also known as FLK1).136,137

Several studies have shown that injecting AAV2 with
full-length soluble FLT-1 (sFLT1) subretinally can safely
inhibit ocular neovascularization for up to 8 and 17
months postinjection in mice and in monkeys, respect-
ively.138,139 A study using an AAV2 vector with a chi-
meric soluble protein (AAV2-sFLT01) revealed that the
protein was consistently expressed and was effective at
managing neovascularization in a rodent model with
minimum toxicity.138–141 In 2017, a phase I/II clinical
trial to treat wet AMD was completed (ClinicalTrials.gov
Identifier: NCT01494805), in which a single subretinal
injection of rAAV.sFlt-1 into a patient’s eyes was found
to be safe, highly reproducible, and may reduce ranibi-
zumab retreatments.142,143 Intravitreal injection of
AAV2-sFLT01 was also evaluated in another ongoing
clinical trial (ClinicalTrials.gov Identifier: NCT01024998)
and was found to be safe and well tolerated at all
injected doses.144

Soluble VEGF receptors are not the only way to sup-
press angiogenesis in the eye. Pigment epithelium-
derived factor (PEDF), produced during normal wound
repair, endostatin, cleavage product of collagen VII, and
angiostatin, cleavage product of plasminogen, are
endogenous proteins that attenuate physiologic neovas-
cularization.145–147 Studies have shown that AAV-driven
upregulation of PEDF, endostatin, or angiostatin,
resulted in suppression of laser-induced choroidal neo-
vascularization (CNV) in mice.148–150 This led to the
launch of a now completed phase I clinical trial
(ClinicalTrials.gov Identifier: NCT01024998), in which a
modified AAV-PEDF (AdGVPEDF.11D) was delivered
intravitreally.151 The high dose treatment group showed
a slightly lower neovascular lesion size than the low
dose group, but the effect was not lasting, and thus not
viable for management of a chronic disease such as
AMD.152 Concurrently, a study reported that subretinal
delivery of a EIAV lentivector encoding LacZ resulted in
long-term expression of LacZ in the RPE for up to 1 year
in mice. Subretinal injection of the same vector, but
encoding for murine angiostatin and endostatin,
resulted in suppression of laser CNV.153 This resulted in
a phase I clinical study completed in 2017, as well as a
long-term follow-up cohort (ClinicalTrials.gov Identi-
fiers: NCT01301443 and NCT01678872) in which EIAV
expressing endostatin and angiostatin (RetinoStat) was
used to treat late-stage AMD. At completion, the trial
reported safety, tolerability, and long-term therapeutic
gene expression (up to 4.5 years), showing promise as a
platform for chronic disease treatment. However, the
treatment was not reliable in eliminating sub- and
intra-retinal fluid in severe wet AMD.154

Achromatopsia
Achromatopsia (ACHM) is characterized by poor central
visual acuity (<20/200), photophobia, complete color
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blindness, and reduced cone-mediated ERG response
amplitudes, and has a prevalence of about 1 in 30 000.155

It has recently been shown that cone degeneration
begins early in childhood, with deterioration progressing
at a moderate rate.156 A combined 80% of all ACHM cases
can be characterized by mutations in genes encoding the
cone-specification channel, cyclic nucleotide gated chan-
nel α3 and β3 (CNGA3 and CNGB3), while fewer than 5%
of all cases combined are caused by mutations in the
cone-specific α subunit of transducin (GNAT2), activating
transcription factor 6 (ATF6), and α subunit of cone-
specific phosphodiesterase (PDE6C).157–159 The first gene
therapy for ACHM was performed in a mouse carrying a
recessive mutation in Gnat2, resulting in little to no
cone-mediated ERG and poor visual acuity. Subretinal
injection of AAV5 containing Gnat2 driven by the human
red cone opsin promoter was shown to restore cone-
mediated ERG amplitudes and cone-mediated behavior
responses to the levels of the age-matched wild-type
mice.160,161

Delivery of CNGA3 and GNAT2 using AAV5/AAV8-
based vectors has been shown to normalize protein
expression and improve vision in murine models of
CNGA3 and CNGB3 forms of ACHM.162–164 Subretinal
injection of AAV5-CNGB3 in ACHM-affected dogs, or
AAV5-CNGA3 in diseased sheep both resulted in restor-
ation of cone function and day vision, which lasted up
to 33 months in dogs and up to 3 years in sheep.165,166

To optimize the effectiveness, studies also showed that
decreasing the length of promoter and using AAV2 with
single tyrosine-to-phenylalanine (YF) mutations can
increase the efficiency for CNGB3 expression.167,168

These studies have resulted in initiation of several inde-
pendent phase I/II clinical trials for both CNGA3- and
CNGB3-linked ACHM launched in Europe by STZ eyetrial
and MeiraGTx, and in the United States by AGTC
(Table 1). All these approaches rely on modified rAAV2-
based vectors delivered with a single subretinal injec-
tion to supplement the affected gene and aim to assess
the safety and efficacy of the treatment.

X-linked juvenile retinoschisis
X-linked juvenile retinoschisis (XLRS) is the leading
cause of monogenic macular dystrophy with between
1:5 000 and 1:25 000 males afflicted.169 XLRS is typically
classified by localized splitting in the retina (schisis)
and an unusual electronegative ERG with a preserved a-
wave and a diminished b-wave.170–172 It starts with ret-
inal presentation in early childhood, exacerbation of
symptoms in teenage years, and then stabilizes during
adulthood.169,173

XLRS is associated with mutations in the retinoschisin
(RS1) gene, which encodes the RS1 protein (24 kDa) secreted
from retinal photoreceptors with a discoidin domain that
is likely to be involved in cell adhesion.174–177 It was first
reported that intravitreal delivery of an AAV2 vector
containing murine RS1 cDNA driven by cytomegalovirus

promoter in the Rs1h knockout mice at 13 weeks of age
led to visual improvements as tracked by ERG and schi-
sis cavities out to 6 months of age.178 Subretinal delivery
of AAV5 vector expressing murine opsin promoter driv-
ing human RS1 cDNA or intravitreal delivery of AAV8
vector expressing human retinoschisin promoter driv-
ing human RS1 cDNA into Rs1h-KO mice at young stage
(P14 to 2 month) both showed improved retinal structure
and function.179,180 However, treatment at 7 months of age
improved only retinal structure and not ERG function,181

indicating a critical window of treatment. Currently, a
phase I/II clinical study is being conducted to evaluate the
safety and efficacy of a rAAV vector expressing retinoschi-
sin (rAAV2tYF-CB-hRS1) delivered intravitreally in XLRS
patients (ClinicalTrials.gov Identifier: NCT02416622).

CRISPR/Cas9-mediated gene and
mutation-independent therapy
Although current gene therapy offers many promising
treatments for various human diseases, its application
is often limited to a narrow spectrum of diseases and
patient population, because it can only be directed to a
single gene. Similarly, in current regenerative medicine,
the application of endogenous stem cells in tissue
repair/regeneration represents an important method in
treatment of many diseases. Promising results have
been demonstrated in mouse liver, zebrafish heart, and
human lens.182–184 However, as in gene therapy,
endogenous stem cell treatment can be applied to only
a very narrow spectrum of disease. The major challenge
is that normal genetic makeup and function are
required in the starting cells for tissue regeneration; if
the starting cell type harbors a causal genetic mutation
which renders subsequently generated cells susceptible
to the same disease etiology, then regenerated cells will
assume the previous cell fate.

One approach to overcome the above drawbacks is to
combine the advantages of both gene therapy and regen-
erative medicine. The resulting method is called thera-
peutic cellular reprogramming. Using CRISPR/Cas9-based
gene editing, this strategy switches a cell type sensitive
to a mutation to a cell type that is resistant to the same
mutation, with related function. Therefore, this strategy
eliminates the occurrence of underlying mutation, while
preserving tissue structure and function. As a result, dis-
tantly related cells can be directly converted in vivo by
appropriate combinations of developmentally relevant
transcription factors,185 expanding the application of
conventional regenerative medicine in both disease
spectrum and patient population.

The potential of therapeutic cellular reprogramming
was first examined on RP. As RP is caused by mutations
in over 200 genes, the therapeutic impact of conventional
gene therapy is limited. Acute gene knockout of either
rod determinant Nrl or its downstream transcriptional
factor Nr2e3 showed successful rod to cone reprogram-
ming in adult rod photoreceptors.186,187 The resulting
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cone photoreceptors demonstrated resistance to muta-
tions in RP-specific genes on rod photoreceptors, which
consequently prevented secondary cone loss. More
importantly, by combining an AAV-based delivery sys-
tem with CRISPR/Cas9-mediated targeted inactivation of
Nrl or Nr3e3, successfully in vivo reprogramming of rod
photoreceptors into cone photoreceptors with conse-
quent retinal photoreceptor preservation and visual res-
cue was achieved (Fig. 5).188,189 These results indicate
that therapeutic cellular reprogramming can serve as a
novel treatment approach that is gene- and mutation-
independent, broadening implications for genetic disease
therapy.

Retinal gene therapy has always been at the forefront
of human gene therapy and much progress has been
made in retinal gene therapy. The successful approval
of the first retinal gene therapy for LCA2 caused by
RPE65 mutations has ushered in a new era in human
gene therapy. The application of CRISPR/Cas9-mediated
gene editing technology is transforming how the gene
therapy is administered. We anticipate great progress
and further approvals of retinal gene therapy products
in the near future.
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