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H I G H L I G H T S

• The nnUNet model demonstrates effectiveness in automatically locating and segmenting spinal bone metastases in MRI images.
• The study reports high Dice coefficients for both training and test sets, indicating strong agreement between the nnUNet model segmentation and manual 

delineation by physicians.
• The nnUNet model not only effectively segments bone metastases but also demonstrates capability in accurately segmenting small lesions.
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A B S T R A C T

Objective: Variability exists in the subjective delineation of tumor areas in MRI scans of patients with spinal bone 
metastases. This research aims to investigate the efficacy of the nnUNet radiomics model for automatic seg
mentation and identification of spinal bone metastases.
Methods: A cohort of 118 patients diagnosed with spinal bone metastases at our institution between January 2020 
and December 2023 was enrolled. They were randomly divided into a training set (n = 78) and a test set (n =
40). The nnUNet radiomics segmentation model was developed, employing manual delineations of tumor areas 
by physicians as the reference standard. Both methods were utilized to compute tumor area measurements, and 
the segmentation performance and consistency of the nnUNet model were assessed.
Results: The nnUNet model demonstrated effective localization and segmentation of metastases, including smaller 
lesions. The Dice coefficients for the training and test sets were 0.926 and 0.824, respectively. Within the test set, 
the Dice coefficients for lumbar and thoracic vertebrae were 0.838 and 0.785, respectively. Strong linear cor
relation was observed between the nnUNet model segmentation and physician-delineated tumor areas in 40 
patients (R2 = 0.998, P < 0.001).
Conclusions: The nnUNet model exhibits efficacy in automatically localizing and segmenting spinal bone me
tastases in MRI scans.

1. Introduction

Spinal metastatic tumors represent a subset of bone metastases, 
constituting a prevalent pathology necessitating surgical intervention 
[1]. The spinal system in the human body houses a significant reservoir 
of red bone marrow and a dense network of capillaries, facilitating 
robust blood circulation that promotes the proliferation of tumor emboli 
[2,3]. Consequently, the bone, encompassing the spinal system, serves 
as a common metastatic destination for various malignant tumors, 

encompassing both carcinomas and sarcomas [4]. Spinal bone metas
tases represent a predominant proportion, exceeding 70 %, of all cases 
diagnosed with bone metastases [5]. Between 5 % to 10 % of individuals 
afflicted with cancer will experience the onset of spinal bone metastases, 
posing a grave threat to the patient’s overall well-being and survival [6]. 
Symptoms commonly associated with spinal bone metastases include 
pain, pathological fractures, hypercalcemia, and nerve compression, 
with pain being the most prevalent and characteristic manifestation [7]. 
Early and accurate diagnosis of spinal metastatic tumor disease is 
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paramount in clinical practice for effective treatment strategies [8,9].
The advancement of medical expertise and the refinement of clinical 

treatment methodologies have significantly enhanced both the diag
nostic and therapeutic efficacy in managing spinal bone metastases 
[10,11]. Nevertheless, radiologists currently rely on manual identifica
tion methods to detect spinal bone metastases in MRI images, a process 
contingent upon subjective expertise and professional experience [12]. 
This reliance can lead to increased workload, physical fatigue, and 
susceptibility to environmental variations, potentially resulting in 
disparate interpretations of the same image data. These factors heighten 
the risk of missed diagnoses and misinterpretations in subsequent 
treatment decisions [13,14]. Therefore, there is a critical need for the 
development of a reliable quantitative tool capable of automatically 
segmenting spinal bone metastases.

Quantitative noninvasive methodologies, exemplified by radiomics, 
have garnered significant interest within the medical domain [15,16]. 
Nonetheless, the necessity for manual segmentation by physicians per
sists in predicting medical image targets, thereby constraining the 
clinical utility of these approaches [14,17]. Accordingly, this study 
employs a deep learning model to automate the segmentation of spinal 
bone metastases, offering a promising avenue for achieving clinically 
effective segmentation of this pathology.

2. Materials and methods

2.1. General information of subject

For this investigation, a cohort of 118 patients diagnosed with spinal 
bone metastases was assembled from our hospital, spanning from 
January 2020 to December 2023. This cohort comprised 73 male and 45 
female patients, with ages ranging from 37 to 90 years and a mean age of 
(61.5 ± 4.9) years.

2.2. Imaging method

Prior to surgical intervention, all patients underwent MRI scans using 
a 3.0 T MRI scanner (Siemens Magnetom Trio, Erlangen, Germany). The 
imaging protocol included conventional sagittal plane T1-weighted and 
T2-weighted sequences, fat inhibition T2-weighted sequences, cross- 
sectional T1-weighted and T2-weighted sequences, and coronal plane 
T1-weighted sequences. The localization of spinal bone metastases for 
each patient was meticulously delineated by a seasoned physician using 
the medical software ITK-SNAP (version 3.6.0) as the reference standard 
(Fig. 1).

2.3. Preprocessing of data image

Augmenting the dataset size can enhance the generalization and 
segmentation efficacy of deep neural networks. Consequently, this paper 
incorporates various pre-processing techniques, including rotation and 
scaling, addition of Gaussian noise, Gaussian blur, brightness adjust
ment, contrast enhancement, low pixel simulation, gamma correction, 
and image manipulation, to augment the dataset volume.

2.4. Construction of segmentation model

In this investigation, the model is trained using nnUNet, an adaptive 
variant of the UNet framework. The nnUNet network architecture for 
spinal bone metastases segmentation is based on U-Net and consists of 
an encoder section for image analysis and feature extraction, paired with 
a corresponding decoder section for generating segmented block graphs. 
The nnUNet model enhances the traditional U-Net structure by inte
grating additional losses at each decoder layer, excluding the bottom 
two layers during decoding. This adaptation facilitates deeper injection 
of gradient information into the network [18].

For our training dataset, preprocessing is conducted, and the nnUNet 

network model autonomously generates the requisite hyperparameters 
for model training based on the preprocessed data and the available 
video memory size. The patch size is set to 32 × 256 × 224, with a 
corresponding batch size of 2. The network structure, derived from 
nnUNet multi-organ image segmentation, is illustrated in Fig. 2. Within 
the entire network architecture, each encoder and decoder module 
consists of two Conv blocks, employing the Leaky Rectified Linear Unit 
(LReLU) activation function, and a convolutional kernel size of 3 × 3 ×
3. A total of 320 high-level feature maps are obtained through down
sampling, followed by upsampling to restore the original size, culmi
nating in the output of the segment map via softmax activation [19].

2.5. Loss function

The choice of loss function significantly impacts the learning dy
namics and convergence of the network, playing a crucial role in its 

Fig. 1. Delineation of the affected vertebra.

Fig. 2. Network structure diagram based on nnUNet radiomics image 
segmentation.
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overall performance. Among the commonly used loss functions in seg
mentation tasks, dice loss is particularly prominent. It measures the 
overlap between the predicted segmentation map and the ground truth, 
effectively addressing the challenge posed by the significant imbalance 
between positive and negative samples, especially in tasks involving 
small foreground areas.

In tackling the learning of segmentation for challenging samples, 
focal loss stands out as a valuable tool. This loss function enhances the 
network’s focus on difficult samples by dynamically adjusting the 
weight reduction rate for simpler samples. Additionally, TopK loss 
strategically directs the network’s attention towards a selected subset of 
challenging samples during training. This approach enables the model to 
effectively concentrate on complex and unbalanced samples, thereby 
optimizing its learning process.

To address the issue of image imbalance, this study amalgamates the 
merits of dice loss, focal loss, and TopK loss, introducing the novel 
Hybrid Multi-task Enhanced Penalization (HMEP) loss and Easy- 
Penalized (EP) loss. These innovations empower the network to thor
oughly investigate the foreground region, while prioritizing the scrutiny 
of challenging and imbalanced samples, thus augmenting the network’s 
learning capability. The HMEP loss is formulated as a composite loss 
function, integrating dice loss, focal loss, and TopK loss: 

LHMEP = Ldice + Lfocal + LTopk (1) 

EP loss is a composite loss function of dice loss and focal loss: 

LEP = Ldice + Lfocal (2) 

Ldice, Lfocal, and LTopK are dice losses, focal losses and TopK losses, 
respectively: 
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Setting K to 10 % of the worst-performing pixels.

2.6. Training of segmentation models

The dataset provided here is divided into a training set of 78 in
stances and a separate test set of 40 instances. During the phases of 
network training and evaluation, distinct neural architectures are 
trained independently using a 50 % cross-validation strategy. Subse
quently, the optimal network configuration is determined through 
evaluation on the test set. During testing, multi-model integration 
inference is executed on the identified optimal network, resulting in the 
generation of an automated segmentation prediction image. The delin
eation process for spinal bone metastases, as outlined in this investiga
tion and based on nnUNet’s radiomics, is visually depicted in Fig. 3. 
Initially, the input data undergo preprocessing before the training and 
evaluation of the network model.

2.7. Evaluation of segmentation model

In evaluating the segmentation model to achieve a quantitative 
analysis of the segmentation efficacy, this paper employs the Dice co
efficient, a widely utilized metric for image segmentation evaluation. 

The Dice coefficient serves as a measure of similarity and overlap be
tween two samples, calculated using the following method: 

Dice =
2|X ∩ Y|
|X| + |Y|

(6) 

X is the true value of the label; Y is the predicted value of the model. The 
coefficient of the numerator is 2 because the denominator is double- 
counting the common elements between X and Y.

3. Results

3.1. Comparison of segmentation effect

Fig. 4 illustrates the MRI segmentation outcomes produced by the 
nnUNet model for patients with spinal bone metastases. The nnUNet 
model accurately identifies and segments metastatic tumors in spinal 
MRI images, showing expertise in delineating even small lesions. The 
generated results closely resemble those delineated manually.

3.2. Evaluation of segmentation performance

Fig. 5 presents the results of the segmentation performance evalua
tion for spinal bone metastases on MRI images. The Dice coefficients 
achieved for the training set and the test set are 0.926 and 0.824, 
respectively, indicating the nnUNet’s strong segmentation performance. 
Within the test set, the Dice coefficient for the lumbar spine reached 
0.838, which surpassed the segmentation performance observed for the 
thoracic spine (0.785).

3.3. Segmentation consistency detection

To assess the variance between the area of spinal bone metastases 
derived from the mesh segmentation model and the manually calculated 
area by physicians, data from 40 patients in the test set were analyzed 
for consistency. A scatter plot illustrating the area values of spinal bone 
metastases against the predicted values is depicted in Fig. 6. Notably, a 
strong linear correlation is observed between the manually delineated 
actual values and the segmentation values predicted by the network 
model (y = 1.0012x + 0.7097, R2 = 0.998, P < 0.001).

4. Discussion

The spine stands as the most prevalent site for metastasis of malig
nant tumors, with an incidence ranging from 30 % to 50 % [4]. Meta
static tumors induce pain and functional impairments, significantly 
impacting the quality of life for affected patients [20]. As metastatic 
tumors progress, they compromise the mechanical integrity of the 
vertebral body, precipitating secondary vertebral fractures, nerve root 
injury, and spinal cord compression [7,21]. As of now, the challenge of 
automatically localizing and segmenting spinal bone metastases in MRI 
images remains unresolved [22]. In clinical practice, the localization 
and segmentation of spinal bone metastases rely on the subjective 
manual segmentation performed by imaging physicians. However, this 
process imposes a heavy workload and demands a significant amount of 

Fig. 3. Automatic segmentation process of spinal metastatic tumor segmenta
tion model.
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time from the physicians [14,23]. Hence, investigating a computer- 
aided method to assist radiologists in automatically and accurately 
localizing and segmenting lung cancer spinal bone metastases bears 
substantial clinical significance.

As computer performance advances and deep learning rapidly 
evolves, convolutional neural networks have become ubiquitous in 
medical image segmentation and detection, yielding remarkable 
achievements [24]. In recent years, nnUNet has emerged as a leading 
tool in medical image segmentation, widely adopted and demonstrating 
significant efficacy [25]. Built upon the U-Net architecture, nnUNet 

extends this framework by integrating additional losses into each 
decoder layer, thereby enhancing the capabilities of the traditional U- 
Net structure [26]. This modification enables deeper injection of 
gradient information into the network, thereby facilitating the training 
of all layers within the network architecture [18]. The nnUNet imaging 
genomics model stands out in tumor segmentation tasks owing to several 
key advantages. These include its flexible network structure, automated 
hyperparameter optimization, comprehensive support for data 
augmentation and post-processing, and remarkable performance capa
bilities. Alqaoud et al. [27] applied nnUNet for segmenting breast tu
mors, leveraging preoperative multi-modal MRI and intraoperative 
ultrasound to improve surgical precision and patient outcomes. 
Krishnan et al. [28] showcased nnUNet’s ability to automatically 
quantify kidney and cyst volumes from MRI images, offering potential 
for prognostic assessment and therapeutic monitoring in autosomal 
dominant polycystic kidney disease.

In this study, MRI images of patients with spinal bone metastases 
were automatically analyzed using the nnUNet model. The findings 
showed that nnUNet successfully localized and segmented metastatic 
tumors on spinal MRI images, including small lesions, achieving results 
comparable to manual delineation. Liu et al. [29] conducted research on 
bone imaging and bone transfer utilizing the nnUNet network, which 
shares similarities with our work. Their study validated the accuracy of 
the network model.

To conduct a quantitative analysis of segmentation efficacy, this 
study utilizes the Dice coefficient, a widely recognized metric for eval
uating image segmentation. The Dice coefficients obtained for the 
training set and the test set are 0.926 and 0.824, respectively, indicating 
commendable segmentation performance by nnUNet. Within the test 
set, the Dice coefficient for the lumbar spine was measured at 0.838, 
which surpassed the segmentation performance observed for the 
thoracic spine (0.785). Previous findings have indicated that the highest 
proportion of patients exhibit single lesions in the lumbar and thoracic 
regions. Consequently, it has been inferred that vertebral metastatic 
tumors tend to invade the thoracolumbar region [30]. The findings of 
this study further underscore the value of the network model for MRI 
image recognition of spinal metastatic tumor patients in future clinical 
settings. Moreover, to assess the disparity between the area of spinal 
bone metastases obtained by the mesh segmentation model and that 
calculated manually by doctors, the consistency of patient sketched data 
was rigorously tested. The results revealed a robust linear correlation 
between manually sketched real values and network model segmenta
tion values. In clinical practice, while manual localization and seg
mentation of bone metastases are crucial, they can be subject to 

Fig. 4. Segmentation results of spinal bone metastases. A: Original image. B: Manually sketch the result. C: nnUNet model segmentation results. D: Tumor 
enlargement area. Red for manual sketch, yellow for model segmentation. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.)

Fig. 5. Evaluation of segmentation performance of nnUNet model.

Fig. 6. Consistency test between model segmentation and manual 
segmentation.
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subjective differences in segmentation. Therefore, this study holds sig
nificant clinical value in enabling the segmentation of tumor location 
regions across the entire MRI image.

The study is subject to certain limitations. Firstly, the dataset size in 
this study is limited. Future efforts will involve the inclusion of multi- 
center image data to enhance the robustness of the findings. Secondly, 
the patient image data included in this study comprises only MRI, while 
CT data will be incorporated in future investigations for a comprehen
sive comparative analysis. Lastly, the utilization of various neural 
network architectures that incorporate advanced feature extraction 
methods [31], optimization strategies [32,33], or integrated with 
computational analysis approaches [34,35] can greatly improve the 
nnUNet model’s performance in the automatic detection and segmen
tation of spinal bone metastases in MRI scans.

5. Conclusion

This paper investigated the automatic localization and segmentation 
of spinal bone metastases in MRI using the nnUNet model. The results 
demonstrate that this method exhibits excellent segmentation effi
ciency, offering imaging doctors a quantitative and non-invasive tool for 
image segmentation.
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