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Abstract
Since the first report of a genome-wide association study (GWAS) on human age-related macular degeneration, GWAS has
successfully been used to discover genetic variants for a variety of complex human diseases and/or traits, and thousands of
associated loci have been identified. However, the underlying mechanisms for these loci remain largely unknown. To make these
GWAS findings more useful, it is necessary to perform in-depth data mining. The data analysis in the post-GWAS era will include
the following aspects: fine-mapping of susceptibility regions to identify susceptibility genes for elucidating the biological
mechanism of action; joint analysis of susceptibility genes in different diseases; integration of GWAS, transcriptome, and
epigenetic data to analyze expression and methylation quantitative trait loci at the whole-genome level, and find single-nucleotide
polymorphisms that influence gene expression and DNA methylation; genome-wide association analysis of disease-related DNA
copy number variations. Applying these strategies and methods will serve to strengthen GWAS data to enhance the utility and
significance of GWAS in improving understanding of the genetics of complex diseases or traits and translate these findings for
clinical applications.
© 2016 Chinese Medical Association. Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction

During the last decade, genome-wide association
study (GWAS) has been widely employed in case-
control settings to identify the genetic variants
[mostly single-nucleotide polymorphisms (SNPs)]
associated with complex human diseases or traits.
Since the first GWAS on human age-related macular
degeneration was reported in 2005,1 numerous GWASs
on other diseases have been documented, including
coronary heart disease,2,3 diabetes,4 and several forms
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of cancer such as esophageal cancer,5,6 lung cancer,3

and pancreatic cancer,7 resulting in the establishment
of a massive genotyping database. According to the US
National Human Genome Research Institute, to date,
there have been at least 1751 GWAS papers published,
which have collectively identified 11,912 SNPs asso-
ciated with various diseases.6 Although many loci have
been identified for many diseases, the underlying
mechanisms of action of these loci in disease devel-
opment and progression are largely unknown, which
limits the clinical applications of GWAS results. In
recent years, several strategies to make the GWAS
findings more useful have been proposed.7,8 In this
minireview, we summarize and discuss the strategies
available for the deep analysis of GWAS data to obtain
further insight into the function and underlying mech-
anisms of associated loci and their biological actions.

Fine-mapping of susceptibility regions and their
functional characterization

The major challenges in the post-GWAS era are to
determine the function of identified susceptibility vari-
ants, characterize the biological action of the suscepti-
bility genes, and clarify the regulatory mechanism if the
variants are located within non-coding elements such as
the gene promoter region, untranslated region, enhancer
region, or regions that generate non-coding RNAs.
Characterization of the biologicalmechanismunderlying
associations between genetic variants and diseases can
provide a better understanding of disease pathogenesis,
and therefore lead to better clinical care of patients.

Numerous studies have shown that genetic variants
such as SNPs that are associated with diseases may not
always be located in coding regions that produce pro-
teins. In fact, the majority of disease-associated vari-
ants are located in non-coding regions, including the
introns of genes. Although such variants in non-coding
regions would not cause an amino acid change in the
protein, they can nevertheless affect regulation of gene
expression.6 However, the regulatory functions of
SNPs can be complex, involving effects on RNA
splicing, transcription factor binding, DNA methyl-
ation, and microRNA (miRNA) recruitment.9 For
example, it has been found that SNPs in the telomere-
related gene are associated with an increased risk of
developing various types of human cancers and influ-
ence the length of the telomere, with direct associa-
tions between specific variants and telomere length.
For example, the rs10069690 SNP in the telomere gene
is significantly associated with the risks of breast,
prostate, and invasive ovarian cancer linked to the
BRCA1 mutation. Functional analysis of Bojesen
et al10 showed that the risk genotype regulates alter-
native splicing, resulting in a truncated telomerase
reverse transcriptase transcript that may affect telo-
merase activity. Thus, this study illustrated the func-
tional relevance of a non-coding variant associated
with multiple types of cancer, providing a potential
strategy for targeted therapy. Another good example of
such combination analysis of GWAS with functional
characterization is a study conducted by Zheng et al,11

who identified an SNP (rs11655237G>A) located
within a “gene” producing long intergenic non-coding
RNA (lincRNA), LINC00673, whose variant genotype
is associated with pancreatic cancer risk. This lincRNA
could reinforce the interaction of PTPN11 with PRPF19,
an E3 ligase, in turn inducing PTPN11 degradation
through ubiquitination, which causes diminished Src/
extracelluar signal-regulated kinase (ERK) oncogenic
signaling and enhanced activation of the signal transducer
and activator of transcription 1 (STAT1)-dependent anti-
tumor response. The G to A change at rs11655237 in the
LINC00673 exon creates a target site for miRNA-1231
binding, which diminishes the effect of LINC00673 in
an allele-specific manner, and thus confers susceptibility
to tumorigenesis. These findings shed new light on the
important role of LINC00673 in maintaining cell ho-
meostasis, and demonstrate that functional germline
variation might confer susceptibility to pancreatic cancer.

Joint analysis of susceptibility variants associated
with multiple diseases

Many disease-associated susceptibility loci or
regions identified by GWAS are disease-specific;
however, some susceptibility regions or loci shared
by multiple diseases have also been found. For
example, the locus at chromosomal region 8q24 was
first identified as a susceptibility region for prostate
cancer, but was subsequently associated with suscep-
tibility to other types of cancer, including colorectal,
breast, and bladder cancer.12 Similarly, the locus at
6q27 has been reported to be associated with suscep-
tibility to Crohn's disease13 and rheumatoid arthritis,14

as well as vitiligo15,16 and other related diseases. This
suggests that different types of diseases may share a
common genetic susceptibility mechanism. Therefore,
it is interesting and important to analyze the GWAS
data obtained for multiple diseases jointly, which
would improve the efficiency in finding common sus-
ceptibility loci for common diseases and reveal the
underlying mechanisms for some diseases that may
share the same genetics.
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Another example is a study in which 213 SNPs
previously associated with 14 other tumors were
selected for a meta-analysis to validate their potential
associations with endometrial cancer. The results
showed that among these SNPs associated with other
cancers, 14 were additionally associated with the risk
of endometrial cancer, including 5 significantly asso-
ciated with both breast cancer and endometrial can-
cer.17 These results indicate that the occurrence and
development of some types of cancer may share
common pathological pathways. Therefore, joint
analysis of GWAS data for multiple cancer types may
help to elucidate the common molecular mechanism of
different types of malignancies and establish therapies
and/or prevention measures that are transferable be-
tween cancer types.18

Combined analysis of GWAS results with tran-
scriptional or epigenetic data

In recent years, high-throughput sequencing tech-
niques have been highly developed, and the newly
emerging next-generation sequencing technology has
been widely applied to generate big data at the
genome, transcriptome, and epigenome levels. The
explosive growth of such data has now made it possible
to perform confluent analysis. Complex human dis-
eases such as malignancies fit the model of interactions
among multiple pathological processes at the genome,
transcriptome, and epigenome levels. However, previ-
ous studies have often focused on only one of these
levels at a time, which limits understanding of disease
pathogenesis to a single aspect. Systemic analysis of
data at multiple levels simultaneously, including the
genome, transcriptome, and epigenome, would provide
a more comprehensive understanding of certain dis-
eases, and therefore help to inform strategies for early
diagnosis, drug development, individualized treatment
and prevention of the disease.

Combined analysis of GWAS data with whole-genome
mRNA expression data

An expression quantitative trait locus (eQTL) is a
basic statistic used in the combined analysis of GWAS
data and whole-genome transcriptional results, and can
be applied to identify the gene number in trait-
associated areas of the genome.19 PrediXcan is a
commonly used statistical method that can integrate
whole-genome mRNA expression data and genome-
wide genotyping data to explore whether the genetic
variants associated with a disease or trait have an impact
on gene expression.8 The association between a genetic
variant and the disease or trait may be strengthened
through eQTL analysis, because of the functional
relevance. Schadt et al20 developed five underlying
inter-modulating models by further exploring the mode
of action among SNPs, genes, and phenotypes in the
process of analyzing the data of genome-wide variants
and whole-genome mRNA expression profiles, and
identified three novel susceptibility genes for obesity
using a causal model based on a likelihood method.

Combined analysis of GWAS data with whole-genome
epigenetic results

Methylation of quantitative trait loci (meQTLs) re-
fers to genetic variations in the genome that may affect
the DNA methylation status. A GWAS can identify
SNPs that are associated with diseases or traits at the
DNA level, whereas an epigenome-wide association
study (EWAS) can identify epigenetic alterations that
are associated with diseases or traits. By integrating
these two types of data, the modulation caused by
epigenetic change of genetic variants leading to gene
expression alterations can be identified. This type of
analysis may also strengthen the associations between
the genetic variants and certain diseases or traits. For
example, a modulating network model was developed,
which has been used to analyze DNase I atlas and
GWAS SNP data of 349 human cell lines and tissue
samples with information of their loci. The results of
this study showed that 93% of disease- or trait-
associated SNPs are located in non-coding regions,
especially those highly sensitive to DNase I.21 The
complexity of human diseases and the application of
individualized medicine require more precise methods
for data integration. Mining and integrative analyses of
data at different levels have emerged as promising
trends in the development of biomedical technology.

Analysis of genome-wide copy number variation in
human diseases

Previous GWASs of human diseases have mainly
focused on identification of SNPs. However, it is
believed that other types of genome variations such as
copy number variations (CNVs) also play important
roles in the susceptibility to complex human diseases.
In recent years, genome-wide analysis of the associa-
tions between CNVs and complex diseases or traits has
attracted increased interest in the field of medical ge-
netics.22 The analysis of associations between CNVs
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and certain diseases can be achieved using genome-
wide SNP-array data.23

CNVs usually represent duplications, deletions, in-
sertions, and other multi-site complex variations of
genome segments between 1 kb and 3 Mb, constituting
structural variations in the genome. Approximately
12% of the human genome contains CNVs, making
CNVs a more common and potentially more important
genetic polymorphism than SNPs, which occur in
about 0.5% of the human genome. To date, the Data-
base of Genomic Variants (DGV) has recorded a total
of 66,741 CNVs, including 15,963 CNVs that may
play important roles in the determination of individual
phenotypes, especially with respect to disease suscep-
tibility. Numerous studies have demonstrated that
CNVs are highly associated with neurological, immu-
nological, genetic, neoplastic, and many other complex
human diseases. Thus, using the strategy of GWAS to
identify CNVs that are associated with certain diseases
is very important.6 It is expected that many novel
statistical models will be established for analyzing the
association between CNVs and diseases.
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