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Nup98- dependent transcriptional 
memory is established independently 
of transcription
Pau Pascual- Garcia†, Shawn C Little, Maya Capelson*

Department of Cell and Developmental Biology, Penn Epigenetics Institute, Perelman 
School of Medicine, University of Pennsylvania, Philadelphia, United States

Abstract Cellular ability to mount an enhanced transcriptional response upon repeated expo-
sure to external cues is termed transcriptional memory, which can be maintained epigenetically 
through cell divisions and can depend on a nuclear pore component Nup98. The majority of mech-
anistic knowledge on transcriptional memory has been derived from bulk molecular assays. To gain 
additional perspective on the mechanism and contribution of Nup98 to memory, we used single- 
molecule RNA FISH (smFISH) to examine the dynamics of transcription in Drosophila cells upon 
repeated exposure to the steroid hormone ecdysone. We combined smFISH with mathematical 
modeling and found that upon hormone exposure, cells rapidly activate a low- level transcriptional 
response, but simultaneously begin a slow transition into a specialized memory state characterized 
by a high rate of expression. Strikingly, our modeling predicted that this transition between non- 
memory and memory states is independent of the transcription stemming from initial activation. 
We confirmed this prediction experimentally by showing that inhibiting transcription during initial 
ecdysone exposure did not interfere with memory establishment. Together, our findings reveal that 
Nup98’s role in transcriptional memory is to stabilize the forward rate of conversion from low to high 
expressing state, and that induced genes engage in two separate behaviors – transcription itself and 
the establishment of epigenetically propagated transcriptional memory.

Editor's evaluation
The authors quantitatively assess transcriptional memory in the context of mathematical modeling 
and testing of the models through single cell approaches. They extend their work to show how 
single cell data relates to population- level transcription outcomes. The models produced make 
predictions that the authors successfully test to demonstrate that transcription initiation is not neces-
sary for establishment of memory.

Introduction
Organisms continuously adapt to environmental changes, with transcriptional responses to varying 
stimuli playing critical roles in development and survival. One mechanism of cellular adaptation relies 
on the cells’ ability to mount increasingly robust transcriptional responses upon repeated exposure to 
signals they have previously encountered. This phenomenon by which cells increase their re- activation 
kinetics after a period of repression is called transcriptional memory (Avramova, 2015; Bonifer and 
Cockerill, 2017; D’Urso and Brickner, 2017; Fabrizio et al., 2019). The ability of cells to increase 
transcriptional responsiveness upon subsequent exposure (i.e. ‘remember’ their previous exposure) 
can be propagated through cell division, and is thus considered epigenetic. Transcriptional memory is 
well- characterized for genes that respond to environmental changes: for example, in budding yeast, 
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rounds of inositol starvation trigger the transcriptional memory response for INO1, which encodes 
the enzyme catalyzing the limiting step in the biosynthesis of inositol (Ahmed et al., 2010; Brickner 
et al., 2007; Light et al., 2010); or in plants, where pre- exposure to various abiotic stresses such as 
drought or changes in salinity intensifies their resistance by elevating transcript levels from a subset 
of stress- response genes (Ding et al., 2013; Ding et al., 2012; Lämke et al., 2016; Liu et al., 2016; 
Sani et al., 2013). In both cases, transcriptional memory provides an advantage to survive environ-
mental challenges by mounting a more robust transcriptional response that facilitates adjustment to 
new conditions.

Importantly, the primed state that is induced after initial exposure is not unique to environmental 
signals and can be found in different cellular processes. In mammalian cells, interferon- induced tran-
scriptional memory is thought to confer an enhanced immune response to infectious agents (Gial-
itakis et  al., 2010; Kamada et  al., 2018; Light et  al., 2013), and in Drosophila, transcriptional 
memory has been reported in the context of signaling by the steroid hormone ecdysone. Ecdysone 
or 20- hydroxyecdysone (20E) and its nuclear hormone receptor complex EcR/USP coordinate a tran-
scriptional response that is essential for multiple events during fly development (Hill et al., 2013). A 
defined set of early ecdysone- induced genes, such as ecdysone- induced protein 74EF (E74) and early 
gene at 23 (E23), are activated by the hormone receptor and remain primed for enhanced expression 
upon a second exposure for at least 24 hr (Pascual- Garcia et al., 2017). Further evidence of roles for 
transcriptional memory during organismal development comes from a study of re- activation dynamics 
during Drosophila embryogenesis, where transgenes were shown to re- activate more frequently and 
more rapidly after cell division if they were transcribing in the previous cell cycle (Ferraro et al., 2016).

Mechanistically, several models have been put forward to explain how transcriptional memory may 
work. One such model proposed that memory is based primarily on the cytoplasmic inheritance of a 
key regulatory factor, which is build up during the initial exposure and remains at high levels through 
the period of memory (Kundu and Peterson, 2009). Such a mode of inheritance regulates the long- 
term transcriptional memory of the yeast GAL1 gene, which is repressed in normal glucose- containing 
media, but can be activated by switching cells to galactose (Brickner et al., 2007; Kundu et al., 
2007; Zacharioudakis et al., 2007). In this case, the high expression of GAL1 regulators during initial 
activation and their subsequent persistence are thought to underlie the higher re- activation dynamics 
upon second exposure to galactose (Kundu and Peterson, 2010; Sood et al., 2017; Zacharioudakis 
et al., 2007). Another set of models focuses on a nuclear mode of inheritance of a transcriptional 
state, with chromatin and architectural features of the gene as the functional memory marks (D’Urso 
and Brickner, 2017; Kundu and Peterson, 2009; Randise- Hinchliff and Brickner, 2018). This model 
of transcriptional memory centers on the binding of gene- specific transcriptional factors to cis- acting 
DNA elements and on contacts of the gene with nuclear pore complex (NPC) components (or Nups). 
Significant efforts have been made to understand how transcriptional memory operates for the yeast 
INO1 gene, where recruitment of transcriptional factor Sfl1 at INO1 promoter and contact with 
Nup100 (homolog of metazoan Nup98) have been shown to promote the incorporation of histone 
variant H2A.Z and H3K4me2, both of which have been linked to memory establishment in multiple 
systems (Bevington et al., 2016; Brickner et al., 2007; D’Urso et al., 2016; Gialitakis et al., 2010; 
Lämke et al., 2016; Light et al., 2013; Light et al., 2010; Muramoto et al., 2010; Petter et al., 
2011).

Studies in multiple organisms have revealed that Nup98 is an evolutionarily conserved factor neces-
sary for transcriptional memory. In addition to INO1 regulation described above, interferon- induced 
genes require Nup98 for memory in human cells (Light et al., 2013), where Nup98 similarly promotes 
deposition of the H3K4Me2 mark. However, this memory event occurs at genes in the nuclear interior, 
which reflects the reported ability of Nup98 and other Nups to move on and off the pore and occupy 
intranuclear locations in metazoan cells (Capelson et  al., 2010; Kalverda et  al., 2010). Nup98 is 
also necessary for transcriptional memory in ecdysone- induced signaling. In Drosophila embryonic 
cells, loss of Nup98 does not affect transcription of ecdysone- induced genes during initial ecdysone 
exposure, but results in a poor memory response during re- induction (Pascual- Garcia et al., 2017). 
In fly cells, Nup98 has been implicated in the maintenance of ecdysone- induced enhancer- promoter 
loops of genes like E74 and E23, providing evidence that Nups can influence transcriptional memory 
through changes in chromatin contacts (Pascual- Garcia et al., 2017). Thus, the roles of NPC compo-
nents in transcriptional memory appear complex and may involve a network of coordinated events. 

https://doi.org/10.7554/eLife.63404
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Investigation of this conserved function of Nup98 provides an opportunity to build further under-
standing of the memory phenomenon.

Previous work on transcriptional memory has primarily relied upon population- level analyses, using 
bulk biochemical and molecular assays to investigate its mechanisms (Brickner et al., 2007; Ding 
et al., 2012; Gialitakis et al., 2010; Pascual- Garcia et al., 2017). Here, we aimed to understand how 
transcriptional memory could work at the level of single cells and how single- cell behaviors can give 
rise to population- level transcriptional outcomes. We combined precise quantification of ecdysone- 
induced E74 mRNAs by single- molecule RNA FISH (smFISH) with mathematical modeling to describe 
transcriptional memory and the role of Nup98 from a single- cell perspective. By comparing predicted 
population distributions based on our modeling approaches to actual distributions of nascent tran-
scriptional states obtained by smFISH, we have defined the transcriptional parameters that change in 
the reinduced vs. induced states and shed light on the contribution of Nup98 to the transcriptional 
process. Strikingly, we found that transition into the memory state is independent of the extent of 
transcriptional activity during initial induction. Our results introduce a possible model that accounts 
for cell- and population- level dynamics during transcriptional memory response, allow us to rule out 
some previously proposed models for ecdysone- mediated memory, and suggest a functional role of 
Nup98 in driving the formation of a memory state that is separate from ongoing transcription.

Results
Assessing Nup98-dependent transcriptional memory in absolute units
We have previously shown that ecdysone- inducible genes exhibit transcriptional memory, and that 
Nup98 is required for the proper establishment and/or maintenance of the primed memory state 
(Pascual- Garcia et al., 2017). To further investigate the role of Nup98 in modulating transcription, we 
examined the transcription dynamics of the ecdysone- responsive gene E74 during repeated hormone 
exposure in more detail. Drosophila S2 cells were exposed to synthetic 20E for a 4 hr initial induc-
tion, then washed and allowed to recover for 24 hr before re- exposure to 20E for an additional 4 hr 
(Figure 1A). We assayed E74 expression dynamics during both exposures by collecting cells every 
30 min, isolating mRNA, and performing RT- qPCR on cells treated with dsRNA against the control 
white gene (dsWhite) or against Nup98 (dsNup98). To aid in quantitative analysis, we adapted a 
previously described protocol (Petkova et al., 2014) to estimate the absolute number of E74 mRNA 
molecules per cell. We performed RT- qPCR using known numbers of in vitro transcribed RNAs as 
template spanning six orders of magnitude. This allowed us to construct a calibration curve relating 
the qPCR threshold cycle Ct to the number of input molecules (Figure 1—figure supplement 1A; 
see Materials and methods). We measured the number of cells from which we extracted mRNA for 
each experimental condition and time point. We also estimated the mRNA recovery efficiency of the 
mRNA extraction step. Together, these measurements allowed us to convert experimental Ct values 
into absolute numbers of E74 mRNA molecules per cell, generating a detailed description of E74 
expression dynamics during hormone exposure in control and Nup98 knockdown cells (Figure 1B).

Using this approach, we found as expected that the number of E74 mRNA molecules per cell 
reaches considerably higher amounts during re- induction than during initial induction in control 
dsWhite- treated cells (Figure 1B). E74 transcripts accumulate slowly during the first 2 hr of initial 
hormone exposure before increasing. Moreover, the accumulation trajectory in Nup98- depleted cells 
is not different from control during the first induction. In contrast, accumulation is rapidly onset during 
the second induction in control cells, whereas in Nup98 knockdown conditions, the second induction 
is more similar to the first induction (Figure 1B). This supports the proposed requirement for Nup98 
in transcriptional memory, in agreement with previous work from our and other laboratories (Light 
et al., 2013; Pascual- Garcia et al., 2017). The efficiency of Nup98 depletion was similar during both 
the first and second inductions (Figure 1—figure supplement 1B), supporting our conclusion that 
the response of E74 to initial exposure does not require normal levels of Nup98; instead, cells require 
Nup98 to rapidly express E74 upon repeated exposure.

In the simplest model of hormone- induced transcription, all loci would be rapidly activated upon 
hormone treatment and then begin producing mRNAs at a constant rate. If true, then mRNA content 
should be relatively uniform between cells, particularly at later times after induction, when cells will 
have ample opportunity for their expression levels to closely approach the mean level. To ask whether 

https://doi.org/10.7554/eLife.63404
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E74 expression is uniform between cells, and to gain insight into the nature of hormone- induced 
memory response, we employed smFISH to measure E74 expression in single cells. E74 mRNAs were 
labeled with a set of 67 probes complimentary to exon sequences (Figure 1C and Supplementary file 
1) and imaged by confocal microscopy. smFISH reveals two classes of labeled objects: relatively dim, 
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Figure 1. Absolute quantification of E74 induction and transcriptional memory. (A) Overview of ecdysone/20E treatment. Cells were treated with 
5 μM 20E, then washed with fresh media and recovered for 24 hr. Memory response was assessed by incubating cells with 5 μM 20E after recovery 
period. (B). Absolute number of E74 mRNAs per cell as a function of time after the addition of 20E during either the first or second induction in control 
(dsWhite) and Nup98 knockdown (dsNup98) S2 cells. Samples were collected every 30 min. Error bars represent standard deviation of the mean 
of three experiments. (C). Schematic of smFISH labeling of sites of nascent transcription and spliced transcripts in either the nucleus or cytoplasm. 
(D). Representative images of E74 smFISH labeling in single cells during the first and second induction, displayed with the ImageJ ‘red fire’ look- up 
table. (E). Violin plots of E74 puncta per cell. Mean and median indicated by black and red horizontal lines.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Absolute quantification of E74 expression.

Figure supplement 2. Analysis of E74 smFISH resolution.

https://doi.org/10.7554/eLife.63404
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diffraction- limited puncta enriched in the cytoplasm representing mature mRNAs, and one or more 
bright nuclear- localized puncta corresponding to sites of nascent transcription (Figure 1C–D). To esti-
mate E74 mRNA levels, we counted the number of mRNA puncta at 0, 1, 2, and 4 hr post- induction and 
observed that the average number of puncta per cell accumulated with dynamics that mirrored those 
obtained by absolute qPCR (Figure 1D–E and Figure 1—figure supplement 1C- D). mRNA content 
of puncta also increased in a manner consistent with qPCR (Figure 1—figure supplement 1E- F). As 
expected, during the first induction, dsWhite- treated and Nup98- depleted cells accumulated puncta at 
similar rates, while during the second induction, control cells accumulated mRNA puncta more rapidly 
and to higher levels than Nup98- depleted cells or cells undergoing the initial induction (Figure 1E). 
Such accumulation of mRNA puncta was not seen in smFISH of control probes against genes that do 
not respond to ecdysone (Shlyueva et al., 2014), which exhibited similar counts before and after 
ecdysone addition (Figure 1—figure supplement 2A- C). The validity of these smFISH counts is also 
supported by our demonstration that the detected objects are diffraction limited (Figure 1—figure 
supplement 2D- F, Petkova et  al., 2014; Little et  al., 2015). Importantly, we observed that E74 
expression is heterogeneous between cells, with mRNA amounts exhibiting broad distribution at all 
times and under all induction conditions. Even under the most highly expressed condition at 4 hr after 
the second induction, 20% of cells possess 20 puncta or fewer, whereas <5% contain 100 or greater. 
These smFISH results validate our quantitative RT- qPCR data, but do not support the simple model of 
E74 activation or production occurring at a uniform rate. The observed heterogeneous mRNA levels 
across cells in all conditions also suggest that the role of Nup98 is to increase average expression 
levels without increasing the uniformity of the hormone response during the second induction. Consis-
tently, analysis of transcriptional noise in the four conditions reveals that Nup98 knockdown does not 
alter variability in mRNA counts between cells (Figure 1—figure supplement 2G).

Nup98 modulates E74 mRNA production without affecting export or 
degradation
To further explore the role of Nup98 in the memory response, we undertook additional quantita-
tive measurements of E74 mRNA dynamics. Our preceding results (Figure 1) confirmed a Nup98- 
dependent increase in the rate of E74 mRNA accumulation during the second induction. Generally, 
the rate of mRNA accumulation depends on both mRNA production and degradation. Degradation 
of mRNA may be affected by the process of mRNA export, which interfaces with NPCs (Rodríguez- 
Navarro and Hurt, 2011; Tutucci and Stutz, 2011). Certain NPC components, including Nup98, have 
been previously implicated in mRNA export through interactions with the mRNA export machinery 
(Blevins et al., 2003; Chakraborty et al., 2006; Powers et al., 1997), and mRNA export could in turn 
affect mRNA stability either directly or indirectly. Since prior work has not addressed whether Nup98 
affects E74 mRNA levels through these processes, we first asked whether Nup98 knockdown induces 
a change in E74 mRNA trafficking out of the nucleus or in the rate of degradation of E74.

To answer these questions, we examined the smFISH images for evidence of altered nucleo- 
cytoplasmic transport by assessing the fraction of mRNA puncta that are found outside of the Hoechst- 
based mask out of the total amount of mRNA puncta per cell (Figure 2—figure supplement 1A). 
We found that this fraction does not change in control/dsWhite versus dsNup98 cells significantly in 
either induced condition, with >85% of mRNAs found in the cytoplasm across conditions (Figure 2A). 
Next, to determine whether E74 mRNA stability is altered upon Nup98 knockdown, we monitored 
E74 mRNA levels following transcriptional arrest. We inhibited transcriptional elongation by treating 
cells with flavopiridol (FP), a potent inhibitor of p- TEFb, which phosphorylates Ser2 of the C- terminal 
domain of RNA Pol II (Chao and Price, 2001). E74 mRNA synthesis was stimulated with 20E for 4 hr 
during the first or the second inductions, after which the hormone was washed out and transcription 
blocked with FP. As the mRNA levels of E74 declined, we monitored them for 240 min, with time 
points collected every 30 min, during the first or the second inductions in control or Nup98- depleted 
conditions (Figure 2B). We observed that the degradation rates were largely unchanged between 
Nup98- depleted and control cells during either induction, with no significant difference in E74 mRNA 
lifetimes, which were determined by fitting to a first- order reaction (Figure 2B and Figure 2—figure 
supplement 1B). We concluded that neither mRNA export nor mRNA degradation are major contrib-
utors to the phenotype of Nup98 in transcriptional memory. Instead, our data suggests that the role of 
Nup98 in transcriptional memory is mediated through regulation of transcription, which is supported 

https://doi.org/10.7554/eLife.63404
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Figure 2. Altering Nup98 levels modulates transcription, not mRNA export or degradation. (A) Fraction of E74 mRNA found in cytoplasm, as assessed 
by smFISH, with Nup98 knockdown (+) or control knockdown (-) prior to the first induction (unind), after 4 hr (1st ind), 24 hr after hormone removal 
(recov), and 4 hr after 2nd induction. Error bars represent standard deviation of the mean. Welch’s t- test was used to calculate p- values. (B). Degradation 
rates of E74 mRNA assessed by qPCR. Cells from 1st induction or 2nd induction (as depicted in Figure 1A) were washed and collected every 30 min 

Figure 2 continued on next page

https://doi.org/10.7554/eLife.63404
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by the previously identified binding of Nup98 to the promoters and enhancers of ecdysone- inducible 
genes (Pascual- Garcia et al., 2017).

Our combined knowledge of the degradation rate with the accumulation dynamics in absolute 
units allowed us to test quantitative models describing the effect of Nup98 on transcription. In the 
simplest model, Nup98 would act to boost the average transcription rate from a low constant mRNA 
production rate during the first induction to a large constant rate during the second induction. To 
determine whether a model of constant production correctly describes the data, we found the best- 
fitting values for the production rates under each induction and knockdown combination (Figure 2C). 
In this straight forward model, the change in mRNA concentration per time equals mRNA production 
rate P minus the degradation rate, which was determined experimentally (Figure 2B). The estimate of 
the degradation rate permitted us to obtain best- fit values for P (Figure 2C). As expected, the value 
for production rate for the second induction in control cells was higher than during the first induction 
by a factor of 2.4 x, whereas the production rates are similar in first induction control and Nup98 
knockdown conditions under both exposures. However, constant production rates provide a poor 
description of the data (Figure 2C and Figure 2—figure supplement 1C). In all cases, the constant 
production model predicts the fastest accumulation during the first 2 hr of expression, with gradual 
attenuation of the accumulation as transcript levels reach steady- state. The data instead exhibits a 
gradual and slow increase in the rate of accumulation during the majority of interval for hormone 
exposure. This is most obvious for the first induction in both control and Nup98 knockdown cells. The 
results indicate that the simplest explanation for Nup98 activity, boosting a constant production rate, 
is incompatible with observation.

Instead of constant production rate, the data suggested that the production of E74 mRNA increases 
with time. We therefore fit a model in which production of new mRNAs increases linearly with time, 
and found that this model provided an excellent fit (Figure 2D and Figure 2—figure supplement 
1C). We observed that the production rates increase at similar rates in three scenarios: first induction 
in control, and both inductions in Nup98 knockdown conditions. In contrast, during the second induc-
tion in control cells, the production rate increases at more than twice the rate of the first induction. 
This can be clearly visualized by taking the derivative of the fit accumulation curves to reveal the 
accumulation rate, that is the change in the average number of mRNAs per cell as a function of time 
(Figure 2E). The accumulation rates are similar in control first induction and dsNup98 first and second 
induction, but become increasingly fast in control second induction. The accumulation rates begin to 
stabilize at around 4 mRNAs per minute during the first induction but reach greater than 10 mRNAs 
per minute during the second induction in control cells (Figure 2E, left). During hormone exposure, 
the transcription rate climbs continuously, reaching only about 2 mRNAs per minute per locus during 
the first induction but climbing to 5 mRNA per minute per locus during the second induction in control 
cells (Figure 2E, right). By the end of the fourth hour of the second exposure, this corresponds to an 
average production rate per locus similar to that observed for the most highly expressed genes in 
Drosophila embryos (Little et al., 2013; Zoller et al., 2018). Overall, these results show that Nup98 
changes transcription of E74 without affecting mRNA trafficking or stability. Moreover, normal levels 
of Nup98 are required not simply to promote a higher level of transcription, but to stimulate a contin-
uous increase in transcription rates upon additional hormone exposure.

after the addition of 1 μM flavopiridol at zero minutes. Experiment was repeated three times and mRNA lifetimes were determined by fit to exponential 
curves. p- Values, determined by Welch’s t- test, have values > 0.2 for all pairs of fits. (C–D). E74 transcription rates increase during 20E exposure. Data 
points with error bars obtained by qPCR as shown in Figure 1B. Shaded bands indicate 95% confidence intervals for the fit rates P for the models 
indicated. Top row: first induction; second row: second induction. (C) Best fit of data to model of constant transcription rate P. (D): Best fit of data to 
model of time- dependent increasing E74 transcription rate. (E). Comparison of the rates of mRNA accumulation (left) and underlying transcription rates 
(right) between first and second induction in control and dsNup98 cells.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Examination of mRNA detection, export, and lifetime.

Figure 2 continued
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A two-state model for the mechanism of Nup98-dependent 
transcription rate increase
We next sought to explore models describing the Nup98- dependent increase in the rate of mRNA 
production. We began with a two- state model in which loci switch between active and inactive states 
(Figure 3A–B). During the active state, new RNA Pol II molecules enter productive elongation at a 
rate given by kPol. For simplicity, we assumed that while hormone is present, the rate switching into 
the active state kA is much greater than the rate of switching into the inactive state k- A. This ensures 
that once active, loci are in essence irreversibly committed to the active state as long as the hormone 
is present. These assumptions are reasonable given the large but slow increase in transcript levels 
observed over the duration of the hormone exposure. In this model, the average production rate per 
locus is given by the loading rate kPol multiplied by the fraction of active loci (Figure 3B).

There are then two basic ways in which the mRNA production rate can increase over time in a two- 
state model. The most straightforward is by recruitment of loci into the transcriptionally active state, 
while the loading rate kPol is held constant (Figure 3A, Model 1 and Figure 3B). In this scenario, what 
would change over time is the fraction of cells in a transcriptionally active state (Figure 3A, Model 1). 
Once a locus enters an active state, mRNA production would occur at a constant rate. The increased 
transcriptional output during re- induction would thus stem from a higher fraction of cells being active 
in post- memory conditions. This scenario requires a kA that is small such that any given locus is unlikely 
to enter the active state in any given minute. The gradual increase in the fraction of active loci would 
thus be proportional to the continuous increase in the average transcription rate (Figure 2E, right). 
Under Model 1, the role of Nup98 is to increase kA such that a larger fraction of loci become active 
sooner during the second induction.

We fit this model to the qPCR data. For each of the four scenarios (control/dsWhite or dsNup98, 
first or second induction), we found values and confidence intervals that described the accumulation 
curves (Figure 3—figure supplement 1A). Fitting each scenario independently, we found that kPol 
was roughly constant at 2.0±0.2 RNA Pol II per minute for all scenarios (average and standard devi-
ation calculated across all four scenarios) (Figure 3—figure supplement 1B). Moreover, fit values 
of kA are very similar for the three low expressing scenarios, dsWhite first induction and both induc-
tions in dsNup98, at an average of 5.1±1.6  x 10–3 per minute (Figure 3—figure supplement 1B, 
E). In contrast, kA for the second induction in control is 33±15 × 10–3 per minute, a sixfold increase 
(Figure 3—figure supplement 1B, E). In this model, Nup98 is required for this dramatic upregulation 
in rate of entry into the active state during the second induction.

Although Model 1 can explain increasing transcription rate at the population level, we can also 
envision an alternative scenario, where all cells enter an active state rapidly upon hormone stimu-
lation, and what increases over time is the transcriptional rate at individual loci (Figure 3A, Model 
2). The two- state model provides an additional means of regulation, in which kPol is not constant but 
instead increases with time (Figure 3A, Model 2, and Figure 3B). In the most extreme version of this 
scenario, kA is very large such that all loci switch into the active state immediately upon hormone 
exposure. This would be consistent with the known rapid rate of nuclear import of hormone receptors, 
on the order of minutes (Nieva et al., 2007). In this scenario, the increasing transcription rate would 
result from increasing kPol, and the increased rate of mRNA production during second induction would 
be explained by a faster increase in transcriptional rate at individual loci. Under Model 2, the role of 
Nup98 would be to ensure a more rapid increase in kPol upon repeated hormone treatment.

To determine whether this scenario could explain our observations, we fit our qPCR data to a 
model in which (1) kA is very fast (1000 per minute) to ensure that nearly all loci become active within 
a minute of hormone exposure, and (2) the number of attempts that RNA Pol II makes to engage in 
transcription increases linearly with time. The fraction of attempts that are successful is limited by 
process(es) that prohibit Pol II from loading at an indeterminately high density, thereby imposing a 
minimum interval between transcribing Pol IIs. In implementing the model, the minimum interval is 
determined by fitting the qPCR data with a constant elongation rate of 1500 nt/min (Izban and Luse, 
1992, Ardehali and Lis, 2009; Buckley et al., 2014; Yao et al., 2007) and introducing a free param-
eter representing the minimum interval in units of nucleotides. The model is agnostic with regard to 
the molecular mechanism(s) underlying either the rate increase or the minimum Pol II interval. With 
these constraints we were able to fit the qPCR data from each scenario to a model of increasing RNA 
Pol II attempt rate that described the accumulation trajectories (Figure 3—figure supplement 1C- D). 

https://doi.org/10.7554/eLife.63404
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Figure 3. The two- state promoter model does not describe single- cell measurements of transcription. (A) A model utilizing two promoter states 
(active and inactive) contains two mechanisms that can account for the increase in the transcription rates observed by qPCR. Model 1: loci are slowly 
recruited into a transcriptionally active state upon first induction and more rapidly upon second induction. Once active, loci produce new mRNAs at 
a constant rate equivalent to the rate at which new RNA Pol II molecules enter productive elongation. Model 2: all cells are rapidly recruited into an 

Figure 3 continued on next page
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As before, three conditions (dsWhite first and dsNup98 first and second inductions) have similar accel-
eration constants, with an average of 11.7±2.2 × 10–3 Pol II min–2 (Figure 3—figure supplement 1E). 
In contrast, control second induction has an acceleration constant that is about six- fold larger than the 
first at 65.7 × 10–3 Pol II min–2 (Figure 3—figure supplement 1D- E). In this model, the role of Nup98 
is to increase the acceleration of the attempt rate kPol.

Overall, both versions of the two- state model perform equally well at describing the qPCR data 
(Figure  3—figure supplement 1F). Additionally, the two versions are not mutually exclusive; our 
qPCR data would be equally well fit by many possible combinations of values for kA and kPol accelera-
tion constants. To discern between these possibilities requires single- cell measurements of transcrip-
tion provided by smFISH.

Single-cell analysis does not support the two-state model
To discern between possible versions of the model outlined above, we proceeded to determine 
whether they could account for the distribution of transcriptional activity observed in our smFISH 
analysis of E74 (Figure 1). We determined the instantaneous transcriptional activity in individual cells 
by summing the fluorescence intensity of all nascent transcription sites in each cell and normalizing 
to the intensity of single mRNAs (also see Materials and methods). The resulting values are the abso-
lute amount of nascent RNA present at transcribing loci in units of the equivalent number of mature 
mRNAs (Little et al., 2013; Zoller et al., 2018). As mRNAs tend to be localized to the cytoplasm, the 
unit intensity is referred to as the ‘cytoplasmic unit’ intensity (C.U.). The number of C.U.s associated 
with each transcribing site depends on the number of probe binding sites present, and thus on how 
many RNA Pol II molecules are present and how much of the transcript has been synthesized by each 
Pol II. The normalization is possible because our probes target only exon sequences and thus the fluo-
rescence intensity is not affected by mRNA splicing or the presence of introns (Figure 1C).

To determine if either version could account for the actual transcriptional behavior in ecdysone- 
induced responses, we used the values for kA and kPol from the fit to qPCR to simulate the distribution 
of C.U.s for both models at three time points (1, 2, and 4 hr post- induction) under all four induction 
conditions. Monte Carlo simulations were used to generate RNA Pol II positions for 100,000 cells 
under each condition and time point. The RNA Pol II positions were used in combination with the 
probe positions along the transcribed RNA to obtain a sum of probe binding sites present in the 
simulated nascent mRNA. This sum was then normalized to the number of probes present in a single 
mRNA to generate simulated distributions in units of C.U.s. Histograms of measured and simulated 
C.U. distributions were then compared (Figure 3C–N; see Materials and methods).

We examined the distribution of transcriptional activity across hormone treatments and time points 
(cyan bars, Figure  3C–N). Notable features in the observed distribution of transcriptional activity 
include a gradual shift in the activity levels as a function of time, as expected from the RT- qPCR data, 
meaning that an increasing fraction of cells shift to transcribing at higher amounts. This shift occurs 
more rapidly for the control/dsWhite second induction (Figure 3F–H) than for other conditions. The 
observed distribution begins to resemble a bimodal distribution in control cells at 4 hr (Figure 3H), 
demonstrating that a subset of nuclei have begun transcribing E74 at rates much faster than earlier 
in the exposure, as measured in C.U.s. This is again consistent with the prediction from qPCR that 
the transcription rates in general are increasing. Notably, this bimodal behavior is less evident in 

active state, and the rate of transcription increases over time, slowly upon first induction and quickly upon second induction. (B). Model describing the 
rate of recruitment into the active state kA, into the inactive state k- A, and the rate of recruiting RNA Pol II molecules into productive elongation kPol. 
The presence of 20E permits kA to be larger than k- A. The production rate as a function of time is given by the RNA Pol II recruitment rate multiplied 
by the fraction of active loci. In Model 1, kA increases and kPol is constant during 20E exposure, whereas in Model 2, kPol increases and kA is constant. 
(C–N). Histograms (cyan) show distribution of measured total instantaneous transcriptional activity in normalized units (C.U.), obtained from smFISH 
of E74 as shown in Figure 1. Lines represent predicted values generated by simulation using best- fitting parameters for Model 1 (green) and Model 2 
(magenta) under conditions of control (C–H) or Nup98 knockdown conditions (I–N) during the first (C,F,I,L), second (D,G,J,M), or fourth (E,H,K,N) hour 
of the first (C–E, I–K) or second (F–H, L–N) inductions.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Modeling promoter state switching and increasing transcription rates using population- averaged qPCR data.

Figure supplement 2. Estimated population distributions of cells with 0–4 nascent transcription sites as a function of time.

Figure 3 continued
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dsNup98 conditions (compare Figure 3L–N), where the highly transcribing fraction of cells is much 
less pronounced at 4 hr of second induction (Figure 3N). This suggests that Nup98 could be involved 
in a shift from low to high expression rates. Additionally, the change in the estimated fractions of cells 
with 0–4 active loci over time appears similar among the four conditions (Figure 3—figure supple-
ment 2A- E, see Materials and methods for description of how active transcription sites were desig-
nated), supporting the notion that the rate of locus- associated transcriptional activity is the point of 
regulation.

We compared the distribution of the data to those predicted by each of the two- state models. 
Overall, the simulated distributions from either of the two two- state models provide a poor fit to 
data (Figure 3C–N, compare simulated green and violet curves to cyan bars of observed data, and 
Figure 4—figure supplement 1D). Model 1, with changing kA and constant kPol, consistently overesti-
mates the fraction of cells with small numbers of transcripts at early times (green curves, Figure 3C,I, 
notice the early green ‘spike’). Model 2, with rapid kA and increasing kPol, suffers less from an over-
estimate of inactive cells. However, both models predict a narrowly distributed peak of highly active 
cells at 4- hr time point in all four conditions. In contrast, measurements reveal broadly distributed 
expression levels, with many cells showing less activity than predicted (Figure  3E, H, K and N). 
Furthermore, hybrid models combining both more rapid kA with more slowly increasing kPol suffer 
from both shortcomings in combination (data not shown). This stems from the failure of the two- state 
model to account for the large fraction of cells containing mRNAs in the first hour combined with an 
overestimate of narrowly distributed but highly active cells at late times. From the simulation results, 
we concluded that no two- state model correctly captures the transcription dynamics of the hormone 
response in either the first or second induction.

A four-state ‘Memory Switch’ model explains single-cell data of 
transcriptional memory
Given the distribution of transcriptional states we observed in our single- cell smFISH analysis 
(Figure 3), we reasoned that loci may express E74 at two different rates, such that loci are either in 
the low- or high- expressing state in the presence of ecdysone. Both the low- and high- expressing 
rates would be larger than the very slow basal expression rate observed in the absence of ecdysone. 
The slow emergence of the high- expressing state during exposure to ecdysone would be consistent 
with the gradual increase in transcription rate we have observed (Figure 2E). Moreover, the rapid 
accumulation of transcripts upon hormone re- exposure suggests a mechanism for memory: loci that 
previously converted into the high- expressing state bypass the low- expressing state upon hormone 
re- exposure, and immediately enter the high- expressing state. We termed such converted state the 
induced memory (IM) state, whereas loci that have not converted remain in a default low- expressing 
state, which we called induced default (ID) state (Figure 4A). Importantly, the model also suggests 
that the high expression observed during the second induction results from the continuous accumula-
tion of loci into the memory state even after the withdrawal of hormone. In this case, the role of Nup98 
may be both to ensure that converted loci retain information about their conversion state and to enact 
the continuous conversion of loci after hormone withdrawal (Figure 4A, right). This would explain the 
strong resemblance of the first induction in controls cells to both inductions when Nup98 is depleted: 
in the absence of hormone, all loci reconvert to the default, non- memory state without Nup98 activity.

Based on this reasoning, we constructed a ‘memory switch’ model containing four states: two 
un- induced states in the absence of hormone, termed Un- induced Default (UD) and Un- induced 
Memory (UM) (both characterized by very low basal levels of transcription), in addition to the two 
induced states, IM and ID (Figure 4A). In this model, the basal level of expression in the absence 
of ecdysone is described by the transcription rate constant kpolB, while hormone exposure has two 
independent effects. First, similarly to the two- state model, hormone switches non- expressing loci 
into an expressing state at rate kA. As before, hormone ensures that the conversion to expression is 
irreversible as long as hormone is present. Second, hormone treatment converts loci from the default 
state (either UD or ID) into the memory state (either UM or IM). This conversion occurs at rate kC and 
is necessarily slow. The two induced states each have an associated rate of RNA Pol II loading, low kPolL 
for ID and high kPolH for IM. To account for the immediate entry of loci into the high expressing IM state 
upon second induction, the memory state is established irreversibly, with kC much greater than k- C in 
normal conditions. Moreover, the model implies that once the hormone is applied, the conversion of 

https://doi.org/10.7554/eLife.63404
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Figure 4. The memory switch model describes the distribution of transcriptional activity. (A) Promoters can occupy one of four states: Uninduced 
and Induced (U and I), related to current presence of hormone; and Default and Memory (D and M), associated with prior hormone exposure. The 
Uninduced state is associated with a basal RNA Pol II rate kPolB, whereas the Induced state shows two independent RNA Pol II rates kPolL and kPolH 
associated with Default and Memory states, respectively. 20E has two roles: one, to activate transcription by ensuring kA >> k- A, as in earlier models; and 

Figure 4 continued on next page
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loci to the memory state continues even after the hormone has been withdrawn, so that after the 24 hr 
recovery period in our hormone treatment regimen, most loci are found in the memory state. Under 
this model, the primary role of Nup98 would be to maintain a high kC, or the probability that cells 
remain in the memory or high- expressing state, such that depletion of Nup98 abrogates the mainte-
nance of the memory state upon removal of hormone. In the absence of Nup98, k- C becomes greater 
than kC, and loci do not remember their prior exposure once hormone is withdrawn (Figure 4A, right), 
which explains why the second induction strongly resembles the first in Nup98- depleted cells.

If this model is correct, then a single set of values for the parameters kC, kA, kPolL, and kPolH should 
describe both the qPCR and smFISH results from all four conditions. To test this, we started by fitting 
the model to the qPCR data for each individual condition. We used the functions describing the 
average transcription rate over time (Figure 2E, right) as a constraint to narrow the range of allowable 
parameter values capable of recapitulating the functions. We then performed Monte Carlo simula-
tions, searching a wide range of parameter values to find sets that reproduced the smFISH data. The 
resulting values captured the rise in the transcription rate and the resulting accumulation trajectories 
observed by qPCR under all four conditions (Figure 4—figure supplement 1A- C). As required by the 
model, the fraction of cells in either expressing state increased in a similar manner over time between 
all conditions (Figure 4—figure supplement 1B). This conversion into either expressing state ID or 
IM occurs at the same rate (on average, kA = 17 +/- 1 × 10–3 per min, Figure 4—figure supplement 
1C; see also Figure 4A). In contrast, the conversion into either memory state UM or IM is very slow 
(kC = 0.8 +/- 0.2 × 10–3 per min) (Figure 4—figure supplement 1C; see also Figure 4A), meaning the 
characteristic decay time out of the default state is very long ( > 1200 min or about 20 hr). This means 
that the more time that passes after the first induction, the larger the fraction of loci that convert to 
the memory state, even after the withdrawal of hormone. In this manner, after the 24 hr recovery, the 
majority of loci (74%) are in the memory state (Figure 4—figure supplement 1E), ready to enter the 
high- expressing state immediately upon re- exposure.

To verify the goodness of the model, we again performed Monte Carlo simulations and compared 
the resulting simulated distributions to smFISH data for E74. The simulation closely matches obser-
vation (Figure 4B–M) and provides a vastly improved fit relative to either of the two- state models 
(Figure 4—figure supplement 1D). The model thus successfully captures the emergence of the most 
highly- expressing cells during the first induction as a consequence of the slow conversion from non- 
memory to memory states. Notably, the rate of RNA Pol II loading is 15 times greater for the high- 
expressing IM state (kpolH 4.5 versus kpolL 0.3 RNA Pol II per minute, Figure 4—figure supplement 1C) 
and approaches the maximum observed value found in Drosophila embryos (Little et al., 2013). The 
vastly increased expression rate during the second induction again requires Nup98 function; upon 
depletion, loci fail to re- enter the high- expressing state upon re- exposure and are found in the default 
state upon re- induction (Figure 4—figure supplement 1E).

In summary, the four- state memory model encapsulates all the essential features of our obser-
vations. Our analysis puts forth a mathematical model that accurately describes the transcriptional 
memory behavior of ecdysone- inducible genes. The analysis predicts that in addition to activating 
default transcription, hormone exposure leads to a response event that drives a switch between non- 
memory and memory states.

The establishment of transcriptional memory is independent of 
transcriptional activity during the initial induction
The memory switch model, described above, reveals novel mechanistic insights into how transcrip-
tional memory is established and maintained, and allows us to make predictions that can be tested 
experimentally. Thus, to further validate our model, we proceeded to test two of its main predictions. 

two, to increase the rate of conversion from Default to Memory by ensuring kC >> k- C. The role of Nup98 is to maintain kC >> k- C upon withdrawal of 20E. 
(B–M). Histograms (cyan) show distribution of measured total instantaneous transcriptional activity in normalized units (C.U.), obtained from smFISH of 
E74 as shown in Figure 1. Lines represent predicted values generated by simulation using best- fitting parameters under the memory switch model.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Fitting qPCR data to a four- state model of promoter memory.

Figure 4 continued
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The most striking and surprising prediction of the model is the independence of kC (the rate of 
conversion from the default state to the memory state) from kA and kPol, which are rate constants that 
describe the transcriptional process itself. Otherwise stated, the model suggests that the ability of 
cells to establish the transcriptional memory response is independent from the process or the extent 
of transcription itself. The model predicts that at individual loci, addition of ecdysone sets off the 
conversion into the high- expressing memory state, but the parameters governing the rate of the 
conversion should be independent from the transcription that takes place during the first induction.

We tested this prediction by two different approaches. First, we varied the amount of transcription 
by varying the length of exposure to 20E during the initial induction. We assessed the transcriptional 
memory response of the E74 gene via RT- qPCR, using diminishing initial incubation times of 20E 
ranging from 4 hr to a minimum of 10 min, after which cells were recovered for 24 hr and re- induced 
as usual (Figure 5A). In agreement with the model, we observed that cells responded with a simi-
larly robust increase of transcription during the second induction after all initial hormone incubation 
times. No large changes were found in the E74 transcriptional memory response between cells that 
were induced for 10 min versus 4 hr (Figure 5A), demonstrating that the memory state is established 
independently of the length of 20E incubation times and thus of the length of time these loci were 
engaged in active transcription.

Second, to address this prediction, we utilized the transcriptional inhibitor FP to prevent transcrip-
tional elongation altogether. Cells were treated with FP for 30 min before as well as during 20E induc-
tion. We monitored E74 expression and observed no transcriptional activity in cells treated with FP 
during ecdysone induction, revealing the efficacy of FP blockage (Figure 5B). Cells were then washed, 
and we measured the transcriptional memory response after the usual 24 hr of recovery. Strikingly, 
we observed that blocking transcriptional elongation during the first induction does not substantially 
affect the ability of the cells to generate a robust memory response, indicating that the transition into 
the memory state is independent of mRNA production during the first induction (Figure 5B). Levels 
of E74 were normalized to transcript levels of the housekeeping gene rp49, expression of which has 
been shown to be unaffected by ecdysone exposure (Shlyueva et al., 2014; Figure 5—figure supple-
ment 1A). In addition to FP, we tested another transcriptional inhibitor Triptolide (TPL), which is known 
to block transcription at an earlier, initiation- associated point by inhibiting TFIIH (Titov et al., 2011). 
Treatment with TPL during initial induction similarly resulted in the majority of transcriptional memory 
being preserved (Figure 5B), although at somewhat lower levels than FP, suggesting that transcrip-
tional initiation may partially contribute to memory, but transcription itself does not. We further vali-
dated our RT- qPCR findings by smFISH analysis, which likewise yielded similar counts of E74 mRNA 
spots and transcriptional output during second induction, in control or after treatment with either FP 
or TPL in the initial induction (Figure 5C and Figure 5—figure supplement 1B- C). Importantly, we 
obtained very similar conclusions with two other ecdysone- inducible genes E23 and E75, which we 
previously found to depend on Nup98 for transcriptional memory (Pascual- Garcia et al., 2017) and 
which also retained most of their transcriptional memory after transcriptional inhibition (Figure 5—
figure supplement 1D- E). Taken together, our experimental data support the prediction proposed 
by our modeling studies and reveal a previously unreported feature of transcriptional memory: that 
its establishment is independent from the extent of transcriptional activity during initial stimulation.

The second prediction of the model that we aimed to test was the slow conversion from non- 
memory to memory state, on the order of 20 hr (for a conversion of 62% of loci) based on the obtained 
parameters. We tested this timescale by shortening the recovery times after ecdysone induction. Cells 
were induced with 20E for 1 hr and recovered for six or 24 before testing transcriptional memory 
responses. The model anticipates that cells that have been recovered for 6 hr should have a lowered 
memory response than cells that have been recovered for 24 hr. Consistently with this prediction, we 
found a reduced memory response for cells recovered for 6 hr (Figure 5D), underpinning the notion 
that transition into the memory state relies on mechanisms that (1) do not require the continuous 
presence of ecdysone and (2) have a relatively long timescale.

In order to compare the differences in transcriptional memory responses caused by distinct factors 
or treatments, we represented the observed differences in transcriptional memory responses as Cali-
brated Memory index (CMI), derived from the ratios of slopes in mRNA accumulation during second 
inductions and calibrated to control and Nup98- disrupted responses, as measured by RT- qPCR for 
E74, E23, or E75 (Figure  5E; see also Materials and methods). Comparing CMI among different 

https://doi.org/10.7554/eLife.63404
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Figure 5. Induction of the memory state requires neither transcription nor prolonged 20E exposure. (A) E74 mRNAs measured by qPCR and normalized 
relative to rp49 with varying duration of 20E exposure during first induction. The data represent the mean of three independent experiments and the 
error bars the standard deviation of the mean. (B). Flavopiridol or Triptolide inhibitors were added 30 min prior 20E first induction at 1 μM and 5 μM, 
respectively. After 4 hr of induction, both, the hormone and the transcriptional inhibitors were washed- out and cells recovered for 24 hr. 20E re- induced 

Figure 5 continued on next page
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analyzed treatments demonstrates that while depletion of Nup98 has a substantial impact on tran-
scriptional memory, inhibition of transcription by FP or TPL affects transcriptional memory to a much 
lesser extent, reducing the memory index on average by only 20–30% for any of the three genes 
(Figure  5E). Together, these results support our computationally derived model of transcriptional 
memory and reinforce the notion that ecdysone- driven induction initiates two independent events 
at a given locus: (1) the rapid switch and transition into active transcription, and (2) the slow Nup98- 
dependent conversion into the memory state (Figure 6A–B). The population dynamics of the tran-
scriptional responses to ecdysone would thus reflect the changing mixture of the low- expressing 
and high- expressing/memory cells (Figure 6A), with Nup98 functioning as a key determinant for the 
prevailing fraction of high- expressing cells post- memory establishment. Our approach suggests that 
the main role of Nup98 in transcriptional regulation lies not with influencing transcriptional entry, but 
instead, with stabilizing and maintaining the specialized state of high transcriptional output, conver-
sion to which is determined by a separate rate constant kC (Figure 6B).

Discussion
The different models by which the primed state of transcription is established and maintained have 
been primarily drawn from bulk cell population studies. Using the E74 gene as a model, we aimed to 
understand the gain of transcriptional priming in single cells within a population. Together, our data 
show that the acquired E74 transcriptional memory is characterized by a high transcriptional output 
from a sub- population of cells transitioning into a memory state. Our modeling and experimental 

cells were collected and, E74 expression was measured by qPCR from three independent experiments. Fold change values were normalized using rp49 
and error bars represent the standard deviation of the mean. (C). Cells were treated with Flavopiridol or Triptolide as described in B and E74 mRNAs 
were monitored by smFISH. Error bars represent standard deviation of the mean. (D). E74 mRNAs levels were measured by qPCR and normalized 
against rp49 using two different recovery times (6 hr and 24 hr). The data represent the mean of three independent experiments ± standard deviation. 
(E). Calibrated Memory Index (CMI) of E74, E23, and E75 genes.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Establishment of the memory state is independent of transcription.

Figure 5 continued

Figure 6. Memory switch model. (A) Two events are triggered independently by exposure to 20E: loci rapidly enter a low- expressing state and at 
the same time slowly switch from the default state to memory. Memory is characterized by high transcription rate in the presence of hormone, and 
importantly, cells continue to accumulate loci in the memory state after the hormone is withdrawn. When cells are exposed to 20E a second time, the 
converted memory loci transit into the high- expressing state, resulting in a more robust second induction. (B). Implication of the memory switch model: 
upon hormone exposure, loci engage in two separate activities, controlled by independent rate constants – entry into the active state (controlled by 
kA) and transition into the memory state (controlled by kC). In the memory switch model, normal levels of Nup98 are required for loci to accumulate and 
remain in the memory state (kC>>k- C), such that depletion of Nup98 abrogates the maintenance of the memory state upon removal of hormone.

https://doi.org/10.7554/eLife.63404
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approaches suggest the following model (Figure 6A–B): upon ecdysone stimulation, two independent 
but simultaneous processes are initiated: (1) cells rapidly activate the ecdysone- dependent transcrip-
tional response, characterized during this initial induction by a low rate of transcriptional output, and 
(2) concurrently, cells slowly progress into a specialized memory state defined by a high transcriptional 
rate, which is detected in subsequent ecdysone inductions. Importantly, we found that transition into 
the memory state is independent of the transcriptional process stemming from ecdysone activation 
since blocking transcription does not compromise the memory response significantly. Our transcrip-
tional inhibition experiments suggest that memory establishment likely relies on ecdysone- triggered 
events that precede TPL- targeted TFIIH activity, such as pre- initiation complex (PIC) assembly, which 
was shown to remain intact upon TPL treatment (Krebs et al., 2017), or chromatin and architectural 
changes that accompany it. Another interesting conclusion from our model is that, if such a separa-
tion of transcription and memory occurs generally at inducible genes, then phenotypes of certain 
epigenetic regulators may not show up until much later on and would not be detected within a short 
time window, which is often used in Auxin- induced degradation system of rapid protein removal 
(Morawska and Ulrich, 2013; Nabet et al., 2018; Nishimura et al., 2009). As our findings reveal, 
on- going transcription and transcriptional memory can be controlled by separate mechanisms and 
would manifest their effects at different time scales.

A complex interplay of transcriptional factors, changes in histone modifications and the incor-
poration of histone variants have been linked to the transcriptional memory response of multiple 
genes. Additionally, transcriptional memory in certain systems involves the cytoplasmic inheritance of 
a regulatory protein produced during the initial process of transcription, such that the transcriptional 
memory response is dependent on the protein’s level, which gets diluted in each cell division. This 
type of memory process has been found in yeast genes that respond to oxidative stress or changes in 
nutrients (Guan et al., 2012; Kundu and Peterson, 2010; Zacharioudakis et al., 2007). For example, 
in the case of the yeast GAL1 gene, a key factor controlling the memory response is the passive 
inheritance of the trans- acting Gal1 protein itself, produced during transcriptional activation (Kundu 
and Peterson, 2010; Zacharioudakis et al., 2007). For the ecdysone- induced E74 gene, this type 
of regulation seems unlikely since blocking all transcription still results in a robust memory response, 
demonstrating that the model of cytoplasmic inheritance described above does not extend to all 
memory systems.

Nup98 has emerged as an evolutionarily conserved factor required for transcriptional memory 
(Light et al., 2013; Pascual- Garcia et al., 2017). Our smFISH analysis, combined with mathematical 
modeling, revealed that active loci in a memory state initiate new transcription about 15 times faster 
than active non- memory loci. It also shed light on Nup98’s role in this process, demonstrating that 
Nup98 promotes the rate of conversion between non- memory to memory state, once the activating 
agent has been removed. Thus, Nup98 does not affect transcription during initial induction, yet cells 
are unable to remain in or transition into the memory state upon hormone withdrawal, causing a defect 
in the amplified transcriptional response upon secondary ecdysone stimulation. How does Nup98 
promote the memory state in molecular terms? In line with Nup98’s role in securing the memory state, 
we have previously reported that Nup98 depletion disrupts the enhancer- promoter loops induced by 
ecdysone’s initial induction (Pascual- Garcia et al., 2017). Our current results support a model where 
the stabilization of enhancer- promoter contacts by Nup98 might form part of the memory state, rein-
forcing our previously proposed notion that changes in enhancer- promoter contacts are functionally 
separate from initial transcriptional activity. Consistently, we have also reported that Nup98 gains 
physical interactions with EcR and architectural proteins upon ecdysone stimulation, suggesting that 
they might also form part of the memory state (Pascual- Garcia et  al., 2017). In agreement with 
the present data, the memory complex formed by interactions of Nup98, architectural proteins, and 
enhancer- promoter contacts were similarly found to persist during transcriptional shut- off. Overall, 
our data are consistent with the idea that such architectural role of Nup98, as well as architectural 
functions suggested for other Nups (Ibarra and Hetzer, 2015; Kuhn and Capelson, 2018; Kuhn and 
Capelson, 2019; Pascual- Garcia and Capelson, 2019; Sun et al., 2019), may play a role in memory 
maintenance. It is worth noting that at the galactose- induce yeast gene HXK1, where memory is asso-
ciated with gene loop interactions between the promoter and 3’-end of the gene, the maintenance 
of these loops is mediated by an NPC component Mlp1 and is thought to promote faster recruitment 
of RNA Pol II due to retention of transcription factors in the loop scaffold (Tan- Wong et al., 2009). 

https://doi.org/10.7554/eLife.63404
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A similar mechanism may be executed by Nup98 in transcriptional memory of ecdysone- inducible 
genes, where a large complex, consisting of the looped gene, architectural proteins and key tran-
scription factors, is ‘locked in’ by Nup98 to create a high- expressing memory state. In this manner, it is 
tempting to speculate that phase- separating properties of Nup98 and other Nups may be involved in 
creating a complex specialized for high transcriptional outputs (Pascual- Garcia and Capelson, 2019; 
Schmidt and Görlich, 2016; Schmidt and Görlich, 2015).

Another critical pathway implicated in transcriptional memory and in epigenetic memory in general 
is the deposition of histone modifications. H3K4 methylation is functionally linked to the transcrip-
tional priming of a variety of genes (Ding et al., 2012; D’Urso et al., 2016; Jaskiewicz et al., 2011; 
Light et al., 2013; Light et al., 2010; Muramoto et al., 2010; Sood et al., 2017), and more recently, 
histone H3K36me3 was correlated with the acquisition of memory upon IFNβ stimulation in mouse 
fibroblasts (Kamada et al., 2018). Although the interplay between transcriptional memory and depo-
sition of histone modifications has not been fully explored in the Drosophila system, multiple connec-
tions between H3K4 histone methyltransferases (HMTs) and factors that regulate ecdysone- induced 
transcriptional kinetics have been reported. For example, HMT Trithorax- related (Trr), responsible for 
the deposition of H3K4Me1, has been found to regulate the transcriptional activation of ecdysone- 
inducible genes through interactions with EcR (Herz et al., 2012; Sedkov et al., 2003). Additionally, 
Nup98 has been found to interact with the related HMT Trithorax (Trx) physically and genetically 
(Pascual- Garcia et  al., 2014; Xu et  al., 2016), and to regulate some of Trx target genes during 
fly development (Pascual- Garcia et al., 2014). Trx is a well- known regulator of epigenetic memory 
during development, and is critical for maintaining the active transcriptional state of homeotic genes, 
which define tissue identity (Kingston and Tamkun, 2014). Whether the discovered role of Nup98 
in maintaining a specialized active state plays a role in the epigenetic memory of Trx targets remains 
to be determined, but our findings open an intriguing possibility that the transcriptional memory 
dynamics described here apply to the broader Trx- mediated memory.

Our modeling study indicates that the transition between non- memory to memory state is rela-
tively long, lasting around 20 hr to convert 62% of loci (or 48 hr to convert 90% of loci) in an asyn-
chronous cell population. In agreement with the model, our expression data show that reducing the 
time interval between ecdysone stimulations deteriorates the memory response. One possible expla-
nation for such long- time scales of the kC rate constant is that the formation of a memory complex 
requires stochastic or biochemical events that involve these time scales. Another explanation may be 
a communication between cell- cycle completion and E74 memory. The transmission of transcriptional 
states from mother to daughter cells has been studied in multiple organisms from human cells to 
developing fly embryos and is thought to be critical for the maintenance of differentiation programs 
(Ferraro et al., 2016; Zhao et al., 2011). In Drosophila embryos, the use of live imaging to visu-
alize transcription uncovered a fourfold higher probability for rapid re- activation after mitosis when 
the mother cell experienced transcription (Ferraro et al., 2016). In mammalian cell culture, BRD4, a 
member of the Trx group (TrxG) proteins, has been implicated in faster re- activation kinetics of a previ-
ously activated transgene in post- mitotic cells (Zhao et al., 2011). In both cases, the authors proposed 
that transcription of the DNA template might render it more susceptible to rapid reactivation after 
mitosis, which may be achieved through heritable changes of DNA- bound transcriptional factors or 
histone modifications (Ferraro et al., 2016; Zhao et al., 2011). Additionally, it has been suggested 
that the process of mitosis itself is needed to help re- activate transcription to levels higher than those 
observed in the previous cell cycle, possibly via enhanced recruitment of regulatory factors to post- 
mitotic decondensing chromatin (Zhao et al., 2011). In this manner, it is plausible that the memory 
complex coordinated by Nup98 interplays with events immediately following mitosis to accelerate 
the dynamics of RNA synthesis, which could also explain why the enhanced transcriptional response 
depends on the length of time between ecdysone inductions.

Materials and methods

 Continued on next page

Key resources table 

Reagent type (species) or 
resource Designation Source or reference Identifiers Additional information

Gene (Drosophila melanogaster) Early gene 23 (E23) Flybase FBgn0020445

https://doi.org/10.7554/eLife.63404
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Reagent type (species) or 
resource Designation Source or reference Identifiers Additional information

Gene (Drosophila melanogaster)
Ecdysone- induced protein 74EF
(E74) Flybase FBgn0000567

Gene (Drosophila melanogaster)
Ecdysone- induced protein 75B
(E75) Flybase FBgn0000568

Cell line (D. melanogaster) S2- DRSC
Drosophila Genomics Resource Center 
(DGRC) RRID: CVCL_Z992

Chemical compound, drug 20- hydroxyecdysone (20E) Sigma- Aldrich Cat#: H5142

Chemical compound Flavopiridol hydrochloride Tocris Bioscience Cat#: 3,094

Chemical compound Triptolide Sigma- Aldrich Cat#: T3652

Chemical compound Fugene HD Promega Cat#: E2311

Chemical compound Trizol Ambion Cat#: 15596018

Commercial kit Megascript T7 kit Ambion Cat#: AM1334

Commercial kit
Purelink RNA mini kit columns (; 
12183018 A) Ambion Cat#: 12183018 A

Commercial kit QuantiTect RT- PCR Qiagen Cat#: 205,311

Commercial kit PowerSYBR Green PCR Master Mix Applied Biosystems Cat#: 4367659

Chemical compound Atto- 565 Sigma- Aldrich Cat#: 72,464

Chemical compound ProLong Gold mountant media ThermoFisher Cat#: P36930

MATLAB MathWorks
https://www.mathworks. 
com/

 Continued on next page

Cell culture and chemicals
We obtained Drosophila embryonic S2- DRSC cells from Drosophila Genomics Resource Center (DGRC) 
- this cell line is authenticated by DGRC and is one of the primary lines used by ModEncode and 
RNAi screens at DRSC (https://dgrc.bio.indiana.edu/product/View?product=181). We have confirmed 
mycoplasma negative status by PCR testing. Cells were grown at 25 °C in Schneider’s medium (Gibco; 
21720), supplemented with 10% (v/v) heat inactivated fetal bovine serum (Gibco; 10438034) and 1% 
(v/v) of penicillin- streptomycin antibiotics (10,000 U/mL) (Gibco; 15140163). For ecdysone induction 
experiments, 20- hydroxyecdysone (Sigma- Aldrich; H5142) was dissolved in 100% ethanol and used at 
5 μM. Flavopiridol hydrochloride (Tocris Bioscience; 30- 941- 0) and Triptolide (Sigma- Aldrich; T3652) 
were prepared in 100% DMSO and added at 1 μM and 5 μM, respectively.

dsRNA synthesis and transfection conditions
Double- stranded RNAs (dsRNA) fragments against Nup98 or white genes were synthesized with 
Megascript T7 kit (Ambion; AM1334) using a PCR- ed DNA template from fly genomic DNA (primers 
listed in Supplementary file 1). The integrity of the RNA was assessed by running the denatured 
product in a 1.2% agarose gel. To knock- down cells we mixed 10 μg of dsRNA per million cells with 
7.5 μl of Fugene HD (Promega; E2311) in serum- free media and we incubated the dsRNA cocktail with 
exponentially growing cells for at least 3 days.

RNA extraction and quantitative PCR
Total RNA was isolated in 1 ml Trizol (Ambion; 15596018) and purified using Purelink RNA mini kit 
columns (Ambion; 12183018 A) following manufactured instructions. RNA concentration was deter-
mined by measuring absorbance at 260 nm with a NanoDrop 2000 (ThermoFisher; ND- 2000). cDNAs 
were synthesized using one- step RT- PCR kit (Qiagen; 205311). To amplify specific cDNAs, primers 
were designed to span an exon- exon junction except for nascent rp49 qPCR experiment, where 
primers were designed to amplify the first intron- exon boundary (primers listed in Supplementary file 
1). In this case, the RNA was pre- treated with 1 U of DNAseI (ThermoFisher; EN0525) and incubated 
at 37 C for 30 min before reverse transcription reaction. We verified the efficiency of this digestion 

https://doi.org/10.7554/eLife.63404
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by running control qPCRs with the DNAseI- treated RNA samples, and checked for the presence of 
insufficiently digested genomic DNA.

For absolute quantification analysis, the template for E74 synthetic RNA standard was generated 
from a cDNA library and amplifying with specific primers covering the first two exons of Eip74EF- RA. 
ssRNA was in vitro transcribed using the Megascript T7 kit. The concentration in grams per volume of 
the synthesized reference RNA was determined by fluorometric quantification using the RNA HS assay 
kit (ThermoFisher; Q32852) and Qubit 2.0 (ThermoFisher; Q32866). RNA dilution series were converted 
to copy numbers per volume using the molecular weight of the RNA standard (MW = 126060 g/mole). 
For the RT reactions of the RNA standard dilutions, we added an additional Eip74EF- RA primer in 
addition to the random primers included in the reaction kit. To minimize our experimental error, we 
also constructed a DNA standard using E74 specific primers. We used this standard to calculate the 
amplification efficiency of the E74 primers by fitting a linear curve to log2(Ct) as a function of E74 DNA 
template copy number; the resulting line contains a slope of –3.566 and R2 of 0.9985. We constructed 
the RNA standard curve by single- parameter fit of a line of –3.566 slope to the previously retrotrans-
cribed RNA dilution series. We also factored the losses of mRNA extraction and purification by adding 
a known amount of in vitro transcribed E74 RNA to Trizol followed by purification and comparing the 
obtained amount of RNA; this approach resulted in 56% of RNA losses.

In all qPCR experiments, we used PowerSYBR Green PCR Master Mix (Applied Biosystems; 4367659) 
and QuantStudio 7 Flex thermal cycler (ThermoFisher; 4485701). Each qRT- PCR was repeated at least 
three times, the values were normalized to the rp49 transcript unless otherwise stated, and the error 
bars represent the standard deviation of the mean.

To compare the impact of inhibiting transcription during the 20E reinduction between different 
ecdysone- responsive genes, we define the calibrated memory index (CMI) as the ratio of the Nup98- 
dependent memory in inhibitor- treated cells to untreated cells:

 CMI = F∗MI
R   

 F = 1 − MN/MC  

 R = MC − MN  , 

where M is the fit slope of the second induction response either in Nup98- depleted cells (MN), in 
control cells (MC), or in the presence of transcriptional inhibitors (MI). F represents the Nup- dependent 
fraction of the second induction response, whereas R is the absolute value of the Nup98- dependent 
fit slope upon second induction and is the value to which F * MI must be normalized for comparison 
among genes. The maximum and minimum of the responses are specific to each gene because each 
gene exhibits a different value for the increased slope in untreated cells and the extent of reliance on 
Nup98. For convenience, CMI is zero under Nup98- depletion and the maximum is 1. CMI therefore 
represents the fraction of memory that remains during the second induction upon transcriptional inhi-
bition during the first induction.

Single-molecule RNA fluorescence in situ hybridization (SmRNA FISH)
S2 cells were cytospun in poly- L- lysine treated coverslips and fixed with 4% para- formaldehyde for 
10 min. Coverslips were rinsed 3 X in PBS and submerge in cold 70% EtOH for at least 24 hr. Comple-
mentary probes to the reading frame of eip74ef- RA were designed using Stellaris Probe Designer 
(https://www.biosearchtech.com/stellaris-designer), ordered from Biosearch and conjugated to Atto- 
565 (Sigma- Aldrich; 72464). Cells were washed twice with wash buffer [2 X SSC, 10% formamide, 
0.01% Tween- 20] and equilibrated with hybridization buffer [2 X SSC, 10% formamide, 10% dextran 
sulfate,1 μg/ml BSA]. The hybridization to probes was performed overnight at 37°C in a moisturized 
chamber at a concentration of about 1 nM. After hybridization, samples were washed 3 X in pre- 
warmed wash buffer and incubated at 37°C for 30 min. We performed a final wash with 2 X SSC, 
stained with Hoechst and mounted in ProLong gold (ThermoFisher; P36930). Imaging was performed 
by laser- scanning confocal microscopy on a Leica SP8 with a 63 x oil immersion objective using iden-
tical scanning parameters and laser power for all samples. Voxel dimensions are 76 × 76 × 250 nm.

https://doi.org/10.7554/eLife.63404
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Image Analysis
mRNA detection and normalization
By scanning confocal imaging, RNA puncta corresponding to single mRNAs, RNPs, and sites of nascent 
transcription all appear as diffraction- limited objects whose fluorescence intensities correlate with 
mRNA content (Little et al., 2015; Little et al., 2013; Little et al., 2011). Puncta were separated from 
imaging noise and centroids of true diffraction- limited objects were found with difference- of- Gaussian 
(DoG) thresholding using custom MATLAB scripts (Little et al., 2013) on deconvolved images followed 
by fluorescence intensity measurements using raw images as described (Little et al., 2015). Objects 
were classified as mRNA puncta or nascent transcription sites on the basis of DoG intensities as 
described (Zoller et al., 2018). Both the numbers and fluorescence intensities of non- nascent puncta 
increase during hormone induction. To obtain measurements of mRNA content of each individual 
puncta in absolute units by smFISH, we adapted a prior normalization technique (Little et al., 2015; 
Little et al., 2013; Little et al., 2011; Zoller et al., 2018). Briefly, we divide the fluorescence intensity 
of all puncta by the mean intensity of the non- nascent site puncta found during uninduced conditions, 
since, in the absence of hormone, the mean number of mRNAs detected by smFISH corresponds to 
the mean number measured by qPCR. Individual puncta are thus assigned a value corresponding to 
the equivalent number of finished, mature mRNAs they each contain. Because non- nascent puncta are 
mostly found in the cytoplasm, we term the units of this measurement ‘cytoplasmic units’ or C.U.s, the 
unit intensity of single mRNAs (Little et al., 2013). These measurements are thus in absolute units. 
When reporting transcriptional activity, we sum the fluorescence of all nascent site puncta assigned to 
each cell (Little et al., 2013; Zoller et al., 2018). This is advantageous because of the phenomenon of 
chromosome pairing, prevalent in Drosophila, in which homologous chromosomes are found in close 
physical association (Joyce et al., 2016). Pairing prevents unambiguous assignment of fluorescence to 
individual nascent sites, but does not preclude us from accurately assessing transcriptional activity in 
single cells. Objects were designated as sites of nascent transcription using a threshold of three times 
the intensity of single mRNAs. For nuclei that contain fewer than three objects that are greater than 
3 x the average intensity of cytoplasmic spots, 1 or two spots are selected at random and assigned 
the status of transcription sites; the random assignment yields a more accurate assessment of tran-
scription than an assertion that no transcription occurs, as previously described (Zoller et al., 2018). 
All transcriptional activity reported in Figures 3 and 4 is in units of C.U. per individual cell. In contrast, 
all parameter values derived from fitting are for individual loci, as described below.

Nuclear-cytoplasm segmentation
Hoechst stain was used to determine pixels corresponding to nuclear volumes as described (Petrovic 
et  al., 2019), and the same approach was applied to the low- level nonspecific cytoplasmic fluo-
rescence in the RNA channel to delineate total cell volumes. All RNA puncta were assigned to the 
nearest nucleus using on the basis of nearest- neighbor comparisons of the positions in 3D space of 
the centroids of puncta and nuclei, as described (Petrovic et al., 2019).

Modeling
mRNA degradation
mRNA stability was assessed for the first and second inductions by collecting cells for qPCR at 30 min 
intervals. After 4 hr of hormone treatment, cells were washed- out and treated with 1 μM Flavopiridol 
to disrupt transcription. qPCR was used to measure E74 levels relative to rp49 as a function of time 
following the start of transcription inhibition. qPCR was performed in triplicate on cells treated for 
72 hr with dsRNA against Nup98 or white genes. The data were fit to a model of exponential decay 
using nonlinear regression to obtain mRNA lifetimes and 95% confidence reported in Figure 2B and 
Figure 2—figure supplement 1B.

mRNA export
Image segmentation of cells into nuclear and total cell volume described above was used to assign 
all non- nascent RNA puncta to either the nucleus or cytoplasm based on the centroid positions of 
puncta in three dimensions. Puncta densities in both volumes were calculated as the number of puncta 
per cubic micron, and the fraction of puncta found in cytoplasm calculated for individual cells. Under 
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an assumption of unchanging mRNA degradation, the ratio of cytoplasmic to nuclear densities is 
constant regardless of expression level as long as RNA processing and transport are rapid compared 
to mRNA degradation (Aleman et al., 2021). Since degradation rates are slow and indistinguishable 
between Nup98 knockdown and control, we conclude that mRNA transport rates are unaffected by 
Nup98 depletion.

mRNA accumulation and production
Fitting of qPCR data was performed using nonlinear regression and the measured mRNA degradation 
rate to obtain 95% confidence intervals for parameter values. Fits were performed for each experi-
mental condition individually to produce the values displayed in the panels. S2 cells are tetraploid with 
a division time of 24 hr, spending similar amounts of time in G1 and G2 (Cherbas and Gong, 2014). 
We therefore performed all qPCR fits using the assumption that the average number of E74 loci per 
cell is six. All fit parameter values are reported in terms of individual loci. Curves shown in Figure 1B 
are piecewise polynomials. Models in Figure 2 each contain a single free parameter representing 
either the rate of constant mRNA production or the rate of linear increase in the mRNA production 
rate as a function of time. Both models in Figure 3 contain two free parameters. For the model of 
constant RNA Pol II loading, these are the first- order rate of conversion to the active state kA and 
the rate of RNA Pol II loading while active kPol. For the model of accelerating kPol, kA is fixed so as to 
virtually guarantee that all loci convert to the active state in 1 min (as noted in the text, Figure 3—
figure supplement 1D is plotted with a much smaller kA for illustrative purposes). We introduced an 
additional parameter, the RNA Pol II footprint on the DNA template, to provide a natural limit on the 
maximum attainable kPol.

To compare the fitting of the qPCR results to the measurements of transcriptional activity obtained 
by smFISH, the rates from fitting were utilized in Monte Carlo simulations of transcription (Gillespie, 
1976). We simulated the time- dependent evolution of RNA Pol II numbers and positions on the E74 
gene for 100,000 cells for each of the four conditions (Nup98 knockdown or dsWhite/control, with 
or without 20E). The time scale of the simulation was set by the previously measured RNA Pol II 
elongation rate in S2 cells of 1500 nt/min (Izban and Luse, 1992; Ardehali and Lis, 2009; Buckley 
et al., 2014; Yao et al., 2007). The simulation was updated every 1/1500 min, the interval needed 
to transcribe one nucleotide. For the model of increasing production rate, the production rate was 
also updated based on the acceleration parameter multiplied by the elapsed time. RNA Pol II mole-
cules and newly completed mRNA molecules were assumed to be evicted as soon as transcription 
was finished. For simplicity, we assumed that half of simulated cells are in G1 and half in G2, there-
fore containing either four or 8 E74 loci. We therefore simulated 600,000 single loci and combined 
them randomly into 50,000 sets of 4 and 50,000 sets of 8 to represent 100,000 individual cells. We 
converted RNA Pol II positions into C.U.s by noting that the RNA Pol II position in the gene body 
determined how many probe binding sites are present in the nascent RNA. The total C.U.s per cell 
was attained by summing the number of probe binding sites present across all four or eight simulated 
loci. Because all probes bind exonic sequences, neither the simulations nor observations are affected 
by splicing. With this procedure, we deduced parameter values in terms of single loci, rather than 
single cells. Starting conditions assigned to each cell were chosen at random from a Poisson distri-
bution using the mean number of detected puncta under uninduced conditions. Simulated transcrip-
tional activity values were taken at appropriate times after the start of the simulation (60, 120, and 
240 min) to compare the simulated distribution to that observed by smFISH. Goodness- of- fit scores 
were calculated by finding the intersection of the areas under the normalized histograms of simulated 
and observed cells, using histograms generated with bins of identical width. For convenience, we 
compared log(C.U.) values due to the long tail of observed transcriptional activity, identical to a previ-
ously utilized approach for describing the distribution of mRNAs in ribonuclear protein complexes 
(Little et al., 2015). The areas of intersection between simulated and observed histograms for each 
of the three time points corresponding to each of four conditions were summed and then divided by 
the area of the union, generating an effective Jaccard index (JI) that was used as a goodness- of- fit 
score. A score of 1 indicates perfect overlap between observation and simulation. We note that the 
absolute value of the goodness- of- fit score for any individual model is not by itself informative and is 
heavily reliant on the positions of bin edges; in contrast, the comparison of scores between identically 
prepared distributions informs on the extent of difference in overlap between model and observation.
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For the four- parameter model of transcriptional memory (Figure  4), we searched parameter 
space across eight orders of magnitude: For the first- order activation and conversion rates kA and 
kC, between 10–8 and 1 min–1, and for the kPol rates, between 10–7 and 10 min–1. Fitting the curves 
derived from qPCR was uninformative, as a vast volume of parameter space can describe population- 
averaged data. We therefore performed Monte Carlo simulations of transcription in order to approx-
imate the observed distributions of transcriptional activity at all six time points in control conditions. 
In principle, this entails a search through 4D space across cells simulated for 32 hr (4 hr 1st induction, 
24 hr recovery, and 4 hr 2nd induction). However, the combination of the four parameter values is 
constrained to match the trend of the average mRNA production rate determined by the prior fit 
of the qPCR results. This effectively reduced the search space to three dimensions, since we could 
choose a value for one parameter and simulate across combinations of the remaining three. To reduce 
computational burden, we simulated 10,000 cells for each parameter set over the four hours of the 
first induction. We then inferred the fraction of loci that would be in the memory state with a given 
kC following a 24 hr recovery period, and randomly assigned memory status to that fraction of loci, in 
order to avoid simulating the recovery period. We then simulated the 4 hr period of the second induc-
tion. The histograms of simulated and observed C.U.s were then scored by JI. This rapidly narrowed 
the possible range of parameter values to within approximately one order of magnitude. Subse-
quent fine- grained search of parameter space employed 100,000 cells per parameter set to find the 
maximum JI. The 95% confidence interval was assigned by bootstrap, taking 1000 random subsets of 
single cells from the data, redeploying the search of the narrow parameter window, and finding the 
mean and two standard deviations of the parameter values producing the maximum JI.

We note that this procedure requires that the transcriptionally active state has a lifetime signifi-
cantly shorter than 24 hr after hormone withdrawal. We did not attempt to measure the lifetime of 
the active state. However, we note there is minimal transcription following 24 hr recovery, supporting 
an assumption of short active lifetime without hormone. Likewise, we did not attempt to measure the 
lifetime of the converted state, which would only become apparent in Nup98 knockdown cells upon 
hormone withdrawal. However, the fit parameters from control data provide a reasonable explanation 
of both control and Nup98 knockdown cells. This supports the hypothesis that the memory state 
lifetime is significantly less than 24 hrs in the absence of Nup98, whereas memory is maintained indef-
initely in normal cells and their progeny.
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