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Abstract

The centromere is a chromatin region that is required for accurate inheritance of eukaryotic chromosomes during cell divisions.

Among the different centromere-associated proteins (CENP) identified, CENP-B has been independently domesticated from a pogo-

like transposase twice: Once in mammals and once in fission yeast. Recently, a third independent domestication restricted to

holocentric lepidoptera has been described. In this work, we take advantage of the high-quality genome sequence and the

wealthof functional informationavailable forDrosophilamelanogaster to further investigate thepossibilityofadditional independent

domestications of pogo-like transposases into host CENP-B related proteins. Our results showed that CENP-B related genes are not

restricted to holocentric insects. Furthermore, we showed that at least three independent domestications of pogo-like transposases

haveoccurred inmetazoans.Our resultshighlight the importanceoftransposableelementsas rawmaterial for the recurrentevolution

of important cellular functions.
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Centromere-Associated Protein B
Homologs Are Present in Mammals,
Fission Yeast, and Holocentric
Lepidoptera

CENP-B is one of the earliest described cases of transposable

element (TE) exaptations in the human genome (Tudor et al.

1992; Smit 1996). Human CENP-B has extensive sequence

and domain similarity to transposases encoded by the pogo

superfamily of TEs. It is widespread and highly conserved in

mammals, whereas it is undetectable in other metazoans

(Casola et al. 2008). Other than in mammals, three CENP-B

homologs have been described in fission yeast: Abp1

(Autonomous replicating sequence-binding protein 1), Cbh1

(CENP-B homolog 1), and Cbh2 (CENP-B homolog 2). Fission

yeast and human CENP-B proteins are functionally related.

Fission yeast CENP-B homologs show partially redundant func-

tion in the formation of centromeric heterochromatin and in

chomosome segregation (Irelan et al. 2001). They also play a

role in the silencing of TEs and TE-associated genes (Cam et al.

2008; Lorenz et al. 2012) and in DNA replication (Zaratiegui

et al. 2011). In humans, although the role of CENP-B has been

controversial (Marshall and Choo 2012), it has been recently

shown that CENP-B provides an alternative redundant

pathway for kinetochore formation in vivo (Fachinetti et al.

2013). Sequence and functional relationship between

mammal and fission yeast CENP-B homologs is the result of

convergent domestication: Different pogo-like transposases

have been exapted independently in the two lineages to

give rise to host proteins with centromere-binding activity

(Casola et al. 2008).

Recently, a CENP-B homolog has been described in the

holocentric lepidoptera Spodoptera frugiperda (d’Alençon

et al. 2011). Although in most eukaryotes the kinetochore

protein complex, connecting chromosomes to spindle micro-

tubules during cell division, usually binds to a single locus

called the centromere, in holocentric chromosomes kineto-

chore proteins bind along the entire length of the chromo-

somes. Spodoptera frugiperda CENP-B ability to bind in vivo to

a retrotransposon derived sequence and its nuclear localiza-

tion suggest that this protein is functionally related to other

CENP-B homologs (d’Alençon et al. 2011). Orthologs of

S. frugiperda CENP-B have been identified in other holocentric

lepidoptera, Bombyx mori and Helicoverpa armigera, but not

in other invertebrates. These findings suggest that there has

been a third convergent domestication of a transposase into

a CENP-B-related (CR) protein that appears to be restricted

to holocentric lepidopteran species (d’Alençon et al. 2011).
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These results prompted us to further investigate whether CR

proteins can be identified in the Drosophila melanogaster

genome. Drosophila melanogaster has one of the highest

quality genomes in terms of sequence and functional annota-

tion (St Pierre et al. 2013), and its DNA is organized in

nonholocentric chromosomes: Two metacentric and two telo-

centric ones.

CAG Is the Closest CR Protein in
D. melanogaster

To identify CR proteins in D. melanogaster, we used the pro-

tein sequences of the previously identified CENP-B homologs

and D. melanogaster pogo transposase as queries in BLASTp

searches against the D. melanogaster protein database. As

expected, we found that the pogo transposase was the best

hit in all searches (20–30% identity, e values 4e�34–3e�12).

We also found that CAG (CG12346) was the only host protein

showing local significant sequence similarity with human

CENP-B (34% identity, e value 4e�17), fission yeast Cbh1

(26% identity, e value 2e�05), and Drosophila pogo transpo-

sase (26% identity, e value 9e�10). Reciprocal BLAST searches

using CAG as a query confirmed that the closest sequence in

fission yeast is Cbh1 (25% identity, e value 7e�06). On the

other hand, CAG shows significant sequence homology with

40 blast hits in human, being the host genes TIGD6 (34%

identity, e value 3e�18) and CENP-B (34% identity, e value

5e�18) the highest scoring hits. Although four other proteins

containing CENP-B domains have been described in D. mela-

nogaster, we could not detect them in an exhaustive search

using BLASTp, tBLASTN, and HMMER, suggesting that they

are not closely related to CAG and previously described CR

proteins (Benchabane et al. 2011).

To further determine that CAG is a transposon-derived

gene and not a transposon remnant, we followed the conser-

vative approach proposed by Feschotte and Pritham (2007).

CAG fulfills the six criteria proposed by these authors. First, we

did not find evidence of transposon hallmarks, that is,

Terminal Inverted Repeats (TIRs), in CAG flanking regions, sug-

gesting that CAG is not a transposon. Second, CAG shows

significant sequence and domain architecture similarities (see

below) with pogo transposase and other transposase-derived

genes suggesting that it has a transposon origin. Third, the

coding capacity of CAG is intact and it is evolving under func-

tional constrain contrary to TE-coding regions of nonautono-

mous transposons that typically evolve neutrally (dN/

dS = 0.08312 estimated using a cDNA alignment with D.

yakuba). Fourth, synteny around CAG is conserved in most

species of the Drosophila genus (see below) as opposed to TEs

that are not expected to be maintained at orthologous posi-

tions. Fifth, CAG expresses two alternative transcripts and

shows peaks of expression in different developmental stages

(Marygold et al. 2013) in contrast to TE genes that are often

not expressed (Deloger et al. 2009). And sixth, there are seven

reported alleles for this gene, and some of them are lethal,

suggesting that CAG has a critical biological function in vivo

(St Pierre et al. 2013).

Thus, we can conclude that CAG has a transposon origin

and it is the closest D. melanogaster host gene encoding a CR

protein.

CAG Domain Architecture Is Similar
to pogo Transposase and Other CR
Proteins

We checked whether, besides sequence conservation, the

domain architecture of CAG is also conserved when com-

pared with previously identified CENP-B homologs and

D. melanogaster pogo transposase (fig. 1A). Using hmmscan

(Finn et al. 2011), we found that CAG shows the same com-

posite DNA binding domain (DBD) structure found in human

and S. frugiperda CR proteins (fig. 1A). The majority of the

highly conserved amino acids shared by proteins having this

FIG. 1.—Domain structure of pogo transposase and CR proteins.

(A) Human CENP-B (hCENP-B), D. melanogaster pogo transposase

(pogoR11), D. melanogaster CAG (CAG), yeast CENP-B homologs

(Abp1, Cbh1, Cbh2), and Spodoptera frugiperda CENP-B homolog

(SfCENP-B). CENP-B_N domain is shown in red, d1iufa1 in yellow,

HTH_Tnp_Tc5 in green, DDE_1 in light blue, DIM in pink, and PCNA in

dark blue. Domains predicted by hmmscan are shown as black-lined

boxes, the other domains were inferred from experimental evidence.

The discontinuous line indicates the deleted region. (B) 3D structure pre-

diction of D. melanogaster CAG DBD using human CENP-B as a template.

Z-score=�6.66 and �6.7 for CENP-B and CAG, respectively.
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composite DBD are also conserved in CAG suggesting that this

domain is functional (supplementary fig. S1, Supplementary

Material online). Furthermore, a 3D model of CAG DBD build

using human CENP-B as a template, shows that the fold of this

domain is similar in both proteins (fig. 1B).

CAG is the only of the seven proteins being compared that

does not have a DDE_1 endonuclease domain (DDE) next to

the DBD domain (fig. 1A). Indeed, CAG is shorter than the

other proteins probably due to an internal deletion, which is a

common feature in this class of transposons (Negoua et al.

2013). In fact, out of the 44 pogo copies in the D. melanoga-

ster genome, 35 showed internal deletions and one of them,

FBti0020096, has a similar deletion as CAG.

A dimerization domain (DIM) near the C-terminal region is

present in human CENP-B (Tawaramoto et al. 2003).

hmmscan does not detect any C-terminal DIM domain in

the other six proteins. However, it has been described that

the pogo transposase, CAG and the three yeast CENP-B ho-

mologs self-dimerize (Wang et al. 1999; Irelan et al. 2001;

Giot et al. 2003; Tawaramoto et al. 2003; Cam et al. 2008;

Lorenz et al. 2012). Given their common evolutionary origin,

we hypothesized that the DIM domain might be located in the

C-terminal region in these proteins as well. Finally, the pogo

transposase has a PCNA (proliferating cell nuclear antigen)

binding domain in the C-terminal end (Warbrick et al.

1998). Although this domain has not been identified in

CAG at the sequence level, there is experimental evidence

for CAG binding to PCNA suggesting that besides CAG

other pogo-related proteins might have also conserved this

function (fig. 1A).

Taken together, these results indicate that CAG is similar to

the pogo transposase both at sequence and domain architec-

ture levels, further confirming that CAG has a transposon

origin. The lack of the DDE domain is explained by an internal

deletion that is common in this family of transposons. Except

for the absence of the DDE domain, CAG sequence and

domain architecture are also similar to other described

CENP-B homologs.

Protein–Protein Interaction Network
Suggests CAG Is Functionally Related
to Other CR Proteins

Because CAG is a protein of unknown function, we searched

for proteins directly interacting with CAG to shed light on the

biological processes in which this protein might be involved.

Although data from protein-protein interaction (PPI) networks

is still noisy and partial, functional annotation based on inter-

action networks provides reliable insight into the biology of

proteins with unknown function (Titz et al. 2004; Sharan et al.

2007). There is experimental evidence for the interaction

between CAG and 15 other proteins, and six of them have

nucleic acid binding capacity (supplementary table S1,

Supplementary Material online). CAG directly interacts with

Mi-2, which is a component of the nucleosome remodeling

and histone deacetylation (NuRD) complex with chromatin

binding and remodeling activity (Bouazoune and Brehm

2005). As mentioned above, CAG has preserved the pogo

transposase capacity to interact with PCNA (Warbrick et al.

1998). Besides playing a crucial role in DNA replication and

repair (Warbrick et al. 1998), cell cycle control and sister chro-

matin cohesion (Maga and Hubscher 2003), PCNA is also a

component of the microtubule associated complex (Hughes

et al. 2008). CAG also interacts with Cdc5 and snama, which

are involved in cell cycle control (supplementary table S1,

Supplementary Material online).

To further investigate the functional annotation of CAG,

we expanded the network of proteins that directly interact

with CAG by incorporating their respective interaction part-

ners (Chua et al. 2006). The resulting list of 842 proteins in

the neighborhood-2 of CAG showed a significant enriche-

ment for 72 biological process Gene Ontology (GO) terms

related to cell cycle and mitotic spindle organization and nu-

cleic acid metabolism among others (fig. 2). Fifty-eight out of

the 72 CAG enriched GO terms are also enriched in the

human CENP-B neighborhood-2, further suggesting that

CAG and CENP-B interacting partners are involved in similar

biological processes.

CR Genes Are Present in Holocentric
and Nonholocentric Insecta

To determine whether CAG is present in species other than D.

melanogaster, we searched for CAG orthologs using a

BLASTp search against ensembl metazoa protein database

(see Materials and Methods). CAG has nine 1-to-1 orthologs

in the Drosophila genus that showed a sequence identity from

97.2% to 39.8% (table 1). The DBD architecture is conserved

in all of them and the length of the protein is highly similar

except in D. simulans, where only the first DBD domain is

present (table 1). Other than sequence identity and protein

length, synteny is also conserved in the six closest Drosophila

species except in D. simulans. Furthermore, CAG is evolving

under functional constrain in these ten Drosophila species

(average difference of synonymous and nonsynonymous

substitutions per site over all nine sequence pairs is 17.99,

P value � 0.001) suggesting that CAG orthologs are func-

tional genes.

Other than in the Drosophila genus, CAG has homologs in

four Lepidoptera species and in one Coleoptera with sequence

identities ranging from 51.5% to 22.2% (table 1). We could

only detect TIRs flanking Heliconius melpomene HMEL010729

suggesting that the other identified homologs are not trans-

posons but transposon-derived genes (see Materials and

Methods).

Overall, our results show that CR genes are present both

in holocentric, Lepidoptera, and in nonholocentric, Diptera

and Coleoptera, species.
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CAG Belongs to the CR Clade

We constructed a phylogenetic tree to find out where insect

CENP-B homologs are located in the previously published phy-

logeny containing a representative set of pogo transposases

and pogo-derived genes (Casola et al. 2008). Phylogenetic

trees of the full sequence set containing nonmetazoan trans-

posases and transposase-derived genes can be found in sup-

plementary figures S2 and S3, Supplementary Material online

(see Materials and Methods). Our tree recovers the two mono-

phyletic clades in metazoans: CR and Jerky related (JR) (fig. 3).

CAG is located in the CR clade, and as expected, its closest

transposase is the D. melanogaster pogo. The closest

non-Drosophila CAG homolog is Tribolium castaneum

TC005011. Most of the other insect CENP-B homolog

genes, including the already described S. frugiperda and

H. armigera CENP-B homologs, also fell in the CR clade.

Insect and mammalian CR proteins form subclades inside the

CR clade (fig. 3). Other than between D. melanogaster_CAG

and D. ananassae_GF13390 transposase-derived genes, syn-

teny is also conserved among Sfru_72F01, Harmi_94B11_25,

and Bombyx_ BGIBMGA013624 suggesting that at least

two additional independent exaptations, besides the

mammal and fission yeast exaptations reported by Casola

et al (2008), have occurred.

Note that Helicon. melpomene homologs form two

clusters, one in the JR clade and one in the CR clade, show-

ing extensive sequence identity indicating that they are

FIG. 2.—Biological processes overrepresented in the CAG 2-neighbourhood PPI. Hierarchical representation of the 72 biological process GO terms

enriched in the neighbourhood-2 of CAG PPI network. Node colors indicate the level of significance. The overrepresented GO terms were categorized into

four groups related to the neigbourhood-1 genes of CAG PPI: Cell cycle and spindle organization, response to stimulus and regulation of metabolic process,

nucleic acids metabolism, and protein metabolism. GO terms enriched also in the neighborhood-2 of human CENP-B are represented inside gray boxes.
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either recent duplications or miss-annotated transposons

(fig. 3).

Pogo-like Transposases Have Been
Recurrently Exapted into CR Proteins
in Metazoans

In this work, we have identified CAG as the closest CR protein

in the D. melanogaster genome. Similar to other CR proteins,

CAG has originated from the domestication of a pogo trans-

posase and might be functionally related to other CENP-B

homologs as suggested by the conservation of three out of

the four functional domains (fig. 1) and the GO enrichment

analyses of CAG PPI network (fig. 2). Knowledge about the

contribution of each particular domain to the overall functions

of CR proteins is scarce (Okada et al. 2007; Lorenz et al. 2012).

However, conservation of DBD domain appears to be particu-

larly important because it has been demonstrated that binding

of this domain is sufficient to promote chromatin assembly in

humans (Okada et al. 2007). Both sequence identity and 3D

structure prediction show that CAG has a highly conserved

DBD domain (fig. 1).

Other than in D. melanogaster, we were also able to iden-

tify CR proteins in T. castaneum, which is also a nonholo-

centric insect, indicating that CR proteins are not restricted

to holocentric insecta (table 1) (d’Alençon et al 2011). Insect

CENP-B homologs do not form a single monophyletic clade:

Most sequences are part of the CR clade and a few belong to

the JR clade. Furthermore, insect and mammalian CR proteins

form moderately supported subclades inside the CR clade

(fig. 3). These results suggest that at least three independent

domestications of pogo-like transposases into CR proteins

have occurred in metazoans (fig. 3).

Pogo-like transposases might have a predisposition to be

recruited as centromeric proteins because 1) their DBD might

provide them with the intrinsic ability to interact with centro-

meric DNA, and/or 2) interaction with the centromere might

be indirect through their interaction with other host proteins

with this ability (Feschotte and Pritham 2007; Casola et al.

2008). Our results further support both hypotheses. All CR

proteins described so far conserved their DBD suggesting

that they all probably have the ability to directly bind to

DNA (fig. 1A, table 1). In the case of CAG, indirect capacity

to interact with DNA is also provided through its interaction

with PCNA (Warbrick et al. 1998; Maga and Hubscher 2003)

Table 1

CR Genes Identified in Holocentric and Nonholocentric Insecta

Class Order Species Protein Identifiera Protein Sequence

Identityb (%)

Protein

Length

Conserved Protein Domains

HTH_CENP-B_N HTH_Tnp_Tc5

Insecta Diptera Drosophila melanogaster CAG (CG12346) 100 225 X X

D. simulans GD15259 97.22 111 X —

D. sechelia GM20484 94.67 225 X X

D. yakuba GE13064 92.44 225 X X

D. erecta GG22708 93.24 207 X X

D. ananassae GF13390 59.11 222 X X

D. pseudoobscura GA11571 57.46 228 X X

D. persimilis GL17090 58.77 228 X X

D. willistoni GK19073 40.29 222 X X

D. virilis GJ16124 39.81 227 X X

Insecta Lepidoptera Bombyx mori BGIBMGA013031 32.09 278 X X

BGIBMGA008012 26.35 501 X X

BGIBMGA007903 25 468 X X

BGIBMGA013624 29.63 722 X X

Insecta Lepidoptera Heliconius melpomene HMEL009793 35.38 255 X X

HMEL010729 33.8 295 X X

HMEL014790 31.55 533 X X

HMEL007960 50 533 X X

HMEL011593 35.38 192 X X

Insecta Lepidoptera Helicoverpa armigera 94B11_25* 22.22# 488 X X

Insecta Lepidoptera Spodoptera frugiperda 72F01* 23.61# 488 X X

Insecta Coleoptera Tribolium castaneum TC003750 26.39 1175 X X

TC001653 30 486 X —

TC005011 51.49 212 — X

aAll sequences can be downloaded from Ensembl Metazoa except those with an “*” that can be downloaded from LepidoDB.
bProtein sequence identity estimated using BLASTp except for those with an “#” estimated using ClustalW (see Materials and Methods).
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FIG. 3.—Phylogenetic distribution of pogo-related transposases and transposase-derived genes in metazoans. JR and CR indicate that the sequences

belong to the JR clade and the CR clades, respectively. Filled-boxes depict pogo-related transposases and empty boxes depict transposase-derived genes.

Numbers in the nodes show posterior probabilities (black) and bootstrap values (red). Shaded branches correspond to new CR proteins identified in this work

and in d’Alençon et al 2011 (table 1) that have been incorporated to the previously published phylogeny (Casola et al 2008). Dotted lines represent branches

not drawn to scale. Trees including nonmetazoans pogo-related transposases and transposase-derived genes are depicted in supplementary figures S2 and

S3, Supplementary Material online.
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and other DNA binding proteins (supplementary table S1,

Supplementary Material online).

Overall, our results suggest that the numerous TE exapta-

tions already described might just be the tip of the iceberg,

and highlight the role of TEs as raw material for the recurrent

evolution of important cellular functions (Bowen and Jordan

2007; Sinzelle et al. 2009).

Materials and Methods

CAG Identification

Human CENP-B (P07199), fission yeast Abp1 (NP_596460),

Cbh1 (CAB16408), Cbh2 (CAA19330.1), S. frugiperda

CENP-B (72F01) (d’Alençon et al. 2011), and pogo transpo-

sase (S20478) were used as BLASTp queries against D. mela-

nogaster nr protein database with BLOSUM45 scoring matrix,

low-complexity region filter, and an e value cutoff of 1e-04.

Significant hits were used in a reciprocal BLASTp search using

these same parameters.

Domain Architecture Analysis

Hmmscan software implemented at HMMER 3.1b1 (Finn et al.

2011) was used to search for occurrences of the domains

deposited in Pfam-A database in the protein sequences

under study. This information was complemented with the

structural data available for human CENP-B (PDBIDs: 1HLV,

1BW6, 1UFI) and fission yeast Abp-1 (PDBID: 1IUF). The

experimentally determined molecular interactions reported

by Warbrick et al. (1998), Giot et al. (2003), Guruharsha

et al. (2011), and Irelan et al. (2001) that were accessed

through the PSICQUIC web server (Aranda et al. 2011) and

FlyBase (Marygold et al. 2013) were also taken into account.

CAG 3D Modeling

The crystal structure of human CENP-B DBD (PDB ID: 1HLV)

was used as a template for the modeling of D. melanogaster

CAG DBD. The first 145 aminoacids (aa) of CAG were aligned

to the 131 aa contained in the crystalized human CENP-B DBD

using a combination of a global alignment built with ClustalW

and two local alignments of the HTH regions built with hmma-

lign software (Finn et al. 2011) and the pfam profiles CENP-

B_N and HTH_Tnp_Tc5. The resulting alignment was manually

refined taking into account the predicted secondary structure

of CAG and the description of the secondary structure of the

crystal. Several alignments were used as an input to build CAG

DBD models using the automodel class in Modeller 9.7 (Eswar

et al. 2007). The resulting models were evaluated taking into

account their stereochemical properties calculated by

PROCHECK (Laskowski et al. 1993) and their pseudoenergetic

profiles and z-scores calculated by PROSA-II (Wiederstein and

Sippl 2007). STAMP was used to visualize the superimposition

of the models with human CENP-B (Russell and Barton 1992).

CAG PPI Network

A list of proteins with experimental evidence of direct interac-

tion with CAG (Q7JR24) and human CENP-B (P07199)

were retrieved from Drosophila Protein Interaction Map and

the PSICQUIC web server (Aranda et al. 2011). Only those

binary interactions obtained using experimental detection

methods and interaction types “association”, “physical asso-

ciation,” or “direct interaction” were kept.

The PPI interaction network at neighborhood-1 of CAG

and CENP-B was expanded to neighborhood-2 using both

experimentally determined and predicted interactions depos-

ited at Interolog Finder web server (Wiles et al. 2010). We

retrieved a list of 1,413 interactions involving 842 proteins

for CAG and a list of 1,665 interactions involving 1,174 pro-

teins for CENP-B. Cytoscape was used to visualize the interac-

tions and BinGO to assess the overrepresentation of GO terms

(Maere et al. 2005). Those GO terms showing a Benjamin and

Hochberg False Discovery Rate corrected P value <1e�10 in

a hypogeometric statistical test were represented, together

with their parent terms, in a hierachical layout. The intersec-

tion of the GO terms that were enriched in both CAG

and CENP-B neighborhood was performed by comparing

the generated output files.

Codon-Based Test of Purifying Selection

Coding sequences for nine CAG orthologus in Drosophila

species were aligned by ClustalW (Thompson et al. 1994).

Codon-based tests of selection analyses were conducted

in MEGA5 (Hall 2013) using the Nei–Gojobori method

(Nei and Gojobori 1986). All ambiguous positions were

removed for each sequence pair. The average difference of

synonymous and nonsynonymous substitutions per site was

calculated. The variance of the difference was computed

using the bootstrap method (500 replicates).

Identification of CAG Orthologs and CR Genes

BLASTp searches using CAG sequence as a query were per-

formed against ensembl metazoa protein databases. Protein

sequences of those hits showing an E value smaller than 10�4

and a protein sequence identity greater than 25% along at

least 100 aa, were retrieved and used for further analyses. We

then checked whether the identified proteins were reported

as orthologs in ensembl metazoa compara, Genomicus, and

OrthoDB Arthropods, and kept only the ones that were

reported as orthologs in at least one of the three databases.

The two previously described CR genes in S. frugiperda and

H. armigera were also included in the analyses (d’Alençon et al

2011). For these two sequences percentage of protein

sequence identity was estimated using ClustalW. We then

confirmed that the sequences had not been annotated

as TEs during their respective genome annotation projects

(Tribolium Genome Sequencing Consortium 2008; Duan

et al. 2010; Heliconius Genome Consortium 2012). To further
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confirm that these sequences correspond to host proteins and

not to transposases, we searched for Terminal Inverted

Repeats in the 50 and 30 600 base-pair regions flanking the

CDS. To this end, we performed local sequence alignments

using the Smith–Waterman algorithm for all possible sliding

windows of 24 bp in the 50-flanking region and the reverse

sequence of the 30-flanking region. Drosophila melanogaster

PogoR11 was used as a positive control.

Phylogenetic Analysis of pogo-Related Sequences

Global multiple sequence alignments were performed using

MAFFT (L-INS-I algorithm) (Katoh and Standley 2013). Local

alignment of the DBD was performed using hmmalign and the

hidden markov models HTH_CENP-B_N and HTH_Tnp_Tc5.

Both alignments were combined and manually curated to

obtain a final multiple sequence alignment of 449 residues

with a proportion of gaps of 15.90%. This alignment was

used to reconstruct the phylogeny of the pogo-related trans-

posases and transposase-derived genes. We estimated the

maximum-likelihood (ML) tree using RAxML (Stamatakis

2014). We used the best-fit amino acid substitution matrix

(LG) estimated by ProtTest 3 (Darriba et al. 2011) with a

GAMMA model of rate heterogeneity and the ML estimate

of alpha-parameter. The best tree out of 100 inferences was

optimized and 100 bootstrap replicates were performed

(supplementary fig. S2, Supplementary Material online).

Because bootstrap support in most of the branches in the

metazoan sequences were smaller than 70, we decided to

perform an independent inference using a Bayesian approach.

We constructed the phylogenetic tree with PhyloBayes using

the LG empirical mixture model with a discrete gamma distri-

bution with four categories where constant sites were

removed. Two Markov chains were run in parallel with a

subsampling frequency of 100 until convergence was reached

(population effective size of 242, maximum difference of

0.105175, mean difference of 0.00381158) (supplementary

fig. S3, Supplementary Material online). ETE Toolkit (Huerta-

Cepas et al. 2010) was used to annotate and visualize phylo-

genetic trees.

Genomicus (Louis et al. 2013) was used to check for

synteny conservation in the different subclades identified.

Supplementary Material

Supplementary table S1 and figures S1–S3 are available at

Genome Biology and Evolution online (http://www.gbe.

oxfordjournals.org/).
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d’Alençon E, et al. 2011. Characterization of a CENP-B homolog in the

holocentric Lepidoptera Spodoptera frugiperda. Gene. 485:91–101.

Darriba D, Taboada GL, Doallo R, Posada D. 2011. ProtTest 3: fast selection

of best-fit models of protein evolution. Bioinformatics 27:1164–1165.

Deloger M, et al. 2009. Identification of expressed transposable element

insertions in the sequenced genome of Drosophila melanogaster.

Gene 439:55–62.

Duan J, et al. 2010. SilkDB v2.0: a platform for silkworm (Bombyx mori)

genome biology. Nucleic Acids Res. 38:D453–D456.

Eswar N, et al. 2007. Comparative protein structure modeling using

MODELLER. Curr Protoc Protein Sci. 2:2.9.1–2.9.31.

Fachinetti D, et al. 2013. A two-step mechanism for epigenetic specifica-

tion of centromere identity and function. Nat Cell Biol. 15:1056–1066.

Feschotte C, Pritham EJ. 2007. DNA transposons and the evolution of

eukaryotic genomes. Annu Rev Genet. 41:331–368.

Finn RD, Clements J, Eddy SR. 2011. HMMER web server: interactive

sequence similarity searching. Nucleic Acids Res. 39:W29–W37.

Giot L, et al. 2003. A protein interaction map of Drosophila melanogaster.

Science 302(5651):1727–1736.

Guruharsha KG, et al. 2011. A protein complex network of Drosophila

melanogaster. Cell 147(3):690–703.

Hall BG. 2013. Building phylogenetic trees from molecular data with

MEGA. Mol Biol Evol. 30:1229–1235.

Heliconius Genome Consortium. 2012. Butterfly genome reveals promis-

cuous exchange of mimicry adaptations among species. Nature 487:

94–98.

Huerta-Cepas J, Dopazo J, Gabaldón T. 2010. ETE: a python environment

for tree exploration. BMC Bioinformatics 11:24.

Hughes JR, et al. 2008. A microtubule interactome: complexes with roles

in cell cycle and mitosis. PLoS Biol. 6:e98.

Irelan JT, Gutkin GI, Clarke L. 2001. Functional redundancies, distinct

localizations and interactions among three fission yeast homologs of

centromere protein-B. Genetics 157:1191–1203.

Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment soft-

ware version 7: improvements in performance and usability. Mol Biol

Evol. 30:772–780.

CENP-B-Related Proteins GBE

Genome Biol. Evol. 6(8):2008–2016. doi:10.1093/gbe/evu153 Advance Access publication July 24, 2014 2015

'
'
600 
-
'
'
D. 
transposase 
maximum 
likelyhood 
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu153/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu153/-/DC1
4
-
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu153/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu153/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu153/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu153/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu153/-/DC1
http://www.gbe.oxfordjournals.org/
http://www.gbe.oxfordjournals.org/


Laskowski RA, MacArthur MW, Moss DB, Thornton JM. 1993.

PROCHECK: a program to check the stereochemical quality of protein

structures. J Appl Cryst. 26:283–291.

Lorenz DR, et al. 2012. CENP-B cooperates with Set1 in bidirectional tran-

scriptional silencing and genome organization of retrotransposons.

Mol Cell Biol. 32:4215–4225.

Louis A, Muffato M, Roest Crollius H. 2013. Genomicus: five genome

browsers for comparative genomics in eukaryota. Nucleic Acids Res.

41:D700–D705.

Maere S, Heymans K, Kuiper M. 2005. BiNGO: a cytoscape plugin to assess

overrepresentation of gene ontology categories in biological networks.

Bioinformatics 21:3448–3449.

Maga G, Hubscher U. 2003. Proliferating cell nuclear antigen (PCNA):

a dancer with many partners. J Cell Sci. 116:3051–3060.

Marshall OJ, Choo KHA. 2012. Putative CENP-B paralogues are not pre-

sent at mammalian centromeres. Chromosoma 121:169–179.

Marygold SJ, et al. 2013. FlyBase: improvements to the bibliography.

Nucleic Acids Res. 41:D751–D757.

Negoua A, Rouault J-D, Chakir M, Capy P. 2013. Internal deletions of trans-

posable elements: the case of Lemi elements. Genetica 141:369–379.

Nei M, Gojobori T. 1986. Simple methods for estimating the numbers of

synonymous and nonsynonymous nucleotide substitutions. Mol Biol

Evol. 3:418–426.

Okada T, et al. 2007. CENP-B controls centromere formation depending

on the chromatin context. Cell 131:1287–1300.

Russell RB, Barton GJ. 1992. Multiple protein sequence alignment from

tertiary structure comparison: assignment of global and residue con-

fidence levels. Proteins 14:309–323.

Sharan R, Ulitsky I, Shamir R. 2007. Network-based prediction of protein

function. Mol Syst Biol. 3:88.

Sinzelle L, Izsvák Z, Ivics Z. 2009. Molecular domestication of transposable

elements: from detrimental parasites to useful host genes. Cell Mol

Life Sci. 66:1073–1093.

Smit AFA. 1996. Tiggers and other DNA transposon fossils in the human

genome. Proc Natl Acad Sci U S A. 93:1443–1448.

St Pierre SE, Ponting L, Stefancsik R, McQuilton P, FlyBase Consortium.

2013. FlyBase 102 advanced approaches to interrogating FlyBase.

Nucleic Acids Res. 42:D780–D788.

Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analy-

sis and post-analysis of large phylogenies. Bioinformatics 30:

1312–1313.

Stanyon CA, et al. 2004. A Drosophila protein-interaction map centered

on cell-cycle regulators. Genome Biol. 5:R96.

Tawaramoto MS, et al. 2003. Crystal structure of the human centromere

protein B (CENP-B) dimerization domain at 1.65-A resolution. J Biol

Chem. 278:51454–1461.

Thompson JD, Higgins DG, Gibson TJ. 1994. CLUSTAL W: improving the

sensitivity of progressive multiple sequence alignment through

sequence weighting, position-specific gap penalties and weight

matrix choice. Nucleic Acids Res. 22:4673–4680.

Titz B, Schlesner M, Uetz P. 2004. What do we learn from high-

throughput protein interaction data? Expert Rev Proteomics. 1:

111–121.

Tribolium Genome Sequencing Consortium, et al. 2008. The genome of

the model beetle and pest Tribolium castaneum. Nature. 452:

949–955.

Tudor M, Lobocka M, Goodell M, Pettitt J, O’Hare K. 1992. The pogo

transposable element family of Drosophila melanogaster. Mol Gen

Genet. 232:126–134.

Wang H, Hartswood E, Finnegan DJ. 1999. Pogo transposase contains a

putative helix-turn-helix DNA binding domain that recognises a 12bp

sequence within the terminal inverted repeats. Nucleic Acids Res. 27:

455–461.

Warbrick E, Heatherington W, Lane DP, Glover DM. 1998. PCNA binding

proteins in Drosophila melanogaster: the analysis of a conserved PCNA

binding domain. Nucleic Acids Res. 26:3925–3932.

Wiederstein M, Sippl MJ. 2007. ProSA-web: interactive web service for the

recognition of errors in three-dimensional structures of proteins.

Nucleic Acids Res. 35:W407–W410.

Wiles AM, et al. 2010. Building and analyzing protein in-

teractome networks by cross-species comparisons. BMC Syst Biol. 4:

36.

Zaratiegui M, et al. 2011. CENP-B preserves genome integrity at replica-

tion forks paused by retrotransposon LTR. Nature 469:112–115.

Associate editor: Emmanuelle Lerat

Mateo and González GBE
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