
Measuring Adult Mortality Using Sibling Survival: A New
Analytical Method and New Results for 44 Countries,
1974–2006
Ziad Obermeyer1,2, Julie Knoll Rajaratnam1*, Chang H. Park1,3, Emmanuela Gakidou1, Margaret C.

Hogan1, Alan D. Lopez4, Christopher J. L. Murray1

1 Institute for Health Metrics and Evaluation, University of Washington, Seattle, Washington, United States of America, 2 Department of Emergency Medicine, Brigham and

Women’s Hospital, Boston, Massachusetts, United States of America, 3 Mount Sinai School of Medicine, New York, New York, United States of America, 4 School of

Population Health, The University of Queensland, Brisbane, Queensland, Australia

Abstract

Background: For several decades, global public health efforts have focused on the development and application of disease
control programs to improve child survival in developing populations. The need to reliably monitor the impact of such
intervention programs in countries has led to significant advances in demographic methods and data sources, particularly
with large-scale, cross-national survey programs such as the Demographic and Health Surveys (DHS). Although no
comparable effort has been undertaken for adult mortality, the availability of large datasets with information on adult
survival from censuses and household surveys offers an important opportunity to dramatically improve our knowledge
about levels and trends in adult mortality in countries without good vital registration. To date, attempts to measure adult
mortality from questions in censuses and surveys have generally led to implausibly low levels of adult mortality owing to
biases inherent in survey data such as survival and recall bias. Recent methodological developments and the increasing
availability of large surveys with information on sibling survival suggest that it may well be timely to reassess the pessimism
that has prevailed around the use of sibling histories to measure adult mortality.

Methods and Findings: We present the Corrected Sibling Survival (CSS) method, which addresses both the survival and
recall biases that have plagued the use of survey data to estimate adult mortality. Using logistic regression, our method
directly estimates the probability of dying in a given country, by age, sex, and time period from sibling history data. The
logistic regression framework borrows strength across surveys and time periods for the estimation of the age patterns of
mortality, and facilitates the implementation of solutions for the underrepresentation of high-mortality families and recall
bias. We apply the method to generate estimates of and trends in adult mortality, using the summary measure 45q15—the
probability of a 15-y old dying before his or her 60th birthday—for 44 countries with DHS sibling survival data. Our findings
suggest that levels of adult mortality prevailing in many developing countries are substantially higher than previously
suggested by other analyses of sibling history data. Generally, our estimates show the risk of adult death between ages 15
and 60 y to be about 20%–35% for females and 25%–45% for males in sub-Saharan African populations largely unaffected
by HIV. In countries of Southern Africa, where the HIV epidemic has been most pronounced, as many as eight out of ten
men alive at age 15 y will be dead by age 60, as will six out of ten women. Adult mortality levels in populations of Asia and
Latin America are generally lower than in Africa, particularly for women. The exceptions are Haiti and Cambodia, where
mortality risks are comparable to many countries in Africa. In all other countries with data, the probability of dying between
ages 15 and 60 y was typically around 10% for women and 20% for men, not much higher than the levels prevailing in
several more developed countries.

Conclusions: Our results represent an expansion of direct knowledge of levels and trends in adult mortality in the developing
world. The CSS method provides grounds for renewed optimism in collecting sibling survival data. We suggest that all
nationally representative survey programs with adequate sample size ought to implement this critical module for tracking
adult mortality in order to more reliably understand the levels and patterns of adult mortality, and how they are changing.
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Introduction

For several decades, global public health efforts have focused on

the development and application of disease control programs to

improve child survival in developing countries. Technologies for

preventing and successfully treating the leading causes of death in

children are available, and their increasing effective use is leading

to continuing declines in child mortality. The need to reliably

monitor the impact of such intervention programs in countries

has led to significant advances in demographic methods and

data sources, particularly from large-scale. cross-national survey

programs such as the Demographic and Health Surveys (DHS)

[1–3]. As a consequence, levels and trends of child mortality are

reasonably well understood in most countries [4,5].

Despite the impetus from the global HIV epidemic and

increasing global concern with avoiding premature adult death

from tobacco and other established and modifiable causes of

disease, we remain remarkably ignorant about current levels of

adult mortality in the majority of developing countries and how

they are changing. Vital registration systems are generally

incomplete in most developing countries. Compilations of adult

mortality estimates are routinely made by international organiza-

tions such as the United Nations [6], the World Health

Organization [7], and the World Bank [8], but these are largely

model-based, and there is considerable uncertainty about whether

their demographic assumptions are accurate in contemporary

developing populations. This situation has led to the development

of alternative measurement strategies for adult mortality [1–3].

The availability of large datasets with information on adult

survival from censuses and household surveys offers an important

opportunity to improve our knowledge about levels and trends in

adult mortality in countries without good vital registration.

Methods to use such data can be broadly classified as either

‘‘indirect’’—relying on demographic models and simple summary

statistics from respondents—or ‘‘direct,’’ which entail fewer

analytical assumptions but are more onerous as detailed time-

location information must be collected. Hill and Trussell discussed

spousal survival and parental survival as indirect estimators of

adult mortality in 1977; in the same paper, they also introduced

and argued for the wider use of sibling survival data to estimate

adult mortality [9]. More than 10 y following, the need to reliably

estimate maternal mortality led to the development of the indirect

sisterhood method [10] and the eventual inclusion of a full sibling

history in many household surveys [11], allowing for the direct

estimation of adult mortality.

Sibling survival is especially appealing for the measurement of

adult mortality because a single respondent can provide informa-

tion on a potentially large number of siblings, providing estimates

of mortality levels by age and sex at different periods of time prior

to the survey [1]. However, there are numerous potential biases

that have limited the use of these data. Families that have

disintegrated because of discord or death will be underrepresented

in population surveys, implying that mortality measures calculated

from surveys will be biased downward. It is also likely that

respondents will fail to recall some deaths of siblings, especially

those that occurred several years prior to the survey, or in cases

where the respondent has not had recent contact with his or her

siblings [11,12].

Despite these concerns, since the incorporation of the maternal

mortality module into the DHS program [13], several authors

have used these complete sibling histories to directly estimate adult

mortality. Bicego [11] examined adult mortality in the context of

the HIV/AIDS epidemic in six of the early sibling history modules

from sub-Saharan Africa. In another study motivated by the HIV/

AIDS epidemic, Timaeus [14] showed that sibling histories can

capture plausible trends and produce estimates similar in level to

indirect estimates via parental survival.

Other studies have been less optimistic about the quality of

mortality data produced from sibling histories. Stanton et al. [15],

in examining the data quality of the DHS maternal mortality

module, conclude that sibling histories seem to produce an

underestimation of adult mortality, an effect more pronounced

among women. Gakidou et al. [1] reach a similar conclusion,

noting that while analogous birth history data produce child

mortality estimates consistent with modeled UN estimates, adult

mortality numbers from sibling histories are substantially lower.

The most comprehensive analysis of sibling history data to date

was carried out by Timaeus and Jasseh [12]. This regression-based

analysis quantified trends in adult mortality in 23 sub-Saharan

countries using 26 surveys. The evidence from sibling history data

is consistent with parental survival estimates, but there is strong

evidence of substantial recall bias leading to an exaggerated rate of

mortality rise.

Recent methodological work has addressed the issue of selection

bias in sibling survival data [16], a persistent concern expressed in

the literature. Recall bias is another limitation in the use of sibling

history data, but the use of consecutive surveys to evaluate the

magnitude of recall bias has been explored in the estimation of

both child mortality [17] and fertility [18,19].

Building on this literature, in this article we develop new

methods to adjust for the underestimation of mortality arising from

the recall of deaths, adapt the Gakidou-King (GK) approach to

correct for selection bias, and propose a new correction for the

downward bias resulting from zero-survivor families. We collec-

tively refer to this new set of methods as the Corrected Sibling

Survival (CSS) method. We have applied the CSS method to

sibling survival data from 83 surveys in 44 countries, primarily in

Africa, where uncertainty about true levels and trends in adult

mortality has been greatest.

Methods

Data
We used data from the DHS program. The standard DHS

instrument, with nationally representative sample sizes ranging

from 3,000 to 90,000 women of reproductive age (typically 15–

49 y), is widely used for demographic estimation [20,21]. As of

June 25, 2009, 86 surveys in 46 countries had incorporated a

sibling history (also known as the maternal mortality) module. This

module collects information from the respondent on each sibling

born to the same mother, including sex, age, whether alive, and if

dead, the date of the death. Table S1 summarizes the

characteristics of the sibling history modules from these surveys

with various measures of survey quality.

In addition to the DHS, we used supplementary sources of data

to categorize country-periods into groups of similar age patterns

(explained in detail below). For this purpose, we used HIV

seroprevalence estimates from UNAIDS historical time series [22].

These seroprevalence numbers are based on data from antenatal

clinics, population-based surveys, and models that synthesize the

available data. They are the most comprehensive estimates of

historical HIV seroprevalence available. We identified country-

periods with a substantial history of war using combined data from

the PRIO [23] war databases for battle deaths, one-sided war

deaths, and nonstate war deaths. Finally, we categorized country-

periods using estimates of child mortality from Murray and

colleagues’ analysis of multiple data sources [4].

Adult Mortality Using Sibling Survival
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We have excluded three DHS from our analysis, and these are

not included in Table S1. On the basis of published reports of poor

data quality in the sibling history module, we excluded the 1999

Nigeria survey [24]. We excluded the 1997 Jordan survey because

HIV seroprevalence time series data were not available. We also

excluded the 1996 Nepal survey because ages and dates are not

coded consistently.

Data Structure
The sibling history data are structured such that there is one

observation per respondent, with the entire collection of siblings

born to the same mother (‘‘sibship’’) recorded within that

observation. The application of the CSS method requires

substantial restructuring of the data. We first reshaped each

dataset so that there is one observation per sibling, including one

observation for the respondent. We then reshaped the data again,

so that one observation refers to one person-year of one sibling. In

this data structure, every member of a sibship received an

observation for every year that they were alive and an observation

for the year in which they died, if they died. Only years where

observation is complete for all siblings were used; in other words,

we truncated the data to the last complete calendar year before the

survey. Each observation also includes information on the sex of

the sibling, the calendar year of the observed person-year, the age

of the sibling in that calendar year, and the survival status of the

sibling within that year. Since the DHS only interviews women up

to 49 y of age, the data become increasingly sparse for the older

age groups as we trace the sibling records back in time. To avoid

small number problems, we only used sibling history data up to

15 y prior to the survey year.

Dependent Variable
The dependent variable is a dummy variable indicating the

sibling’s survival status during the particular person-year of

observation. A value of 1 indicates that the individual died during

the year of observation, while a value of 0 indicates that she or he

was alive at the end of the year of observation.

Independent Variables
There are three groups of independent variables included in our

model: (1) country-period effects, (2) age patterns, and (3) recall

bias.

First, we included a dummy variable for each country and 5-y

calendar period. This step allows the level of mortality to vary

nonparametrically by country and time-period. We experimented

with both 2-y and 5-y time periods and opted for 5-y time periods

because it was evident that the 2-y periods did not have enough

observations to generate stable rates over time. The one exception

to the 5-y periods is the Rwanda genocide. Because mortality rates

were quite different in the surrounding years and because so many

deaths were reported in 1993 and 1994, to generate a stable 2-y

estimate, we kept 1993–1994 as a 2-y period in Rwanda and

created 5-y periods for the rest of the data.

Second, we modeled stable age patterns across sets of countries

because each survey has insufficient person-years of observation to

generate a stable pattern of mortality by age. Given the

demographic and epidemiology literature, we expect that in the

absence of major shocks such as war or HIV, death rates between

the ages of 15 and 60 y will change in a consistent way with

respect to age [25]. The slope of this relationship also tends to get

steeper as general mortality levels decline (this can be seen by

plotting the age patterns of mortality for sequential time periods

for a country with good historical vital registration data like

Sweden’s [26]). Further, we know that major war events tend to

lead to disproportionate increases in mortality at younger adult

ages. Finally, the HIV epidemic characteristically increases

mortality at younger adult ages and has a smaller effect at older

ages [14].

With these expectations of differences in age patterns and also to

test the sensitivity of the final estimates to different ways of

modeling age patterns, we have implemented four different

approaches to modeling age patterns across the country-periods

in the sibling history data. Model 1 uses a constant age-pattern of

mortality across all country-periods. The other three models group

country-periods into four different classes for modeling age

patterns. Model 2 divides country-periods into four groups on

the basis of HIV prevalence (0%–1.9%, 2%–6.9%, 7%–11.9%,

and $12%). Model 3 divides country-periods into one group with

a history of substantial war, and the remainder into three groups

on the basis of general levels of mortality as captured by levels of

child mortality. The three groups of child mortality were

determined by tertiles of the child mortality distribution for the

country-periods in the sibling history dataset. Model 4 divides

country-periods into four groups: those with a history of substantial

war, those with high HIV (seroprevalence greater than 7%), and for

the remainder, low (bottom 2 tertiles) and high (top tertile) levels of

child mortality. For models 2 and 4, we use 2008 UNAIDS

historical estimates of HIV seroprevalence but classify on the basis

of the 5-y lag of HIV seroprevalence, which accounts for the lag

between HIV incidence and mortality [27]. For models 3 and 4,

country-periods with greater than 0.75 recorded war deaths per

1,000 population are included in the war grouping, as are the

following country-periods, since we observe in the raw data a

continuation of war-like age patterns for some years post-conflict.

For models 2 through 4, the implementation of the models

involved constructing four dummy variables (denoted H0, H1, H2,

and H3) to indicate to which age-pattern group within that

particular model an observation belonged. We then interacted

these four dummy variables with a set of dummy variables for each

5-y age group (15–19, 20–24, …, 55–59). By including a set of

dummy variables representing each age group in the model, we

borrowed strength across all surveys to inform the age pattern of

mortality without imposing a model-based age structure a priori.

By interacting the age dummies with the pattern-group dummies,

we allowed the age pattern of mortality to vary according to the

above-mentioned criteria used to establish each set of age-pattern

groups.

Third, we included a continuous variable—time prior to the

survey (TiPS)—which measures how many years prior to the

survey each person-year of observation occurred. For example, if a

respondent to a survey carried out in the year 2000 reported on

the death of a sibling in 1990, the value of TiPS would be 10 for

that observation. Several previous studies have raised the

possibility that respondents may omit reporting some sibling

deaths [12,15,16,28]. The TiPS variable empirically measures

recall bias and can be used to correct for it. Intuitively, TiPS

captures the difference between deaths reported in the more recent

periods of older surveys and deaths reported for more distant

periods in more recent surveys. It can only be estimated if there is

sufficient overlap of observations from different surveys for the

same country-year. When modeled as dummy variables, we found

the relationship of the TiPS values to be essentially linear with the

log odds of death, so we included TiPS as a continuous variable in

our final model. In the regression models presented below, we

assumed that recall bias is the same across countries. To test this,

we performed a sensitivity analysis and compared country-specific

estimates of the TiPS coefficient with the all-country coefficient

estimated in our regression model.

Adult Mortality Using Sibling Survival
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Selection Bias
Sibling-year observations are weighted to address the under-

representation of high-mortality families in population-based

surveys following the general methods proposed by Gakidou and

King [16]. This method (which we abbreviate GK) incorporates a

family-level weight, Wf ~Bf

�
Sf , where Bf is the original sibship

size and Sf is the number of siblings in family f surviving to the time

of the survey. This weight algebraically corrects for the under-

representation of high-mortality families in the survey sample. To

generate the final weight for each observation, we multiplied Wf by

the DHS sampling weight.

The GK weights alone do not fully address the issue of selection

bias. The respondents to the sibling history survey are exclusively

women, so by definition the sample includes no sibships where (1)

the siblings are all men, or (2) all the women have died. In the first

case, we assumed that the mortality rates for men in all-male

sibships are the same as mortality rates for males in sibships with

one or more females. In this case, mortality rates for men will not

be biased. In the second case, where all the women in some

sibships have died, reweighted mortality rates that ignore this will

be biased downward. Therefore, we needed to further adjust the

female rates to account for this bias, which we refer to as zero-

female-survivor bias (the reverse would be true if all respondents

were men). Figure S1 and Text S1 show our proposed correction

for the fact that the surveys do not capture sibships with zero

female survivors.

Regression Model
There is a long history of using logistic regression to model

mortality/survival in epidemiology and demography [29–32]. We

employed a logistic regression framework to directly estimate the

probability of death by age, sex, time period, and country. We

pooled data from all surveys and applied the following logistic

regression models estimated separately for males and females:

Logit Yait~1ð Þ~b0zbIH0
a zbIH1

a zbIH2
a zbIH3

a zbICY
it zbTiPs

Where Yait indicates survival or death of an individual in age group

a, in country i, at time t, ICY
it is the set of dummy variables denoting

country i in the 5-y period designated by t. TiPS is the continuous

variable representing time prior to the survey. IH0
a through IH3

a are

the four sets of dummy variables indicating the 5-y age groups from

15 to 60 (a = 20–24, 25–29, …, 55–59, with 15–19 as the reference

category) and dependent on H0, H1, H2, and H3, the criteria used to

define the age patterns, summarized in Table 1.

We computed standard errors to allow for clustering at the

primary sampling unit (PSU) level. The correlation of the

probability of death at the individual level (i.e., the fact that a

sibling’s probability of death at time t is likely to be correlated with

his probability of death at time t{1) will lead to artificially low

standard errors. This problem would typically be addressed by

clustering standard errors at the individual level (equivalent to the

concept of shared frailty in survival analysis); however, our

approach of clustering errors at the higher PSU level produces

even larger standard errors than clustering at the individual level,

and we thus view it as a more conservative approach.

Estimating 45q15

Our ultimate quantity of interest is the probability of dying

between ages 15 and 60, a commonly used indicator of adult

mortality that can be compared across populations. In standard

demographic notation, this is referred to as 45q15.

We used the coefficients from the logistic regression model to

predict all linear combinations of age group, time period, country,

and sex. To estimate what the level of adult mortality would be in

the absence of recall bias, we set the coefficient on the TiPS

variable to zero. The inverse logit transformation of the predicted

values represents the 1-y probabilities of death for each particular

age group, time period, country, and sex. From these single year

age-specific probabilities, we computed age-specific probabilities of

survival and then 5-y estimates of 45q15.

Comparing Model Fits
We compared the fits of models 1 through 4 using three metrics:

(1) the root mean squared error (RMSE) comparing differences in

predicted age-specific probabilities of death (nqx) to observed; (2)

RMSE of differences between predicted and observed nqx in log

space (which weights differences across the age groups more

equally); and (3) RMSE of differences between predicted and

observed 45q15, our summary measure of adult mortality. For each

metric, we ranked the performance of the model by sex and then

Table 1. Criteria for classifying country-periods into different
age-pattern groups.

Variable
Notation Model I Model II Model III Model IV

H0 Single
pattern

0%–1.9% HIV War War

H1 N/A 2%–6.9% HIV Low tertile 5q0 $7% HIV

H2 N/A 7%–11.9% HIV Mid tertile 5q0 Low/mid tertiles 5q0

H3 N/A $12% HIV High tertile 5q0 High tertile 5q0

N/A, not applicable.
doi:10.1371/journal.pmed.1000260.t001

Table 2. Model fit results from applying different age-pattern
groupings to sibling survival data.

Sex Statistic Model I Model II Model III Model IV

Females

RMSE of nqx 0.02956 0.02836 0.02891 0.02902

Rank 4 1 2 3

RMSE of ln(nqx) 0.42823 0.40932 0.41908 0.41218

Rank 4 1 3 2

RMSE of 45q15 0.06572 0.06591 0.06361 0.06507

Rank 3 4 1 2

Males

RMSE of nqx 0.04121 0.04071 0.03948 0.03931

Rank 4 3 2 1

RMSE of ln(nqx) 0.41582 0.40005 0.40547 0.39533

Rank 4 2 3 1

RMSE of 45q15 0.09139 0.09147 0.08660 0.08757

Rank 3 4 1 2

Both
sexes

Summary rank
score

22 15 12 11

RMSE of: differences between model-predicted age-specific probabilities of
death (nqx) and observed nqx, differences in predicted and observed nqx in log
space, and differences in predicted and observed 45q15 are shown. Models are
ranked for each metric of fit within each sex, with 1 being best. The summary
rank score is the sum of the ranks for each metric, across both sexes.
doi:10.1371/journal.pmed.1000260.t002
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created a summary rank score by adding the ranks for each metric

across both sexes. We considered the model with the lowest

summary rank score (the one that overall minimizes the differences

between predicted and observed values across sexes) to have the

best fit.

Uncertainty
Following the methods outlined in King, Tomz, and Wittenberg

[33], uncertainty in the model parameters used to generate

estimates of 45q15 is captured by taking 1,000 simultaneous draws

from the variance-covariance matrix of the logistic regression

model and then producing 1,000 estimates of 5qx for every age

group and 1,000 corresponding estimates of 45q15 as outlined

above. The 95% uncertainty interval is defined by the 25th and

976th ranked estimates of the 1,000 simulated values.

All analyses were carried out in Stata 10.1/MP [34]. Data files

of final estimates and Stata code used to produce them are

available from the authors upon request.

Results

CSS Model Results
The RMSEs between observed and predicted values for each of

the four models are shown in Table 2, along with the summary

rank score for each model. The full set of regression results

(including age pattern, TiPS, and all 175 country-period

coefficients) can be found in Table S2. Figure 1 graphs each set

of age patterns relative to 15–19 y olds in a given country-period.

The age patterns for populations with high prevalence of HIV are

similar to what is seen in South African vital registration data in

recent years (comparison not shown). In models 3 and 4, the slope

of the war age pattern is less steep across the age range compared

to the lower 5q0 age patterns, and more so for males than for

females, which is expected given young males tend to be the age

group most susceptible to battle death in times of war. Similarly,

across levels of 5q0, the slope of mortality over age decreases with

higher levels of child mortality, again similar to what we observe in

Figure 1. Age patterns from all four models. Model 1 groups country-periods into a single age pattern. Model 2 groups country-periods
according to level of HIV seroprevalence. Model 3 groups country-periods by history of war and levels of 5q0, and model 4 is a hybrid model
containing one group of country-periods with history of war, one group with high levels ($7%) of HIV seroprevalence, and two groups based on 5q0

levels, low and high.
doi:10.1371/journal.pmed.1000260.g001
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other data sources [26]. We chose model 4 as our optimal model

because it minimized the differences between the empirically

observed and model predicted age patterns as well as between

observed and predicted 45q15, thus ensuring the closest fit to the

data. However, the resultant estimates of 45q15 generated from

each of the models are quite similar (correlation coefficients

comparing any two models ranged from 0.9788 to 0.9932).

The impact of the three components of the CSS model on the

estimates of adult mortality rates is illustrated for six countries in

Figures 2 and 3. Computation of 45q15 using the GK weights has a

major effect on measured levels of adult mortality for males and

females in all countries. This indicates that underrepresentation of

high mortality sibships is an important consideration when analyzing

sibling survival data. On average, the GK weights raise the estimated

45q15 by 27%, ranging from 0% to 66% across country-periods.

Regression results for the TiPS variable are summarized in

Table 3. For males, the all-country coefficient is 20.0165,

representing a 1.64% decrease in reported deaths for each

additional year prior to the survey. For females, the annual

decrease is lower at 1.09%. We have also estimated the value of

the TiPS coefficient separately for each country for the nine

countries where three or more surveys with sibling history modules

are available. These results are summarized in Figure 4 and show

that the estimated decline in deaths reported due to recall bias

varied from 20.85% (Mali females) to 7.8% (Madagascar males)

across this set of countries. Of the 18 single country estimates of

recall, six are statistically significantly different from the mean

effect across all countries. Figures 2 and 3 illustrate how inclusion

of the TiPS variable in the model leads to higher estimates of adult

mortality, especially in time periods further removed from the

survey year. Note that for some countries, the magnitude of the

TiPS adjustment does not increase over time prior to the most

recent survey. This result happens because the correction is

applied to all observations from all surveys, not just the most

recent. Thus, the overall correction is a function of the total

number of surveys in a country and the spacing of those surveys.

Corrections for sibships where all females have died lead to

much more modest changes in the estimated rates of adult female

mortality. Table 4 summarizes the magnitude of corrections to the

age-specific probabilities of death for each country, ranging from

1.0% to 4.5%. The resulting changes to estimated levels of 45q15

range from 0.2% to 4.0%. While conceptually important, these

corrections to the estimated levels of adult mortality are small.

Overall, the combined effect of the GK weights, the TiPS recall

bias correction, and the correction for missing female sibships

leads to a profound increase in adult mortality rates estimated

from sibling histories.

Levels of Mortality in 44 Countries
Figures 5–10 show CSS estimates of adult mortality for select

countries using model 4; the same graphs for all countries included

in our study can be found in Figure S2. Table S3 also provides

estimates of 45q15 from all four models.

Figure 2. A step-by-step look at each of the adjustments in the
CSS method: Indonesia, Peru, and Tanzania. The effects on
mortality estimates of the GK survival bias adjustment, adjusting for
recall, and the zero-female-survivor correction are shown.
doi:10.1371/journal.pmed.1000260.g002

Figure 3. A step-by-step look at each of the adjustments in the
CSS Method: Senegal, Uganda, and Zimbabwe. The effects on
mortality estimates of the GK survival bias adjustment, adjusting for
recall, and the zero-female-survivor correction are shown.
doi:10.1371/journal.pmed.1000260.g003
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Our findings suggest that levels of adult mortality prevailing in

many developing countries are substantially higher than previously

suggested by analyses of sibling history data [1,12]. In sub-Saharan

African populations largely unaffected by HIV, we estimate the

risk of death between ages 15 and 60 y to be 20%–35% for

females and 25%–45% for males, though considerable hetero-

geneity exists among countries. In Southern African countries

where the HIV epidemic has been most pronounced, rates are

uniformly and strikingly high: at current rates, as many as eight

out of ten men alive at age 15 y will be dead by age 60, as will as

many as six out of ten women. At the height of the Rwandan

genocide in 1993–1994, the probability of death between 15 and

60 y based on prevailing mortality rates was close to 100%, but

has since declined to levels more typical of sub-Saharan Africa.

The increase in adult mortality in countries with high HIV as

mentioned above is notable. So also is the rise in mortality in some

central and west African countries that have not been as affected

by HIV. In Benin, mortality for both male and female adults has

risen at some point in the last 15 y of available data, despite Benin

having a relatively low prevalence of HIV among its population

Figure 4. Country-specific estimates of recall bias as measured by the TiPS coefficient compared to the overall estimate from CSS
model (red line).
doi:10.1371/journal.pmed.1000260.g004

Table 3. TiPS regression coefficients for countries with three or more surveys and percent decline in mortality rates per year prior
to the survey attributable to recall bias.

Country Females Males

Coefficient Percent Annual Decline Coefficient Percent Annual Decline

Indonesia 20.0184 1.82 20.0204 2.02

Madagascar 20.0539 5.25 20.0813 7.81

Malawi 20.0191 1.89 20.0350 3.44

Mali 0.0084 20.84 20.0152 1.51

Namibia 20.0155 1.54 20.0190 1.88

Peru 20.0226 2.24 20.0329 3.24

Uganda 0.0017 20.18 20.0032 0.32

Zambia 20.0292 2.88 20.0378 3.70

Zimbabwe 20.0204 2.02 20.0242 2.39

All countries 20.0110 1.09 20.0165 1.64

doi:10.1371/journal.pmed.1000260.t003
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(less than 2% over the same time period). Mali, Liberia, and

Guinea have also seen rises in adult mortality despite comparably

low HIV seroprevalence rates (perhaps even leading one to

question the validity of the seroprevalence estimates for these

countries). For some West African populations, mortality rates

appear to be lower, notably

in Senegal and Niger, where the risk of adult death is around

20%–25%.

Adult mortality levels in populations of Asia and Latin

America are generally lower than in Africa, particularly for

women, though Haiti and Cambodia are notable exceptions

where mortality risks are comparable to many countries in Africa.

In all other developing countries with available sibling history

data, the probability of dying between ages 15 and 60 y was

typically around 10% for women and 20% for men; this is not

much higher than 2001 estimated levels for more developed

countries such as Argentina, Barbados, Mexico, Puerto Rico, and

Venezuela [35].

Comparison of CSS to Other Measurements of Mortality
Few countries with complete vital registration systems have

included sibling survival data in national surveys. Validation of

CSS thus depends on comparisons in those few countries that have

vital registration data, demographic surveillance sites (DSS), and

deaths in the last 12 mo collected in national censuses. Even

though all of these are likely problematic comparators, Figures 5–

10 compare our estimates to these three types of available data.

While vital registration is typically considered the gold standard

for the measurement of mortality, data from Peru, Brazil,

Guatemala, Dominican Republic, Philippines, and South Africa

are likely to undercount national adult mortality rates. Data from

the Dominican Republic and Peru are thought to be particularly

incomplete, missing about 50% of adult deaths, while routine

systems appear to be capturing the majority of deaths in countries

such as Brazil, Guatemala, the Philippines, and South Africa [36].

Figure 6 shows that in Guatemala, CSS estimates and vital

registration data are similar for most years, although the CSS

captures higher levels of adult mortality in the early 1980s,

coincident with the outbreak and intensification of conflict between

the Guatemalan military and leftist guerilla forces. A similar level of

concordance is seen for the Philippines (Figure 8). In Brazil, CSS

results for females appear to be somewhat lower than for the vital

registration, but comparable overall (Figure 5). In the Dominican

Republic (Figure 5), the vital registration rates appear to be

implausibly low, especially for males, while the CSS presents more

realistic levels. Overall, the levels of mortality suggested by

application of our methods are comparable to or higher than what

is suggested from vital registration systems, which are known to

generally undercount deaths in developing countries.

In some countries, DSS have been operating that capture vital

events that occur in defined populations. While these sentinel sites

are quite small (covering populations of 30,000 to 1 million), and

are typically selected expediently rather than randomly, they

nonetheless can be a useful source of information on mortality and

fertility levels. Where these sites are operative in the countries in

our dataset, Figures 5–10 also show the implied levels of adult

mortality compared with CSS estimates. In most cases (e.g., South

Africa, Tanzania, Senegal, Mozambique, Burkina Faso), DSS

death rates for most time periods fall within the range of

uncertainty suggested by our methods.

Finally, some national censuses collect data on deaths within

households. As with vital registration data, censuses have varying

levels of completeness, and like sibling history data, house-

hold deaths reported in censuses may be underreported [37].

Table 4. Percent of deaths missing due to
zero-female-survivors and the factor by which estimates
of nqx are corrected upward as a result.

Country
Percent Zero-Female-Survivor
Correction to nqx

Benin 2.19

Bolivia 2.61

Brazil 1.27

Burkina Faso 2.86

Cambodia 3.18

Cameroon 2.75

Central African Republic 4.48

Chad 4.06

Congo (Dem. Rep.) 1.90

Congo (Rep.) 2.40

Côte d’Ivoire 2.22

Dominican Republic 1.89

Eritrea 4.29

Ethiopia 3.65

Gabon 2.14

Ghana 1.72

Guatemala 1.99

Guinea 4.11

Haiti 2.59

Indonesia 2.59

Kenya 1.23

Lesotho 2.65

Liberia 1.86

Madagascar 2.33

Malawi 2.49

Mali 3.25

Mauritania 4.08

Morocco 1.39

Mozambique 4.05

Namibia 2.08

Nepal 3.59

Niger 3.14

Peru 1.34

Philippines 1.01

Rwanda 4.06

Senegal 2.99

South Africa 2.97

Sudan 3.01

Swaziland 2.43

Togo 2.16

Uganda 3.04

United Republic of Tanzania 2.29

Zambia 2.39

Zimbabwe 1.47

doi:10.1371/journal.pmed.1000260.t004
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Figures 8–10 show that census-based mortality rates in Zimbabwe,

Malawi, and Tanzania are remarkably close to the CSS estimates

at various time periods, whereas in Mauritania (Figure 7), census

data yield dramatically lower levels.

While this is not necessarily validation, the fact that CSS yields

estimates that are comparable to those from independent data

collection schemes is reassuring.

Mortality Trends
Figures 5–10 and S2 also show how risks of adult death have

changed over the period 1980–2005, encompassing the peak

effects of the HIV/AIDS epidemic, particularly in Africa. In

some countries, notably Cote d’Ivoire, Cameroon, Kenya,

Lesotho, Malawi, and Swaziland, death rates among adults

appear to have risen throughout the past two decades or so. In

Malawi and Zimbabwe, they have increased 3- to 4-fold since the

late 1980s, with CSS showing the full devastation of the epidemic

on adult survival. In Kenya, Zambia, Swaziland, and Tanzania,

death rates have doubled in 20 y, although in Tanzania and

Zambia at least, there are signs that death rates may be stabilizing.

In others, particularly Congo, Ethiopia, and Madagascar, we have

identified increases in mortality followed by declines. The effect of

the 1994 genocide in Rwanda can be clearly seen, after which

death rates dropped to levels similar to neighboring African

countries. Haiti, Morocco, and Peru have experienced consistent

declines in adult mortality over the past two decades. One

Figure 5. Estimates of 45q15 from the CSS method compared to estimates generated from vital registration, DSS, and census
household death estimates: Burkina Faso, Brazil, Dominican Republic.
doi:10.1371/journal.pmed.1000260.g005
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important consideration in examining these trend results is that

in adjusting for recall bias, we are using a fixed estimate of recall

bias for all of these countries. As we have shown, there are likely

some differences across countries in the magnitude of recall bias.

Imposing a fixed correction for a country that is not like the

average countries in our dataset will result in distortions of the real

trend. Nevertheless, as we see from Figures 2 and 3, the change in

the trend that the recall bias correction induces is small compared

to some of the trends seen in the data such as those in Zimbabwe,

Uganda, and Tanzania. Less clear is whether the slight short-term

fluctuations seen in countries like Bolivia, Senegal, and Indonesia

are real. While it may be difficult to interpret short-term changes

in death rates, except for the clear effect of the genocide in

Rwanda, the utility of the method in determining longer term

trends in mortality levels is clearly of great public health

importance.

A summary appraisal of trends in adult mortality in Africa can

be obtained from Figure 11, which shows levels of mortality

estimated for various countries around 1990 (1988–1992) and

2000 (1998–2002). For women, the dramatic rise in adult

mortality in Zambia is clear, as are the relatively low levels of

mortality prevailing around 1990 in countries such as Morocco,

Senegal, Benin, Kenya, and South Africa. The greater hetero-

geneity of mortality levels around 2000 can also be seen, largely

due to the differential impact of the HIV epidemic. For men, the

heterogeneity among countries is greater than for women, even in

1990, potentially reflecting the greater risks they incur from

injuries and violence. The impact of the HIV epidemic is also

Figure 6. Estimates of 45q15 from the CSS method compared to estimates generated from vital registration, DSS, and census
household death estimates: Ethiopia, Ghana, Guatemala.
doi:10.1371/journal.pmed.1000260.g006
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clear from Figure 11, particularly in the Southern African states

around 2000.

Discussion

In this paper, we presented an improved method for analyzing

sibling survival data that adjusts for two key forms of bias present

in survey data: survival and recall bias. We demonstrated its

application using 83 surveys undertaken in 44 countries. This

method greatly expands our direct empirical knowledge of levels

and trends in adult mortality in developing countries without

resorting to the use of demographic model life tables. Adult

mortality measurement from empirical data will decrease the

dependence of the global health community on uncertain

predictions from levels of child mortality and provide for better

tracking of progress toward major health and development

targets.

Collective concerns about the low levels of adult mortality from

crude analysis of sibling data [1,15] may have dampened

enthusiasm for collecting this type of data in the global health

Figure 8. Estimates of 45q15 from the CSS method compared to estimates generated from vital registration, DSS, and census
household death estimates: Malawi, Peru, The Philippines.
doi:10.1371/journal.pmed.1000260.g008

Figure 7. Estimates of 45q15 from the CSS method compared to estimates generated from vital registration, DSS, and census
household death estimates: Haiti, Mozambique, Mauritania.
doi:10.1371/journal.pmed.1000260.g007
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community. We believe that the CSS method provides grounds for

renewed optimism in collecting sibling survival data. Our

experience argues for all DHS surveys and similarly sized national

health surveys to incorporate the sibling history module, as even in

middle-income countries this information could be a useful

adjunct to analyzing levels and trends in adult mortality from

vital registration data, especially where it may only be partially

complete. Widespread collection of these data will greatly

strengthen our capacity to monitor maternal mortality and the

ultimate effect of interventions such as antiretrovirals in reducing

adult mortality.

In addition to expanding the collection of sibling survival data in

more surveys, our analysis suggests that the set of respondents who

answer the sibling module in a survey should be expanded. By only

asking women aged 15–49 y, the current DHS practice limits our

ability to effectively measure mortality in adults over age 50 y and

for older time periods, especially for more than 15 y prior to the

survey. To achieve sufficient numbers at these older ages, we have

pooled the data across countries and assumed four constant age

patterns. An expanded age range of respondents would allow for

the relaxation of this assumption and estimation of more specific

and stable age patterns. As it is, the precise age patterns of

mortality generated from this empirical model, especially above

age 50, may not be accurate. Further, if both male and female

respondents were to be asked the sibling history module,

exploration of sex-specific biases in the recall of births and deaths

Figure 9. Estimates of 45q15 from the CSS method compared to estimates generated from vital registration, DSS, and census
household death estimates: Senegal, Tanzania, South Africa.
doi:10.1371/journal.pmed.1000260.g009
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of sisters and brothers would be possible and would allow for cross-

validation. There is some evidence from our analysis that this

effect may be significant. With increased concerns about the early

impact of the epidemiological transition in many developing

countries, expanding the age range of respondents will allow direct

measurement of middle-aged mortality in these countries. Given

that survey teams in the DHS and other survey programs are

already visiting households, expanding the set of respondents who

are asked the sibling history module would not imply a substantial

marginal cost on survey implementers. Our experience suggests

that the information obtained is likely to be well worth the

investment.

A key limitation of our analysis is the estimation of the average

recall bias across all surveys and the use of this average effect in

calculating levels and trends in 45q15. Six of 18 country- and sex-

specific estimates of recall bias are statistically significantly

different from the average estimate of recall bias. The differences

could affect estimates of trends for these countries and others for

which fewer than three surveys are available. In the absence of

sufficient overlapping surveys in a country, using the average recall

bias estimate is necessary. As more countries accumulate multiple

surveys, it will become possible to apply the CSS model on a

regional and eventually even country-by-country basis. Country-

specific recall bias parameter values can then be used in generating

country-specific levels of adult mortality. As more countries collect

sibling survival data, it will also be possible to explore the

contextual, linguistic, and other cultural factors that might account

for variability in recall bias. This type of insight should help to

guide further improvements in survey instruments for sibling

recall. Experiments are underway to explore alternative wording

of the sibling history module in Tanzania, India, and the

Philippines as part of the Gates Grand Challenges in Global

Health initiative [38]. Growing recognition of the potential utility

of sibling history data for public health monitoring will hopefully

stimulate more research in this area.

The prospect that robust information on the levels and trends in

adult mortality can be derived from periodic household surveys in

low-income countries may warrant a reconsideration of the

priorities for improved assessment of adult mortality. The MOVE

group [39] called for an expansion of vital registration systems and

the use of sample registration systems in the interim. Those are

important initiatives, but our findings suggest that it may be as

important to more persuasively argue for the inclusion of sibling

survival modules in ongoing survey programs. Further work is also

needed to explore the feasibility of using new verbal autopsy

instruments and analytical methods in conjunction with these

modules to ascertain not only death rates, but also causes of death

[40,41]. The demand for accountability and the use of pay for

performance investments such as the Global Alliance for Vaccines

and Immunisation (GAVI) is likely to increase the pressure on

countries to mount more frequent household surveys [42].

Maximum use of these opportunities should be made for tracking

trends in adult mortality.

These opportunities must be seized if we are to more reliably

understand the levels, patterns, and causes of adult mortality and

how they are changing. Parallel investments in vital registration

systems and the routine inclusion of sibling survival questions into

existing or planned household survey programs are urgently

Figure 10. Estimates of 45q15 from the CSS method compared to estimates generated from vital registration, DSS, and census
household death estimates: Zambia, Zimbabwe.
doi:10.1371/journal.pmed.1000260.g010
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needed if we are to rapidly build the evidence base for public

health action. The success of child survival programs, accom-

panied by greater global concern for controlling major threats to

health, argue for much greater research attention to be given to

measuring adult mortality and its causes. Keeping children alive to

adulthood is a noble and worthy aim for the global public health

community; keeping young adults alive and in good health until

they reach old age should be seen as equally important.

Supporting Information

Figure S1 The relationship between percent dead and sibship

size for males and females, using an example from the Mali 2006

DHS. The percent dead for females has been corrected in sibship

sizes 1, 2, and 3 to account for the increased occurrence of zero-

female-survivors in these sibships.

Found at: doi:10.1371/journal.pmed.1000260.s001 (0.38 MB
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Figure S2 Estimates of 45q15 from the CSS method for all 44

countries where sibling history surveys are available in the DHS.

Found at: doi:10.1371/journal.pmed.1000260.s002 (7.22 MB

PDF)

Table S1 Characteristics of the sibling history surveys in 83

DHS.
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Table S2 CSS age-pattern sensitivity analysis: Parameter results

from models 1–4.
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Table S3 CSS age-pattern sensitivity analysis: Estimated 45q15

and 95% uncertainty intervals for all country-periods, models 1–4.

Found at: doi:10.1371/journal.pmed.1000260.s005 (0.23 MB
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Figure 11. CSS-generated estimates of 45q15 for African countries with DHS data, 1990 and 2000.
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Editors’ Summary

Background. Governments and international health
agencies need accurate information on births and deaths
in populations to help them plan health care policies and
monitor the effectiveness of public-health programs
designed, for example, to prevent premature deaths from
preventable causes such as tobacco smoking. In developed
countries, full information on births and deaths is recorded in
‘‘vital registration systems.’’ Unfortunately, very few
developing countries have complete vital registration
systems. In most African countries, for example, less than
one-quarter of deaths are counted through vital registration
systems. To fill this information gap, scientists have
developed several methods to estimate mortality levels
(the proportion of deaths in populations) and trends in
mortality (how the proportion of deaths in populations
changes over time) from data collected in household surveys
and censuses. A household survey collects data about family
members (for example, number, age, and sex) for a national
sample of households randomly selected from a list of
households collected in a census (a periodic count of a
population).

Why Was This Study Done? To date, global public-health
efforts have concentrated on improving child survival.
Consequently, methods for calculating child mortality levels
and trends from surveys are well-developed and generally
yield accurate estimates. By contrast, although attempts have
been made to measure adult mortality using sibling survival
histories (records of the sex, age if alive, or age at death, if
dead, of all the children born to survey respondents’ mothers
that are collected in many household surveys), these attempts
have often produced implausibly low estimates of adult
mortality. These low estimates arise because people do not
always recall deaths accurately when questioned (recall bias)
and because families that have fallen apart, possibly because
of family deaths, are underrepresented in household surveys
(selection bias). In this study, the researchers develop a
corrected sibling survival (CSS) method that addresses the
problems of selection and recall bias and use their method to
estimate mortality levels and trends in 44 developing
countries between 1974 and 2006.

What Did the Researchers Do and Find? The researchers
used a statistical approach called logistic regression to
develop the CSS method. They then used the method to
estimate the probability of a 15-year-old dying before his or
her 60th birthday from sibling survival data collected by the
Demographic and Health Surveys program (DHS, a project
started in 1984 to help developing countries collect data on
population and health trends). Levels of adult mortality
estimated in this way were considerably higher than those
suggested by previous analyses of sibling history data. For
example, the risk of adult death between the ages of 15 and
60 years was 20%–35% for women and 25%–45% for men

living in sub-Saharan African countries largely unaffected by
HIV and 60% for women and 80% for men living in countries
in Southern Africa where the HIV epidemic is worst.
Importantly, the researchers show that their mortality level
estimates compare well to those obtained from vital
registration data and other data sources where available.
So, for example, in the Philippines, adult mortality levels
estimated using the CSS method were similar to those
obtained from vital registration data. Finally, the researchers
used the CSS method to estimate mortality trends. These
calculations reveal, for example, that there has been a 3–4-
fold increase in adult mortality since the late 1980s in
Zimbabwe, a country badly affected by the HIV epidemic.

What Do These Findings Mean? These findings suggest
that the CSS method, which applies a correction for both
selection and recall bias, yields more accurate estimates of
adult mortality in developing countries from sibling survival
data than previous methods. Given their findings, the
researchers suggest that sibling survival histories should be
routinely collected in all future household survey programs
and, if possible, these surveys should be expanded so that all
respondents are asked about sibling histories—currently the
DHS only collects sibling histories from women aged 15–49
years. Widespread collection of such data and their analysis
using the CSS method, the researchers conclude, would help
governments and international agencies track trends in adult
mortality and progress toward major health and
development targets.

Additional Information. Please access these Web sites via
the online version of this summary at http://dx.doi.org/10.
1371/journal.pmed.1000260.

N This study and two related PLoS Medicine Research Articles
by Rajaratnam et al. and by Murray et al. are further
discussed in a PLoS Medicine Perspective by Mathers and
Boerma

N Information is available about the Demographic and
Health Surveys

N The Institute for Health Metrics and Evaluation makes
available high-quality information on population health, its
determinants, and the performance of health systems

N Grand Challenges in Global Health provides information on
research into better ways for developing countries to
measure their health status

N The World Health Organization Statistical Information
System (WHOSIS) is an interactive database that brings
together core health statistics for WHO member states,
including information on vital registration of deaths; the
WHO Health Metrics Network is a global collaboration
focused on improving sources of vital statistics
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