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ArtiC{e history: Whole-genome duplication (WGD) has occurred repeatedly during plant evolution and diversification,
Received 17 March 2022 providing genetic layers for evolving new functions and phenotypes. Advances in long-read sequencing

Received in revised form 12 June 2022
Accepted 12 June 2022
Available online 15 June 2022

technologies have enabled sequencing and assembly of over 1000 plant genomes spanning nearly 800
species, in which a large set of ancient WGDs has been uncovered. Here, we review the recently reported
WGDs that occurred in major plant lineages and key evolutionary positions, and highlight their contribu-
tions to morphological innovation and adaptive evolution. Current gaps and challenges in integrating

I;g'r:rords‘. enormous volumes of sequenced plant genomes, accurately inferring WGDs, and developing web-
Genome based analysis tools are emphasized. Looking to the future, ambitious genome sequencing projects and
Whole-genome duplication global efforts may substantially recapitulate the plant tree of life based on broader sampling of phyloge-
Innovation netic diversity, reveal much of the timetable of ancient WGDs, and address the biological significance of
Adaptative evolution WGDs in plant adaptation and radiation.

© 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-
commons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The evolution of green plants to become the world’s dominant
flora has been marked by prevalent whole-genome duplication
(WGD) events [1-8]. WGD can abruptly double the entire set of
chromosomes in the nucleus, conferring polyploidy [9]. Occurring
by fusion of unreduced gametes or doubling of chromosomes in
zygote [10,11], WGD has long been considered to provide ‘layers’
of redundant genetic information that can be co-opted for the evo-
lution of genome complexity, phenotypic innovation and adapt-
ability [12-20].

Genome sequencing propelled the identification of ancient
WGD (paleopolyploidy) events in a range of taxa. Analysis of the
first plant genome-Arabidopsis thaliana-revealed the remnants of
three ancient WGDs referred to as the alpha (o)-beta (B)-gamma
() series shared by Brassicaceae [21]. Interestingly, rice, sorghum
and other monocot genome analyses also unraveled three rounds
of ancient WGDs predating the divergence of Poaceae species, ter-
med the rho (p)-sigma (c)-tau (1) series [22,23]. Paleopolyploidy
has not been limited to duplication, with cases of whole-genome
triplication (WGT) and even penta-plication contributing to the
astonishing genome complexity of plants [24-26]. About
24 %-35 % of extant vascular plants were inferred to be of recent
polyploid origin, with 15 % of speciation events in angiosperms
related to ploidy increase as well as 31 % in ferns [27-29]. Poly-
ploidy has also been suggested to be associated with crop domes-
tication, with domesticated crops (e.g. wheat, canola, cotton,
peanut, coffee, oat) having experienced more polyploidy events
than their wild relatives [30]. Understanding polyploid speciation
and archival of its products may be of growing importance for
maintaining plant diversity and global food security, given the
expectation that plant extinction will exceed plant speciation in
the near future [31].

Considerable progress in long-read sequencing technologies has
propelled the global wave of genome sequencing with over 1000
plant genomes representing ~ 800 species available now [32,33].
Remarkably, the quality of genome assembly has been elevated
from ‘draft’ level to ‘chromosome-level’, and even to ‘telomere-t
o-telomere’ or ‘gap-free’ or ‘complete’ for many plants [34-40].
The large set of sequenced plant genomes provides valuable
resources for deeply resolving ancient WGDs and tracing genome
changes linked to major evolutionary transitions and variable
adaptations [7].

Here, we detail WGDs identified in early-diverging seed-free
plants and other major plant lineages. Ancient WGDs inferred at
important phylogenetic positions were also highlighted, and their
roles in phenotypic innovations, adaptive transitions, and species
richness were addressed. The increasing challenges in processing
and integrating plant genome data, and accurately identifying
ancient WGDs are discussed. Collaborative research projects and
global efforts remain required to fill current gaps in phylogenetic
sampling, in inferring and positioning ancient WGDs across plant
phylogeny and in deeply resolving the consequences of WGDs in
plant adaptation and rapid expansion.

2. Paleopolyploidy events discovered across major plant
lineages and their links to evolutionary innovations

2.1. Streptophyte algae-the closest sister lineage to land plants

Terrestrialization is a landmark of plant evolution and radiation,
which had a profound influence on Earth’s ecosystems [41-47].
The genome sequencing of streptophyte algae-the sister lineage
to land plants (Embryophyta)-has reinforced our understanding
of genome and gene changes of early plants during the evolution-
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ary transition from water to land [48-53]. The WGD or polyploidy
event is prevalent in land plant evolution, but is rare in green
(chlorophyte and streptophyte) algae lineages (Fig. 1). Genome
analysis of the earliest-diverging unicellular streptophyte algae,
Mesostigma viride, showed evidence of WGD which contributed
to relatively large genome size (442 Mb) and expansion of specific
gene families involved in multicellularity and terrestrial pre-
adaptation [53]. However, in a parallel study, evidence of WGD
was not found in M. viride, perhaps due to fragmented and incom-
plete genome assembly with N50 = 113 Kb [52]. The occurrence of
WGD or large-scale segmental duplications in basal streptophyte
alga may be linked to the evolutionary transition from salt water
to freshwater.

Intriguingly, a whole-genome triplication (WGT) event was
deciphered in the unicellular algae Spirogloea muscicola with sub-
aerial habitat, belonging to another lineage of streptophyte
algae-Zygnematophyceae, and representing a closer living relative
to land plants [49]. This WGT event increased the gene sets in S.
muscicola, conferring genetic redundancy useful to adapt to sub-
aerial stress and symbiotic interaction. Intragenomic synteny anal-
ysis also suggested that S. muscicola may have undergone a more
ancient WGD (4dTv peak ~ 0.85). Although WGD was not detected
in Penium margaritaceum (1C = 4.7 Gb), the closest relative to land
plants sequenced so far, a large number of segmental duplications
was discovered within its genome [50]. The roles of WGD or WGT
events in the molecular changes and evolution from freshwater to
terrestrial environment remain to be deeply resolved.

2.2. Bryophytes—the pioneer of land plants

As the representative of early land plants, bryophytes including
hornworts, liverworts and mosses, emerged about 460-506 Mya
[54,55], and have aroused great interest to reveal key genome fea-
tures involved in adaptation to terrestrial habitat [56-64]. Multiple
ancient WGD events has been uncovered in the model moss Phys-
comitrium patens [60,65]. The remnants of ancient WGDs were also
unraveled in other moss species including those from Sphagnales
order, and three subclasses of Bryopsida (Timmiidae, Dicranidae,
and Bryidae) [7,66]. The timing of WGD identified in moss Calohyp-
num plumiforme has been dated to 8 Mya (Ks ~ 0.13-0.18) regard-
less of evolutionary rate correction [61]. The preferred retention of
regulation- and stress-related genes after WGD in some moss gen-
omes may have conferred the capability to survive adverse condi-
tions such as cold, UV-B radiation, desiccation and heat [64,65,67].
In contrast, the currently sequenced species belonging to horn-
worts and liverworts lack evidence of WGD. The consequences of
higher frequencies of WGDs in relation to the adaptation and
diversification of mosses still need to be elucidated.

2.3. Lycophytes and Ferns-the early-diverging vascular plants

Lycophytes are thought to be representative of primitive vascu-
lar plants, and their origination has been dated to 392-451 Mya
[68]. Strikingly, the evolution of a model lycophyte, Selaginella
moellendorffii, has been influenced by at least two WGD events
[69]. However, the contributions of repeated WGDs to genome
changes and origin of the vascular system remain largely unclear.
In contrast to desiccation sensitive S. moellendorffii, some Selagi-
nella species showed extreme desiccation tolerance [70,71]. The
roles of WGDs and subsequent species-specific diploidization in
the divergent evolution of desiccation tolerance need to be inves-
tigated. In addition, an ancient WGD (Ks = 1.8) was revealed in
the aquatic lycophyte Isoetes taiwanensis, implying its potential
roles in the evolution of aquatic adaptation and CAM [72].

Ferns present great diversity with over 10,000 species, and gen-
erally possess large genome size and high chromosome number
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Fig. 1. The distribution of reported ancient WGDs across major lineages of green plants. WGDs (circle) and WGTs (square) were placed on the different branches of
phylogenetic tree based on previous studies. The branch length is not proportional to the timescale. (For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article.)

[73-75]. The mean genome size of ferns is estimated to be 14 Gb
[76], and the most common chromosome number (n) is 41, com-
pared to 9 in eudicots and 7 in monocots [74]. It has been hypoth-
esized that recurrent WGD events have led to an unusual increase
of chromosome number, genome size, and fern species richness
[5,27,74,77,78]. Indeed, a high-frequency WGD events were unrav-
eled across the fern phylogeny, with 66 %-97 % of extant ferns
inferred to be derived from ancient polyploids [5,66]. Chromosome
number analysis also suggested that over 30 % of speciation events
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occurring in ferns are related to polyploidy events [27]. In contrast
to their high species richness, only four fern genomes are available
now, of which one is chromosomal-scale (Alsophila spinulosa) [79],
two (Azolla filiculoides and Salvinia cucullata) are draft [80] and one
is fragmented and incomplete (Ceratopteris richardii) [81]. The tree
fern A. spinulosa was found to have experienced two ancient WGDs,
the more recent one shared by Cyatheaceae species (termed
‘Cyatheaceae WGD’, Ks = 0.3), and the ancient one in the common
ancestor of Cyatheales (termed ‘Cyatheales WGD’, Ks = 1.5) [79].
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The large proportion of syntenic blocks are well preserved in gen-
ome of A. spinulosa following ‘Cyatheaceae WGD’ (~100 Mya),
which was considered to be due to slow genome reshuffling and
diploidization but responsible for the large genome size (6.2 Gb)
and high chromosome number (n = 69). However, the associations
between successive WGD events and the evolution of xylem and
vascular tissues remain elusive. Genome analysis of A. filiculoides
and S. cucullata revealed an ancient WGD occurring in the common
ancestor of core leptosporangiates, and a more recent Azolla-
specific WGD [80]. Analysis of the model fern C. richardii also
revealed a lineage-specific WGD [81]. Future efforts are highly
desired to improve the current fern genomes and sequence more
fern species in poorly represented lineages, accelerating the inves-
tigation of genome changes related to the evolutionary switch
between homospory and heterospory which is regarded to be
important for the evolution of seed [32].

2.4. Gymnosperms-the appearance of seed

Gymnosperms are the pioneers of seed plants, and appeared
around 300 Mya [68]. The genome size of gymnosperms is com-
monly large with average 18 Gb [76]. Gymnosperms also show
longevity, and are prone to occur in harsh environments such as
cold, mountainous areas at high altitudes [83,84]. Contradicting
prior hypothesis that WGD is largely absent in gymnosperm lin-
eages, important roles of WGDs in the evolution and radiation of
gymnosperms have recently been suggested. Based on phyloge-
nomic analysis of 24 transcriptomes, three ancient WGD events
were revealed during the radiation of gymnosperms, with one in
the common ancestor of Pinaceae, one in the common ancestor
of Cupressaceae and Taxaceae (cupressophytes), and one in Wel-
witschia mirabilis [85]. The ancient WGD event (denoted as zeta,
¢) [1] inferred to have occurred in the common ancestor of seed
plants was not shared with ferns [85]. However, analysis of
chromosome-level genomes of three species from Taxaceae
showed no evidence of recent WGD [86-88], countering the infer-
ence from [85]. The deeper investigation of WGDs in the
chromosome-scale genome of Sequoiadendron giganteum (Cupres-
saceae) is required to verify the cupressophytes-specific WGD
[89]. A broader sampling of gymnosperm transcriptomes uncov-
ered a more ancient WGD occurring in the common ancestor of
all extant gymnosperms and corroborated the Pinaceae-specific
and Welwitschia-specific WGD event, but the contribution of WGDs
to the diversification of gymnosperms was found to be limited [90].
Welwitschia-specific WGD was further confirmed and dated
to ~ 86 Mya (Ks = ~1) based on genome analysis of W. mirabilis
[91], but not discovered in assembling and analyzing a genome
of the same species in another parallel study [92]. The
chromosome-level genome assembly for Cycas panzhihuaensis (cy-
cads) enables deep investigation of occurrence of ancient WGDs
during gymnosperm evolution [93].

An ancient ‘gymnosperm-wide WGD’ (denoted as ®, Ks
~0.85) was revealed based on a combination of phylogenomic
and syntenic analysis of C. panzhihuaensis and other plant gen-
omes, which contributed to the evolution of lineage-specific genes
in gymnosperms. In addition, a Pinaceae-specific WGD (Ks = ~0.6)
[90] was reconfirmed based on genome analysis of high-quality
assembly of Pinus tabuliformis [94]. It has been suggested that
duplicated genes provide important layers of redundancy for con-
vergent evolution of conifer adaptation to cold tolerance [95] and
morphological innovation [90]. Some questions remain to be
resolved regarding potential links between polyploidy or small-
scale gene duplication and stress tolerance adaptation of gym-
nosperms [84], the origin of protective layers surrounding seeds
[96], and extreme longevity of some gymnosperm species [91,97].
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2.5. Basal angiosperms—the starting point towards the largest plant
group

Flowering plants (termed angiosperms), the crown-group of
plants, have experienced an extraordinarily high-frequency of
WGD events which shaped their genomes and morphological com-
plexity [1,4,12,16,98,99]. WGDs has long been regarded as an
important driving force to render the first appearance of flowering
plants and subsequent rapid expansion during an incredibly short
period of time, a phenomenon referred to as the “abominable mys-
tery” by Darwin [100,101]. Over recent years, understanding of the
early evolution of angiosperms has been enhanced owing to the
genome sequencing of the earliest-diverging angiosperm lineages
including Amborellales, Nymphaeales and Austrobaileyales, collec-
tively referred to as ANA-grade angiosperms. The decoding of the
Amborella genome showed no evidence of recent lineage-specific
WGD but revealed an ancient polyploidy event (denoted as epsilon,
¢) preceding the diversification of angiosperms [102]. Genome
analysis of water lily (Nymphaea colorata) unveiled a lineage-
specific WGD (denoted m, Ks = 0.9) shared by Nymphaeaceae,
which has been linked to the evolution of key genes underpinning
flower development and attractive features [103]. The roles of gen-
ome and gene duplication in the evolutionary retrogressions of
water lily from terrestrial to aquatic environment and from woody
to herbaceous habit are worthy of being explored [104,105]. Inter-
estingly, prickly waterlily (Euryale ferox, Nymphaeaceae) experi-
enced an additional WGT event after divergence with water lily
[106], which was correlated to evolution of specific leaf develop-
ment and aquatic adaptation [107].

2.6. Monocots

Monocots (termed monocotyledons) were estimated to have
over 70,000 species [108,109], including economically important
food crops and fruits such as wheat, rice, maize, barley, banana,
pineapple, sugarcane. The major source of human nutrients and
calories come from monocots. The genome sequencing and assem-
bly of basal monocots open new door for studying the early evolu-
tion of monocots. The Lemnaceae family (known as duckweed)
belonging to the Alismatales has a basal phylogenetic position rel-
ative to other monocot families, and evolved to readapt to aquatic
habitat [110]. The high-quality genomes of several Lemnaceae spe-
cies have been published including Spirodela polyrhiza [111,112],
Spirodela intermedia [113], Lemna minuta [114], Wolffia australiana
[115,116]. The S. polyrhiza has undergone two ancient WGDs (~95
Mya) but showed considerable reduction in genome size
(~158 Mb) and gene number (~19,000) which may be associated
with the simplification of its plant body (lacking stem) [117,118].
Wolffia australiana has a smaller and simpler plant body lacking
roots, and has further reduced gene number (~15,000) but a larger
genome (~400 Mb) with signature of an ancient WGD (Ks peak =
~1.6). An ancient WGD was also found in L. minuta, presenting a
close Ks peak (~1.7) to that found in the sister species-W. aus-
traliana, implying that the tau (t) WGD may have occurred before
the divergence of Lemnaceae and other major monocot lineages
[114]. The ancient WGDs and subsequent extensive gene loss and
genome readjustment may have contributed to the evolution of
specialized gene sets underpinning fast growth rate, specific body
plan, and aquatic lifestyle of these tiny and basal monocots. Sea-
grass (Alismatales) is sister to Lemnaceae with basal position in
monocot lineage, and is the only marine flowering plants. The gen-
ome sequencing of Zostera marina [119,120] and Zostera muelleri
[121] has laid a solid foundation for better understanding of
angiosperm adaption to the sea. The remnants of a lineage-
specific WGD (64-72 Mya) were detected in Zostera genomes.
The gene gain and loss have been linked to the degeneration and
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acquisition of specific traits of seagrasses to readapt from freshwa-
ter to marine environment [122].

The evolution and diversification of major monocot groups has
been influenced by recurrence of lineage-specific and species-
specific WGDs [123-127]. Intragenomic and intergenomic synteny
analysis of rice (Oryza sativa) and sorghum (Sorghum bicolor) gen-
ome revealed two ancient WGD events in the common ancestor
of grass lineage (Poaceae), denoted as p and o respectively
[22,128]. A combination of phylogenomic and syntenic analysis
further uncovered a more ancient WGD (denoted t) common to
commelinid monocots including Arecales, Poales, Zingiberales
and Commelinales, terming as a WGD series of rho (p)-sigma
(o)-tau (t) [23]. The p WGD was positioned before the divergence
of the Pharoideae and the core grasses based on evolutionary anal-
ysis of Pharus latifolius genome [129]. The assembly of pineapple
(Ananas comosus), and detailed synteny and phylogenetic analysis
of pineapple and other monocot plants placed the ¢ WGD (100-
120 Mya) before the divergence of Poales, and placed Tt WGD
(110-135 Mya) after the split of Alismatales and commelinids
but before the split of commelinids and Asparagales [124,130].
The Orchidaceae (commonly called orchids) is one of the largest
families of flowering plants and the largest family of monocots,
with more than 20,000 species. The genome analysis of Apostasia
shenzhenica [130] and Vanilla planifolia [127] jointly provided evi-
dence for a ‘Orchidaceae-wide’ WGD (or pan-orchid o°® WGD),
which was inferred to occur shortly before orchid radiation and
to be associated with the great diversity of extant orchids.

2.7. Chloranthales and magnoliids

Genome and phylogenomic analysis of two Chloranthales spe-
cies (Chloranthus spicatus and C. sessilifolius) provides evidence
for an ancient WGD in the common ancestor of Chloranthales (de-
noted as kappa, k), and supported Chloranthales as the sister lin-
eage to magnoliids [131,132]. This Chloranthales-specific WGD
was also resolved to have a large role in the evolution of high vola-
tile content. Magnoliids, comprised of four orders (Laurales, Mag-
noliales, Piperales, and Canellales) and containing over 9,000
species, has attracted interest for genome sequencing due to its
uncertain phylogenetic relationships to eudicots and monocots
[133-135]. Interestingly, magnoliid evolution has been influenced
by frequent WGD events. An ancient WGD event preceding the
divergence of Laurales and Magnoliales [3,136] was termed
lambda (1) [2] although this symbol had been used to indicate
the Nelumbo-specific WGD in a prior study [137]. Two Laurales
families, Lauraceae and Calycanthaceae, each experienced an addi-
tional lineage-specific WGD event [136,138]. In addition, Cassytha
filiformis (Lauranceae) underwent a more recent species-specific
WGD [136]. A WGD was also suggested to take place in the com-
mon ancestor of Gomortegaceae and Atherospermataceae (Lau-
rales) [136]. Remarkably, genome comparison with Aristolochia
fimbriata indicated that Piper nigrum (black pepper, Piperales) has
experienced three successive WGDs [3], contradicting a previous
report of only one WGD [139]. Their high-frequency of WGDs
has been recognized as an important driving force for the evolution
of unique features of magnoliids species such as rich volatile com-
pounds and specific floral morphology.

2.8. Ceratophyllales and eudicots

Ceratophyllales has been inferred as the sister lineage to all
extant eudicots [106,131]. The relics of three WGD events were
discovered in an aquatic Ceratophyllales species-rigid hornwort
(Ceratophyllum demersum) [106]. Recently, genome sequences of
a number of species from early-branching eudicot lineages or basal
eudicots (Ranunculales, Proteales, Trochodendrales and Buxales)
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shed light on the early evolution of eudicots [140]. Aquilegia
(Ranunculaceae, Ranunculales) possesses a basal phylogenetic
position relative to other eudicots, and has been corroborated to
experience a paleo-tetraploidy event shared with Coptis chinensis
(Ranunculaceae) [141], although incongruent views about the
placement of this event have been proposed [142-145]. Papaver-
aceae (Ranunculales) is the closest sister lineage to Ranunculaceae.
Genome analysis of three Papaver (Papaveraceae) species showed
that P. setigerum shared a WGD with P. somniferum (opium poppy)
(~7.2 Mya), and experienced an additional more recent WGD (~4
Mya) after its split with opium poppy [146]. These WGD events
play important roles in evolution of the biosynthetic pathway of
benzylisoquinoline alkaloids (BIAs) which are the medically impor-
tant constituents of opium poppy. Akebia trifoliata (Lardizabal-
aceae, Ranunculales), a successor lineage to Aquilegia, showed
evidence of a lineage-specific WGD, but whether this event is
shared with Aquilegia remains unclear [147]. Another Ranunculales
species Kingdonia uniflora (Circaeasteraceae) likewise presented
evidence of WGD but with phylogenetic placement remaining to
be determined [148]. Genome sequencing of sacred lotus (Nelumbo
nucifera) [137] and Macadamia integrifolia [149], belonging to Pro-
teales, indicated that they have experienced independent lineage-
specific WGDs. As the closest and successive lineages to core eudi-
cots, Trochodendrales (Tetracentron sinense) and Buxales (Buxus
sinica) genomes analysis revealed that they each underwent one
or more lineage-specific WGDs [140,150,151]. More WGDs discov-
ered in core eudicots have been well documented [2-4,8,18,19].

3. Links between paleopolyploidy and plant survival in extreme
environments

Ancient WGDs have been found in some extremophytes such as
halophytes [152], resurrection plants [60,153], alpine plants [154-
156], desert plants [64,157,158], and invasive plants [159-161],
suggesting important roles of WGD in the evolution of plant adap-
tation to extreme environments [64,162]. Interestingly, the occur-
rence of paleopolyploidy events has been suggested to coincide
with periods of environmental upheaval, such as mass extinction
events or extreme climate change [4,17]. Several ‘waves’ of WGD
have been suggested to be associated with different epochs or geo-
logic time periods, including the Cretaceous-Paleogene (K-Pg)
extinction event (~66 Mya) [4,163], early Aptian epoch within
the Cretaceous period (~120 Mya), and Neogene period (23.0-2.6
Mya) [2,18]. Moreover, some genetic evidence supports significant
contributions of ancient WGDs to plant adaptation and survival
under abrupt climate changes [18]. Duplicated genes involved in
resistance to cold, heat, darkness, and other adverse conditions
were preferentially retained after independent WGDs near period
of dramatic climate change [18,164,165]. In addition, polyploidy
has been found with higher frequency in colder and higher latitude
regions, consistent with the notion that polyploids have a propen-
sity to survive in and inhabit extreme and fluctuating environ-
ments [166].

4. Summary and outlook

Over 1000 genomes representing 798 plant species have been
sequenced and assembled in the past twenty years [32,33]. A large
number of ancient WGD events have been deciphered among
diverse lineages [4,18,19], with 244 inferred and placed across
plant phylogeny based on analysis of 1000 plant transcriptomes
[7,8]. Nonetheless, resolving dates and phylogenetic placements
of ancient WGDs remains challenging due to plant genome com-
plexity. For instance, reanalysis of available genomes of Cucur-
bitaceae species revealed a paleo-tetraploidy predating the
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divergence of Cucurbitaceae that was overlooked in previous stud-
ies [167]. Reinvestigation confirmed that the WGD found in durian
(Durio zibethinus) is lineage-specific [168] rather than shared with
cotton [169]. Moreover, new WGD events were uncovered based
on reanalysis of Selaginella moellendorffii [69] and Aquilaria sinensis
[170] genomes respectively. More effort remains necessary to
reconfirm reported WGDs and rediscover overlooked WGDs based
on high-quality and chromosome-level genomes.

Driven by the rapid development of long-read sequencing tech-
nologies (e.g. PacBio HiFi, Nanopore), telomere-to-telomere and
gap-free genome assemblies have been produced for some model
plants and important crops such as Arabidopsis [37,39], tomato
[40], maize [34], rice [36,38] and banana [35]. These highly con-
tiguous genome assemblies provide a valuable opportunity to per-
form more accurate genome comparisons and synteny analysis,
refine the resolution of evolutionary analysis, and recheck ancient
WGDs reported in previous studies. Moreover, growing software
resources have been developed to infer date and place ancient
WGDs across plant phylogeny such as MAPS [85], Whale [171], Bel-
uga [172], wgd [173], WGDI [145], in which synteny-based or
phylogenomic-based strategies are implemented. A combination
of synteny- and phylogenomic-based methods to correctly identify
and verify ancient polyploidy events has an important role in ongo-
ing and upcoming genome sequencing projects.

Several ambitious projects including the Earth BioGenome Pro-
ject [174], Darwin Tree of Life Project [175], and 10KP [176] have
been launched to sequence the genomes of all eukaryotic species
on earth, and eventually to document the biodiversity on our pla-
net. Such efforts pose considerable challenges for integrating enor-
mous plant genome data and developing interactive web tools for
performing genome comparison and synteny analysis, identifying
genome and gene duplications, and visualizing results. Some
pioneering databases including Phytozome [177], Ensembl Plants
[178], PLAZA [179], CoGe [180], PGDD [181] incorporating genome
integration, synteny analysis, WGD inference and comparative
genomic analysis tools, have facilitated research in plant genome
evolution. Nonetheless, the capacity of current computational tools
and storage systems remain limited toward dealing with the huge
volumes of 400,000 plant genomes [109]. Apart from well-known
databases such as NCBI, EMBL-EBI and DDB]J, some new platforms
have been built to provide prompt and convenient access to
sequenced plant genomes such as Genome Warehouse [182],
CNGBdb (https://db.cngb.org) and Plant GARDEN (https://plantgar-
den.jp/en/index).

Moving forward, global efforts by the plant science community
may substantially reconstruct the genome-level green plant phy-
logeny based on broader sampling and sequencing of plant diver-
sity, and anchor/position WGDs on different branches along the
evolutionary timeline.
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