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Neospora caninum is an intracellular protozoan that mainly infects cattle to cause abortion
and significant economic losses worldwide. A better understanding of the immune
evasion mechanisms of N. caninum could help to search for an effective approach to
prevent and treat neosporosis. Mitophagy is used by some viruses to evade host immune
surveillance. However, host cell mitophagy and its effect on N. caninum infection is
unclear. In the present study, N. caninum-induced host cell mitophagy and its role in
parasite infection were investigated in vitro and in vivo. Furthermore, the regulation of N.
caninum-induced host cell mitophagy on the production of Reactive Oxygen Species
(ROS), the secretions of proinflammatory cytokines, and the signals of p38, ERK, and
Nlrp3 inflammasome were explored. Our results showed that autophagosomes and co-
localization of LC3 with mitochondria were observed in N. caninum-infected
macrophages. The mtDNA/nDNA ratio and the levels of mitochondrial marker proteins
(Hsp60 and Tim23) were decreased with the increase of N. caninum numbers or infection
time. N. caninum could induce mitophagy in brain and peritoneal lavage fluid cells of mice.
Promoting mitophagy via mitophagy inducers (CCCP) could shorten survival time,
decrease body weight, increase parasite load, and attenuate secretion of cytokines in
N. caninum infected mice. CCCP treatment decreased the production of cytokines and
Reactive Oxygen Species (ROS), and increased parasite burden in N. caninum-infected
macrophages. Furthermore, CCCP or NAC (ROS inhibitor) treatment could inhibit ERK
signal, Nlrp3 inflammasome, and cytokine production, while promote p38 signal in N.
caninum-infected macrophages. The opposite results were obtained when using a
mitophagy inhibitor (Mdivi1). Taken together, N. caninum-induced mitophagy could
regulate the activations of p38, ERK, Nlrp3 inflammasome to inhibit the production of
inflammatory cytokines in a ROS-dependent manner to escape host immune surveillance.
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GRAPHICAL ABSTRACT | During N. caninum infection, N. caninum could induce host cell mitophagy, inhibit ROS production, which regulated p38, ERK, and
Nlrp3 inflammasome signals to reduce the secretions of proinflammatory cytokines to escape host clearance.

Zhang et al. Mitophagy Mediates Immune Escape
1 INTRODUCTION

Neosporosis, caused by N. caninum, an obligate intracellular
protozoan, is recognized as one of the major causes of abortion in
cattle worldwide, resulting in significant economic losses in the
cattle industry (1). The definitive hosts ofN. caninum are dogs and
other canids, while its intermediate hosts take a wide range of
domestic and wild animals (1). N. caninum has been reported in
more than 16 countries (2), which indicated widespread exposure
and a potential public health problem. Previous studies have
emphasized on immune response against N. caninum infection.
Both innate and adaptive immunities played crucial roles in
defending N. caninum infection (3–6). Although some potential
vaccine candidates have beendeveloped, overall, effective drugs and
vaccines are still urgently needed to treat neosporosis.

Some protozoa have evolved various strategies to evade host
immune system (7, 8). Toxoplasma gondii could control host
signaling pathways such as STAT1, NF-kB signals, and caspase-1
cleavage to decrease the production of cytokines such as IFN-g and
IL-1b (9). High virulence Trypanosoma cruzi strains (Colombian/
Tc-I and Y/TcII) could inhibit the expressions of TLR2, TLR4,
TLR9, TRIF, andMyd88, leading to decreased IL-12 production in
Abbreviations: ESPs, N. caninum excretory secretion production; ROS, Reactive
Oxygen Species; qPCR, quantitative real-time PCR; ELISA, enzyme−linked
immunosorbent assay; FBS, fetal bovine serum; MOI, multiplicities of infection;
PBS, phosphate buffer saline; PBST, phosphate−buffered saline with tween−20;
DAMPs, damage-associated molecular patterns; mtDNA, mitochondrial DNA;
WT, wild type; DMSO, Dimethyl sulfoxide; TEM, transmission electron
microscopy; nDNA, nucleic DNA; PMs, peritoneal macrophages.
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mice (10). Leishmania could inhibit NF-kB, ERK, JNK, and p38
signals to reduce the production of TNF-a and IFN-g in
macrophages (11, 12). N. caninum could promote p38
phosphorylation to inhibit the host’s innate immune responses in
mouse macrophages (13). Further investigation of the immune
evasion mechanisms of N. caninum will help us to understand the
pathogenesis and design new strategies for the prevention and
treatment of neosporosis.

As an essential energy generator for cell homeostasis,
mitochondria are an important channel for programmed cell
death (14). This core function requires the quality of
mitochondria to be strictly controlled. The term of mitophagy
was first coined by John Lemasters in 2005, which refers to the
selective autophagic degradation of mitochondria to promote the
clearance of damaged mitochondria (15). The damaged
mitochondria contain series of damage-associated molecular
patterns, such as mitochondrial DNA (mtDNA), mitochondrial
ROS, and N-formylated peptides, which are released into the
cytoplasm following cellular necrosis and pathogens invasion to
initiate inflammatory responses (16). Mitophagy is the targeted
phagocytosis and destruction of mitochondria by autophagosomes,
which is generally considered to be the main regulatory mechanism
of the mitochondrial quality control process and involved in
regulating host immune responses (17). Moreover, mitophagy has
been demonstrated to be used by certain viruses and bacteria to
escape from host immune clearance (18–20). However, mitophagy
occurrence has not been found in the host during parasites infection
and whether protozoa could promote host mitophagy to evade host
clearance has not been reported.
March 2022 | Volume 13 | Article 827004
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It is noted that the secretions of IL-1b, IL-6, IL-12p40, IFN-g,
IL-18, and TNF-a played essential roles against N. caninum
infection (4–6). Previous studies showed MAPK signal, NF-kB
signal, and NLRP3 inflammasome regulated production of
proinflammatory cytokines to control N. caninum infection (4,
21, 22). ROS contributed to the production of proinflammatory
cytokines (23) and mitophagy played an important role in ROS
scavenging (16, 24). Recent evidences implicated that mitophagy
eliminates dysfunctional mitochondria to restrict inflammatory
cytokine secretions by inhibiting inflammasome, NF-kB signal,
and so on (7). HIV ssRNA inhibited mitophagy to promote the
release of proinflammatory and neurotoxic cytokines via Nlrp3
inflammasome in microglia (25). Mitophagy could reduce
mtDNA release aggravated stretching-induced inflammation and
lung epithelial cell injury via the TLR9/MyD88/NF-kB pathway
(26). However, whether N. caninum infection could promote host
mitophagy, or whether mitophagy plays a role in N. caninum
survival and in the regulation of host proinflammatory response
have not been extensively investigated.

In the present study, N. caninum-induced host cell mitophagy
and its role in parasite infection were investigated in vitro and in
vivo. Furthermore, the regulation mechanism of host cell
mitophagy on ROS, cytokines and signal pathways were explored.
2 MATERIALS AND METHODS

2.1 Mice and Peritoneal Macrophages
Wild-type (WT) female 6-8-week-old C57BL/6 mice were
purchased from Liaoning Changsheng Experimental Animal
Centre. Nlrp3-/- mice with C57BL/6 genetic background were
obtained from the Jackson Laboratory (4). WT or Nlrp3-/- mice
were intraperitoneally injected with 2 ml of 5% thioglycolate
medium (BD Biosciences, CA, USA) per mouse, and 3 days later
peritoneal macrophages (PMs) from the peritoneal cavity were
collected by flushing twice with 6 ml ice sterile PBS. PMs were
counted and plated into 6-well-plate at 2.5×106 cells per well with
RPMI-1640 medium supplemented with 10% fetal bovine serum
(FBS). The supernatant was discarded the next day, and adherent
cells were further cultures as PMs (27).
2.2 Parasites and Excretory Secretory
Products (ESPs)
N. caninum used in the present study was Nc-1 strain and was
maintained in Vero cells with RPMI-1640 medium supplemented
with 2% FBS (BI, Israel) in a 5% CO2 atmosphere at 37°C. N.
caninum tachyzoites were harvested by gradient density
centrifugation with 40% Percoll solution (Sigma, Shanghai,
China) at 1500×g for 30 min. The precipitate was collected and
washed twice with RPMI-1640medium, while the supernatant was
discarded. The numbers of tachyzoites were determined using a
hemocytometer. Excretory secretory products (ESPs) of N.
caninum were prepared and stored as previously reported (28).
And the concentration of ESPs was determined using the BCA
Protein Assay Kit (Thermo Fisher Scientific, Waltham, MA).
Frontiers in Immunology | www.frontiersin.org 3
2.3 Antibodies
Mouse anti-Tim23 was from Santa Cruz Biotechnology (CA,
USA). Rabbit anti-Hsp60 antibody, FITC-conjugated anti-rabbit
IgG antibody, and HRP-conjugated anti-mouse, rabbit, or goat
IgG antibodies were purchased from Proteintech (Wuhan,
China). Rabbit anti-b-actin, anti-LC3, anti-ERK, anti-p38, anti-
p65, anti-phospho-ERK (Thr202/Tyr204), anti-phospho-p38
(Thr180/Tyr182), and anti-phospho-p65 (Ser536) antibodies
were obtained from Cell Signaling Technology (Danvers, MA,
USA). Goat anti-IL-1b antibody was from R&D (Minneapolis,
USA). Mouse anti-caspase-1 (p20) and mouse anti-Nlrp3
antibodies were purchased from Adipogen (Liestal, Switzerland).

2.4 Mitophagy Detection
2.4.1 Transmission Electron Microscopy (TEM)
PMs were stimulated with N. caninum at a multiplicity of
infection (MOI) of 1:3 for 16 h and PMs were treated with
Carbonyl cyanide 3-chlorophenylhydrazone (CCCP) (10 µM,
Sigma-Aldrich, MO, USA) for 16 h as the positive control. The
PMs were trypsinized, centrifuged, and collected. The cells were
fixed in 5% (w/v) glutaraldehyde, then post-fixed in 1% (w/v)
osmium tetroxide, dehydrated by the concentration gradient of
ethanol (50%, 70%, 80%, 90%, and 95%), and embedded by
Epon812. Then, sections were cut at 0.12 mm thickness and
stained using 1% (w/v) uranyl acetate and 0.2% (w/v) lead citrate.
The autophagosomes were observed by TEM (HITACHI, Japan).

2.4.2 Immunofluorescence
PMs plated on glass coverslips in 24-well culture plates (5×105 per
well)were stimulated eitherwithN.caninum at aMOIof1:3 for 16h
or with CCCP (10 µM). Mito Tracker Red (Thermo Fisher
Scientific, Waltham, MA, USA) was used to label mitochondria
according to the instructions. After washing twice with PBS, cells
werefixed for15minat roomtemperaturewith4%formaldehyde in
PBS and then permeabilized with 0.1% Triton X-100 in PBS for 10
min. After blocking with 3%BSA for 1 h at room temperature, cells
were incubatedwith the primary antibody to LC3 (1:100 diluted 3%
BSA)overnight at 4°C followedby incubationwithFITCanti-rabbit
secondary antibody diluted at 1:1000. Cells were eventually counter
stained with DAPI for 5 min. Immunofluorescence-stained cells
were observed with a Zeiss LSM 710 confocal microscope (Carl
Zeiss). For the quantification of mitophagy, the number of PMs in
which endogenous LC3 co-localized with Mito Tracker were
evaluated per 50 cells.

2.4.3 GFP-LC3 Fluorescence Analysis
Human kidney epithelial 293T cells were maintained in our
laboratory. 293T cells were seeded in 24-well-plate at 5×105 cells
per well with DMEM supplemented with 10% FBS (BI, Israel).
The cells were transfected with pEGFP-LC3 and pEGFP empty
vector by using Lipofectamine 2000 transfection reagent
(Invitrogen, USA). 24 h after transfection, the cells were
stimulated with N. caninum at a MOI of 1:3 for 16 h. Mito
Tracker Red was used to label mitochondria and DAPI for
nuclear. Cells were observed with a Zeiss LSM 710 confocal
microscope (Carl Zeiss). For the quantification of mitophagy, the
March 2022 | Volume 13 | Article 827004
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number of 293T cells in which GFP-LC3 co-localized with Mito
tracker were counted per 50 cells.

2.4.4 Detection of mtDNA/nDNA Ratios and
Mitochondrial Marker Proteins In Vivo and In Vitro
PMs were stimulated with N. caninum at a MOI of 1:1 for 8 h, 16
h, and 24 h, respectively. PMs were also either stimulated with
different MOIs (cell:parasite = 1:1, 1:3, 1:5) of N. caninum for 16
h, or stimulated with different concentrations (50 µg/ml, 100 µg/
ml, 200 µg/ml) of ESPs. In addition, PMs were treated with
CCCP (10 µM) for 8 h as the positive control. Then DNA and
protein of the PMs were extracted to measure mtDNA/nucleic
DNA (nDNA) and mitochondrial marker proteins (Hsp60
and Tim23).

In mouse experiments, 15 WT C57BL/6 mice (6-8-week-old)
were infected intraperitoneally with 2.5×107 tachyzoites diluted
in 100 µl sterile PBS per mouse and 3 mice were injected
intraperitoneally with 100 µl sterile PBS as the negative
control. From the third day to the seventh day post-infection
(d p.i.), 3 mice/day were euthanized and the brain tissues were
collected to detect Hsp60 and Tim23. Peritoneal lavage cells were
collected from peritoneal lavage fluid by centrifuging for 5 min at
500 g and the brain tissues were homogenized. The DNA was
extracted and mtDNA/nDNA ratios were measured in the
peritoneal lavage cells and brain tissues.

To measure Hsp60 and Tim23, the PMs and ground brain
tissues were lysed by RIPA buffer (Beyotime Biotechnology,
Shanghai, China) and the protein concentration was determined
using the BCA Protein Assay Kit. 30 mg protein samples were
analyzed by SDS-PAGE and then transferred onto 0.22 mm
polyvinylidene fluoride membranes (Millipore, MA, USA).
Membranes were blocked in 5% skim milk, incubated overnight
at 4°Cwith primarymonoclonal antibodies of anti-Hsp60 (1:1000),
anti-Tim23 (1:100), and anti-b-actin (1:1000). The membranes
were incubated with anti-mouse or rabbit secondary antibodies
(1:5000) for 1 h at room temperature. After washing by TBST, the
membranes were visualized using the ECLWestern blot Detection
System (Clinx Science InstrumentsCo., Ltd., Shanghai, China). The
Relative Gray Value (target protein/internal reference) of Western
blot bands was analyzed by Image J (Image J Software, National
Institutes of Health, Bethesda, MD, USA).

To quantify themtDNA/nDNAratios, qPCRwas used to amplify
mtATP6 gene (from the mitochondrial genome) and Rpl13a gene
(from the nuclear genome), and the protocols were performed as
previously described (20). The mtDNA/nDNA ratios was calculated
by a comparative Ctmethod, using the following equation: mtDNA/
nDNA= 2−DCt. Primer sequences were as follows: mouse mtATP6:
forward: 5′-CAGTCCCCTCCCTAGGACTT-3′, reverse: 5′-
TCAGAGCATTGGCCATAGAA-3′; mouse Rpl13a: forward:
5 ′ -GGGCAGGTTCTGGTATTGGAT-3 ′ , reverse : 5 ′ -
GGCTCGGAAATGGTAGGGG-3′.

2.4 Animal Infection Experiment
The mice were randomly divided into seven groups, including
Mdivi1+N. caninum group (10 mice), CCCP+N. caninum group
(10 mice), solvent+N. caninum group (10 mice), and N. caninum
group (10 mice). The mice were infected intraperitoneally with
Frontiers in Immunology | www.frontiersin.org 4
2.5×107 N. caninum tachyzoites diluted in 100 µl PBS. After 24 h,
Mdivi1 (MCE, Shanghai, China) and CCCP was diluted in PBS,
and mice were then immediately injected intraperitoneally with
Mdivi-1 (50 mg/kg body weight/per day) or with CCCP at a dose
of 5 mg/kg body weight/per day (20). The mice were monitored
and weighed each day. Then the mice were euthanized at 5 d p.i.
and the brain, heart, liver, spleen, kidney, and lung tissues were
collected to measure parasite burden. The serum was collected to
detect cytokines at 5 d p.i. Mdivi1 group (3 mice as inhibitor
control), CCCP group (3 mice as inhibitor control) and PBS
group (3 mice as negative control).

2.5 Inhibitor Experiment
PMs were pretreated with Mdivi1 (20 µM), CCCP (10 µM) (20),
and ROS inhibitor (NAC; 2 mM, Selleck, Shanghai, China) for 2
h (29) before being stimulated by N. caninum for 30 min to
detect the phosphorylation of p38, ERK, and NF-kB p65. PMs
were also stimulated by N. caninum for 24 h to measure Nlrp3,
Caspase1, and IL-1b by Western blot as previously described
(30). PMs were pretreated with Mdivi1 (20 µM), CCCP (10 µM),
NAC (2 mM), p38 inhibitor (SB203580; 5 mM, Sigma-Aldrich,
MO, USA), and ERK inhibitor (PD98059; 5 mM, Sigma-Aldrich,
MO, USA) for 2 h, followed by stimulation with N. caninum for
24 h to detect parasite burden by qPCR and the production of
cytokines by ELISA.

2.6 Western Blot Analysis
The cell lysates and supernatants of PMs were collected and
assessed by Western blot as described previously (28). The rabbit
monoclonal anti-b-actin, anti-ERK, anti-p38, anti-p65, anti-
phospho-ERK (Thr202/Tyr204), anti-phospho-p38 (Thr180/
Tyr182), anti-phospho-IkBa (Ser32), anti-phospho-p65
(Ser536), mouse monoclonal anti-Caspase1 and anti-NLRP3,
and goat monoclonal anti-IL-1b diluted at 1:1000 with 5%
BSA were used to incubate the membranes overnight at 4°C.
Then the membranes were incubated with anti-rabbit/mouse/
goat secondary HRP-conjugated antibodies (Proteintech,
Wuhan, China) diluted at 1:5000 with 5% skim milk. Western
blot bands were detected using the enhanced chemiluminescence
reagent (Vigorous, Beijing, China). The membranes were
visualized using the ECL Western blot Detection System.

2.7 N. caninum DNA Detection by qPCR
Parasite replication in the infected cells and mouse homogenized
tissues was monitored as previously described by performing
qPCR analysis of the parasite DNA (4). Genomic DNA from
1×107 tachyzoites of N. caninum and total DNA from infected
cells and mouse tissues were extracted using a Genomic DNA
Extraction Kit (TIANGEN, Beijing, China) following the
manufacturer’s protocol. The total DNA from infected cells
(200 ng) and tissues (500 ng) was analyzed by qPCR with
FastStart Universal SYBR Green Master reagent (Roche
Diagnostics, Mannheim, Germany), and a 76-bp fragment of
N. caninum DNA was amplified using the following primers:
forward (5′-ACTGGAGGCACGCTGAACAC-3′); reverse (5′-
AACAATGCTTCGCAAGAG GAA-3′). The number of
parasites was determined based on a standard curve obtained
March 2022 | Volume 13 | Article 827004
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using DNA from serial dilutions ofN. caninum tachyzoites (from
1×107 to 1×100 parasite).

2.8 ELISA Analysis
Supernatants from cell culture and serum from mice were
measured by mouse IL-1b, IL-18, IFN-g, IL-12p40, IL-6, or
TNF-a Ready-Set-Go Kits (eBioscience, San Diego, CA, USA)
according to the manufacturer’s instructions.

2.9 ROS Detection
PMs were pretreated with Mdivi1 (20 µM), CCCP (10 µM), NAC
(2mM) for 2 h, followed by stimulationwithN. caninum (MOI 1:3)
for 3 h or with Rosup (Beyotime Biotechnology, Shanghai, China)
according to the instructions as the positive control. Then the
supernatant was removed, and the PMs were incubated with the
DCFH-DA (Beyotime Biotechnology, Shanghai, China) for 20–30
min at 37°C, followed by 3 washes with FBS-free RPMI in the dark
as themanufacturer’s instructions. Intracellular ROSwere analyzed
using a FACS Aria flow cytometer (BD Biosciences, CA, USA).

2.10 Statistical Analysis
The data were expressed as mean ± SD. Data sets with only two
independent groups were analyzed for statistical significance
using unpaired, two-tailed Student’s T-test. Data sets with
more than two groups were analyzed using one-way ANOVA
with Tukey-Kramer post hoc test. All graphs were generated
using GraphPad Prism 5 (GraphPad Software, Inc., San Diego,
CA, USA). All p values less than 0.05 were considered significant
(*p<0.05, **p<0.01, ***p<0.001). P values equal to or more than
0.05 were considered no significant (p>0.05, ns). All data of this
study were obtained from 3 independent experiments.
3 RESULTS

3.1 N. caninum Induced Mitophagy
Occurred Both In Vitro and In Vivo
TEM and Immunofluorescence experiments were performed to
determine whether mitophagy occurred in mouse macrophages
during N. caninum infection. Results showed that mitochondria
were enclosed by autophagosome in N. caninum-stimulated or
CCCP treated (mitophagy inducer) PMs by TEM (Figure 1A).
Immunofluorescence results demonstrated that N. caninum
induced co-localization of mitochondria with endogenous LC3 in
PMs and with GFP-LC3 in 293T cells (Figures 1B, C). And N.
caninum induced mitophagy occurrence in 32.6% PMs and 31.0%
293T cells (Figures S1A, B). To evaluate whether N. caninum-
induced mitophagy was dependent on infecting numbers of N.
caninum or infection time, the levels of mtDNA and the amount of
mitochondrial inner membrane protein Tim23 and matrix protein
Hsp60 in mouse PMs were measured. With the increase of the
numbers ofN. caninum- or infection time, themtDNA/nDNAratios
and the levels of Hsp60 and Tim23 protein decreased gradually,
which was similar to that of CCCP treatment (Figures 2A–C). In
addition, Western blot results were further analyzed by grayscale
analysis (Figures 2D, E). However,N. caninum ESPs had no impact
on the expression levels ofHsp60andTim23 inPMs (Figures2C–E).
Frontiers in Immunology | www.frontiersin.org 5
Altogether, our data demonstrated that N. caninum induced
mitophagy in mouse macrophages.

Furthermore, mitophagy was identified in mice during N.
caninum infection. No significant difference in total cells counts
was observed in peritoneal lavage fluids (Figure 3A). With the
decrease of N. caninum number, the levels of mtDNA/nDNA ratios
gradually increased from the third to seventh days post-infection in
peritoneal lavage cells duringN. caninum infection (Figures 3B, C).
However, with the increase of parasite load in the brain, the levels of
mtDNA and the protein expression levels of Hsp60 and Tim23
showed a downward trend (Figures 3D–F). Western blot results
were further analyzed by grayscale analysis (Figure 3G). Taken
together, these results indicated that mitophagy occurred in in vitro
and in vivo during N. caninum infection.

3.2 N. caninum-Induced Host Mitophagy
Promoted Parasite Loads in Mice
To further determine the effects of mitophagy on N. caninum
infection, mitophagy inducer (CCCP) and inhibitor (Mdivi1) were
used both in vivo and in vitro. We found that Mdivi1 treatment
increased the survival rate ofmicewhile CCCP treatment accelerated
the time to death of mice during N. caninum infection (Figure 4A).
The CCCP-treated mice exhibited a significant loss in body weight
compared with untreated mice duringN. caninum infection. On the
contrary, Mdivi1 alleviated the weight loss in mice (Figure 4B).
Subsequently, we examined the parasite burden of different tissues by
qPCR, and the parasite loads in the brain (2.46-fold), heart (1.89-
fold), lung (1.41-fold), spleen (3.51-fold), and kidney (1.73-fold) in
mice treated by CCCPwere significantly increased compared to that
in the solvent+N. caninummice (Figures 4C–E,G,H). Therewas no
difference in the parasite load in the liver (Figure 4F). Moreover,
Mdivi1 treatment inhibited N. caninum burden in the brain (20%),
heart (38%), lung (25%), spleen (44%), and kidney (74%) but not in
the liver (Figures 4C–H). In addition, the number ofN. caninum in
mouse PMs treated with Mdivi1 (30%) was reduced, while the
number was increased with CCCP treatment (1.60-fold) during N.
caninum infection (Figure 5A). Taken together, these results
indicated that N. caninum–induced mitophagy played a critical
role in parasite survival in mice.
3.3 N. caninum-Induced Mitophagy
Decreased the Production of IL-1b, IL-6,
IL-12p40, IFN-g, IL-18, and TNF-a In Vivo
and In Vitro
It is noted that the secretions of IL-1b, IL-6, IL-12p40, IFN-g, IL-18,
andTNF-aplayed essential roles againstN. caninum infection (4–6).
Thus,we examinedwhether the role ofmitophagy inparasite survival
was through inhibiting cytokines production.We found thatMdivi1
treatment enhanced theproductionof IL-6 (1035.54±165.21pg/ml),
IL-12p40 (1654.33 ± 39.62 pg/ml), IFN-g (1981.31 ± 49.41 pg/ml),
and IL-18 (765.21 ± 59.81 pg/ml), while CCCP treatment suppressed
the production of IL-6 (222.67 ± 64.78 pg/ml), IL-12p40 (435.21 ±
87.52 pg/ml), IFN-g (1046.76 ± 128.61 pg/ml), and IL-18 (213.65 ±
68.35 pg/ml) in mice during N. caninum infection compared to the
solvent+N. caninum group (580.57 ± 29.60 pg/ml, 1338.57 ± 31.59
pg/ml, 1633.27±62.69pg/ml, 542.12±60.68pg/ml) (Figures4I, J,K,
March 2022 | Volume 13 | Article 827004
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A

B

C

FIGURE 1 | Autophagosomes and co-localization of LC3 with mitochondria were observed in N. caninum-stimulated PMs by TEM and IFA. (A, B) PMs were
stimulated with N. caninum at MOI 1:3 for 16 h, with CCCP (10 µM) treatment as the positive control, and the medium only as the negative control. (A) Autophagic
bodies were observed by TEM assay and red arrows pointed to autophagosomes. (B) The co-localization of LC3 (green) with mitochondria (red) was observed by
immunofluorescence and the nucleus was blue. (C) 293T cells were transfected with pEGFP-LC3 vector and pEGFP empty vector for 24 h by using Lipofectamine
2000 transfection reagent. Then the cells were stimulated with N. caninum at MOI 1:3 for 16 h. The co-localization of GFP-LC3 (green) with mitochondria (red) was
observed by immunofluorescence and the nucleus was blue (Scale bar=10 µm).
Frontiers in Immunology | www.frontiersin.org March 2022 | Volume 13 | Article 8270046
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M). Moreover, the production of IL-1b, IL-6, IL-12p40, IFN-g were
increased inMdivi1-treated PMs (42.85 ± 4.39 pg/ml, 438.03 ± 41.80
pg/ml, 1674.33 ± 66.86 pg/ml, and 1755.52 ± 170.31 pg/ml), while
were inhibited in CCCP-treated PMs (10.07 ± 2.76 pg/ml, 39.78 ±
4.78 pg/ml, 982.21 ± 90.11 pg/ml, and 763.62 ± 47.06 pg/ml)
compared with solvent-treated PMs (291.35 ± 33.16 pg/ml, 1413.22
± 43.48 pg/ml, 1365.22 ± 83.60 pg/ml) infected by N. caninum
(Figures 5B–D, F). However, there were no significant differences in
TNF-a production both in vivo and in vitro (Figures 4L, 5E). These
data suggested thatN. caninum-inducedmitophagy could inhibit the
productionofproinflammatorycytokines inPMsandmiceduringN.
caninum infection.
Frontiers in Immunology | www.frontiersin.org 7
3.4 N. caninum-Induced Mitophagy
Suppressed Secretions of
Proinflammatory Cytokines in a
ROS-Dependent Manner
ROS contributed to the production of proinflammatory
cytokines (23) and mitophagy played an important role in
ROS scavenging (16, 24). To examine whether N. caninum-
i nduced mi tophagy inh ib i t ed the produc t i on o f
proinflammatory cytokines through scavenging ROS in PMs,
we detected the level of N. caninum-induced ROS in PMs
treated with Mdivi1 and CCCP. Mdivi1 treatment enhanced
A B

D E

C

FIGURE 2 | The level of N. caninum-induced mitophagy was dependent on MOI- and time-dependent manners. PMs were stimulated with N. caninum at MOI 1:1
for 8 h, 16 h, and 24 h, with different MOI (cell:parasite = 1:1, 1:3, 1:5) of N. caninum for 16 h, and with different concentrations of ESPs (50 µg/ml, 100 µg/ml, 200
µg/ml). PMs were treated with CCCP (10 µM) for 8 h as the positive control. The mtDNA/nDNA ratios in PMs treated with different time (A) and different MOI (B)
were measured by qPCR analysis. (C) The expressions of mitochondrial marker proteins (Hsp60 and Tim23) were measured by Western blot and (D, E) relative gray
of Western blot in panes was analyzed by Image J. One-way ANOVA assay with Tukey-Kramer post hoc test was used for analyzing mtDNA/nDNA ratios and the
relative gray of Western blot in panes. Data are expressed as the mean ± SD from three independent experiments (*p<0.05, **p<0.01, ***p<0.001, ns represents no
significant differences).
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the ROS generation in PMs infected by N. caninum (1.12-fold
compared to DMSO-Nc group), while CCCP treatment
suppressed it (78% compared to DMSO-Nc group)
(Figures 6A, B). And the production of IL-1b, IL-6, IL-
12p40, and IFN-g were significantly reduced in N. caninum-
infected PMs treated by NAC (Figures 6C–F). These data
suggested that ROS, which could be controlled by N.
caninum-induced mitophagy, down-regulated the production
of IL-1b, IL-6, IL-12p40, and IFN-g in PMs.
Frontiers in Immunology | www.frontiersin.org 8
3.5 N. caninum-Induced Mitophagy
Suppressed Nlrp3 Inflammasome and
ERK Activations While Promoted the p38
Signal Pathway by Reducing ROS
Generation in PMs
It is noted that Nlrp3, NF-kB, p38, and ERK signal pathways
participated in modulating the production of inflammatory
cytokines (4, 31–33). Therefore, we examined whether Nlrp3
inflammasome, NF-kB, p38, and ERK signal pathways in N.
A

B

D

E

F G

C

FIGURE 3 | N. caninum induced mitophagy in the brain and peritoneal lavage cells of mice. 15 mice were injected intraperitoneally with 2.5×107 tachyzoites diluted
in 100 µl sterile PBS per mouse and 3 mice were injected intraperitoneally with 100 µl sterile PBS as the negative control. From the third day to the seventh d p.i.,
the mice (3 mice/day) were euthanized and the peritoneal lavage cells and brain were collected to detect parasite number, mtDNA/nDNA ratios, and mitochondrial
marker proteins (Hsp60 and Tim23). (A) The number of cells in peritoneal lavage cells was measured. The mtDNA/nDNA ratios of cells from peritoneal lavage cells
(B) and brain tissue (D). The number of N. caninum in peritoneal lavage cells (C) and brain (E) were detected by qPCR. (F) The expressions of Hsp60 and Tim23 in
the brain tissue were measured by Western blot and (G) relative gray of Western blot in panes was analyzed by Image J. One-way ANOVA assay with Tukey-Kramer
post hoc test was used for analyzing the relative gray of Western blot in panes. Data are expressed as the mean ± SD from three independent experiments
(**p<0.01, ***p<0.001, ****P<0.0001).
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FIGURE 4 | Mitophagy could shorten survival time, decrease body weight, increase parasite load, and attenuate secretions of cytokines in mice during N. caninum
infection. Mice were injected intraperitoneally with 2.5×107 N. caninum tachyzoites diluted in 100 µl PBS. After 24 h, the mice were then immediately injected
intraperitoneally with Mdivi1 (50 mg/kg body weight) and with CCCP (5 mg/kg body weight). (A) The survival of mice was monitored for 15 days after N. caninum
infection. During infection, 2 out of 10 mice per group in the CCCP-Nc, solvent-Nc, and Nc groups were euthanized due to excessive body weight loss (>20%). And
Kaplan–Meyer curve-analysis was performed for survival. (B) The weight of mice was recorded daily for 6 days. And two-way ANOVA with Bonferroni posttests was
performed to analyze the statistical significance of weight loss. On the fifth-day post infection, the numbers of N. caninum in the brain (C), heart (D), lung (E), liver
(F), spleen (G), kidney (H) samples were detected by qPCR. The production of IL-6 (I), IL-12p40 (J), IFN-g (K), TNF-a (L), and IL-18 (M) in serum were quantified
by ELISA on the fifth day post infection. One-way ANOVA assay with Tukey-Kramer post hoc test was used for analyzing the number of N. caninum and production
of cytokines. Data are expressed as the mean ± SD from three independent experiments (*p<0.05, **p<0.01, ***p<0.001, ns represents no significant differences).
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caninum-infected PMs were modulated by the mitophagy-ROS
axis. The data revealed the phosphorylation of ERKwas reduced in
N. caninum-infected PMs treated with CCCP and NAC, while that
was up-regulated in Mdivi1-treatment group (Figures 7A, B). On
the contrary, the phosphorylation of p38 was promoted by NAC
or CCCP, but was inhibited in PMs treated by Mdivi1 during N.
caninum infection (Figures 7A, B). However, there were no
significant differences in the phosphorylation of NF-kB p65 in
PMs treated by CCCP and Mdivi1 during N. caninum infection
(Figure 7A). The Western blot results showed that NLRP3, pro-
caspase1, pro-IL-1b, cleavage of caspase-1, and active IL-1b were
significantly increased after Mdivi1 treatment while decreased
after CCCP or NAC treatment in N. caninum-infected PMs for
24 h (Figures 7C, D). To further investigate the roles of the p38,
ERK, and Nlrp3 inflammasome in cytokine production and
parasite proliferation, p38 (SB203580) and ERK (PD98059)
inhibitors and Nlrp3-/- mice PMs were used. SB203580
treatment promoted N. caninum-induced production of IL-1b
(42.29 ± 2.51 pg/ml), IL-6 (391.81 ± 9.71 pg/ml), IL-12p40
(1626.45 ± 30.74 pg/ml), and IFN-g (1630.32 ± 65.91 pg/ml) in
PMs compared to solvent-N. caninum group (30.31 ± 6.74 pg/ml,
311.89 ± 11.34 pg/ml, 1414.56 ± 30.33 pg/ml, 1387.21 ± 74.32 pg/
ml). While PD98059 treatment inhibited N. caninum-induced
production of IL-1b (25.71 ± 3.59 pg/ml), IL-6 (209.72 ± 10.15 pg/
ml), IL-12p40 (931.17 ± 41.12 pg/ml), and IFN-g (935.82 ± 71.74
Frontiers in Immunology | www.frontiersin.org 10
pg/ml) in PMs (Figures 7E–H). The production of IL-1b (15.29 ±
2.12 pg/ml) was inhibited in Nlrp3-/- PMs infected by N. caninum
(Figure 7E). Correspondingly, the number of parasites was
increased in PD98059-treated PMs (1.17-fold) and Nlrp3-/- PMs
(1.39-fold), while the number of parasites was decreased in
SB203580-treated PMs (75%) (Figure 7I). Taken together, N.
caninum-induced mitophagy-ROS axis could regulate the
production of cytokines through p38, ERK, and Nlrp3
inflammasome pathways.
4 DISCUSSION

Mitochondrial damage usually occurred during microbial
infection or cellular stress, subsequently, the damaged
mitochondria were eliminated by mitophagy to maintain
mitochondrial stability (18, 24, 34, 35). Mitophagy exhibits
decreased levels of Tim23, Hsp60, and mtDNA/nDNA ratios
(20). Host cell mitophagy has been found during certain viral
and bacterial infections (18–20, 34). However, host mitophagy
occurrence has not been reported during parasite infection. In
the present study, autophagosomes and co-localization of LC3
with mitochondria were observed in N. caninum-infected host
cells, and mtDNA/nDNA ratios, mitochondrial marker proteins
were decreased. In addition, the levels of N. caninum-induced
A
B

D E F

C

FIGURE 5 | N. caninum-induced mitophagy inhibited the production of inflammatory cytokines in PMs. PMs were pretreated with Mdivi1 (20 µM) and CCCP (10 µM)
for 2 h and were stimulated with N. caninum at MOI 1:3 for 24 h. (A) The number of parasites was evaluated by qPCR. The production of IL-1b (B), IL-6 (C), IL-
12p40 (D), TNF-a (E), and IFN-g (F) were detected by ELISA. One-way ANOVA assay with Tukey-Kramer post hoc test was used for analyzing numbers of N.
caninum and production of cytokines. Data are expressed as the mean ± SD from three independent experiments (*p<0.05, **p<0.01, ***p<0.001, ns represents no
significant differences).
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mitophagy were increased with increased parasite numbers and
extended infection time, which was similar with Hepatitis c virus
non-structural protein 5A-induced mitophagy and classical
swine fever virus-induced mitophagy (36, 37). N. caninum
ESPs did not trigger mitophagy occurrence. However, the ESPs
secreted by N. caninum under pressure in macrophages might
not exactly overlap with the ESPs of the parasite without
pressure, suggesting that it is not certain whether mitophagy
can be induced by N. caninum through secreting protein in PMs.
Taken together, these results indicated that host cell mitophagy
Frontiers in Immunology | www.frontiersin.org 11
occurred in vitro and in vivo during N. caninum infection. In our
knowledge, this is the first report that host cell mitophagy was
observed in parasites infection.

When mitophagy inducer (CCCP) was used to promote mouse
mitophagy,N. caninum infected mice exhibited shortened survival
time, decreased body weight, and increased parasite load, which
indicated thatN. caninum exacerbated the disease process through
triggering mitophagy. Previous researches have shown that L.
monocytogenes, influenza A virus, Hepatitis B virus, and human
immunodeficiency virus could induce mitophagy to attenuate
A

B

D E F

C

FIGURE 6 | N. caninum-induced mitophagy inhibited the production of inflammatory cytokines in a ROS-dependent manner in PMs. PMs were pretreated with Mdivi1
(20 µM), CCCP (10 µM), and ROS inhibitor (NAC, 2 mM) for 2 h, and the PMs were treated with N. caninum (MOI 1:3) for 3 h. (A, B) The generation and fluorescence
intensity fold of ROS in PMs was examined by flow cytometry assay and Rosup as a positive control. PMs were pretreated with NAC for 2 h, then infected with N.
caninum (MOI 1:3) for 24 h. The production of IL-1b (C), IL-6 (D), IL-12p40 (E), and IFN-g (F) were detected by ELISA. One-way ANOVA assay with Tukey-Kramer post
hoc test was used for analyzing the production of ROS and cytokines. Data are expressed as the mean ± SD from three independent experiments (**p<0.01, ***p<0.001,
ns represents no significant differences).
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innate immune system for viral and bacterial persistence (18–20,
34). The inflammatory cytokines such as IL-1b, IL-6, IL-12p40, and
IFN-g played critical roles in anti-N. caninum infection (4–6).
Promoting mice mitophagy inhibited the secretions of
proinflammatory cytokines during N. caninum infection. Some
protozoahave evolved various strategies to evade host immunity (7,
8). Inhibiting inflammatory cytokines production is a key
mechanism for protozoan immune evasion. For example,
Toxoplasma gondii could control the signaling pathways of host
immunity such as STAT1,NF-kB signals, and caspase-1 cleavage to
decrease the production of cytokines such as IFN-g and IL-1b (9).
The present data showed that N. caninum-triggered mitophagy
could assist parasites to escape fromhost clearance, which is a novel
mechanism of protozoan immune evasion.

Mitochondrial dysfunction could result in ROS release into the
cytosol and mitophagy occurs to optimize clearance of abnormal
mitochondria to decrease ROS accumulation in the cytosol (38).
The production of ROS could be inhibited by mitophagy in
Influenza viruses and Escherichia infection (18, 39–41). In
Frontiers in Immunology | www.frontiersin.org 12
agreement with previous studies, our study revealed that
promoting mitophagy could reduce the production of ROS in N.
caninum infection, while inhibiting mitophagy up-regulated ROS
production. ROS was a critical regulator of the splenic response
(phagocytes, T cells, and cytokines) to T. cruzi infection (42) and
ROS up-regulated cytokine expressions in cardiomyocytes infected
by T. cruzi (43). Uncoupling protein 2 negatively regulated
mitochondrial ROS generation to regulate the production of
cytokines in experimental visceral leishmaniasis (44). We found
that NAC inhibited ROS generation to suppress the production of
inflammatory cytokines during N. caninum infection.

It is noted that p38, ERK, and Nlrp3 inflammasome regulated
proinflammatory cytokines production (4, 13, 22, 28, 33). Moreover,
previous studies clarified that p38/ERK signals and Nlrp3
inflammasome were involved in N. caninum infection (4, 13, 22,
28, 33). ROShasbeen reported to activateNF-kBactivity in cells (45).
Cryptococcus heimaeyensis S20 exopolysaccharide-induced ROS
could regulate p38 and ERK signals to trigger autophagic cell death
in lung cancer cells (46). Koumine induced ROS generation to
A B D
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C

FIGURE 7 | Mitophagy-mediated ROS generation controlled p38, ERK, and Nlrp3 inflammasome signals in PMs during N. caninum infection. WT PMs were
pretreated with Mdivi1 (20 µM), CCCP (10 µM), and NAC (2 mM) for 2 h, and infected with N. caninum (MOI 1:3) for 30 min. (A) The phosphorylations of p38, ERK,
NF-kB p65 were measured by Western blot in WT PMs pretreated with Mdivi1 (20 µM) and CCCP (10 µM). (B) The phosphorylation of p38 and ERK in PMs
pretreated with NAC were detected by Western blot. WT PMs were pretreated with Mdivi1 (20 µM), CCCP (10 µM), and NAC (2 mM) for 2 h, and infected with N.
caninum (MOI 1:3) for 24 h. (C, D) The expressions and cleavage of Caspase1, IL-1b, and Nlrp3 were detected by Western blot. WT PMs were pretreated with
SB230580 and PD98059 for 2 h and infected with N. caninum (MOI 1:3) for 24 h. The production of IL-1b (E), IL-6 (F), IL-12p40 (G), and IFN-g (H) were detected
by ELISA. The WT PMs pretreated with SB230580 and PD98059 and Nlrp3-/- PMs were treated with N. caninum (MOI 1:3) for 24 h. (E) The production of IL-1b was
measured by ELISA and (I) the number of parasites was evaluated by qPCR. One-way ANOVA assay with Tukey-Kramer post hoc test was used for analyzing the
number of N. caninum and production of cytokines. Data are expressed as the mean ± SD from three independent experiments (*p<0.05, **p<0.01, ***p<0.001,
****p<0.0001, ns represents no significant differences).
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suppress hepatocellular carcinoma cell proliferation via NF-kB and
ERK/p38 signals (47). N. caninum-induced ROS generation was
involved in NETs formation and Nlrp3 inflammasome activation
against N. caninum infection (30, 48). We found that N. caninum-
induced mitophagy could regulate ROS-mediated ERK/p38 signals
and Nlrp3 inflammasome. However, the phosphorylation level of
NF-kBp65wasnot profoundly altered inPMs throughpromoting or
inhibitingN. caninum-inducedmitophagy.Thepresentdata clarified
the detailed mechanism of the mitophagy-ROS axis involved in N.
caninum infection.

In conclusion, N. caninum promoted host mitophagy to
attenuate the production of proinflammatory cytokines in a
ROS-dependent manner through regulating the activations of
p38, ERK, and Nlrp3 inflammasome signals, which revealed a
novel immune evasion mechanism of N. caninum. The role of
host mitophagy in other parasites need to be explored in
the future.
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pEGFP empty vector for 24 h by using Lipofectamine 2000 transfection reagent.
Then the cells were stimulated with N. caninum at MOI 1:3 for 16 h. The number of
293T cells in which GFP-LC3 co-localized with Mito tracker were counted per 50
cells. Unpaired, two-tailed Student’s T-test was analyzed for the number of 293T
cells. Data are expressed as the mean ± SD from three independent experiments
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