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ABSTRACT

Biofilms in water environments are thought to be hot spots for horizontal gene transfer (HGT) of antibiotic resistance genes
(ARGs). ARGs can be spread via HGT, though mechanisms are known and have been shown to depend on the environment,
bacterial communities and mobile genetic elements. Classically, HGT mechanisms include conjugation, transformation and
transduction; more recently, membrane vesicles (MVs) have been reported as DNA reservoirs implicated in interspecies
HGT. Here, we review the current knowledge on the HGT mechanisms with a focus on the role of MVs and the
methodological innovations in the HGT research.
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INTRODUCTION

Based on surveillance data, the acquisition of antibiotic resis-
tance genes (ARGs) by pathogens in natural environments is
expected to become increasingly severe, expanding across mul-
tiple countries with variations in the population of bacteria that
are resistant to drug treatment (Hashiguchi et al. 2019). Like clini-
cal settings, the natural environment should be a focus of atten-
tion targeting the control of antibiotic-resistant bacteria (ARB)
and ARGs.

When we look at the natural environment, ARB and ARGs
can be detected in environments without selective pressure
(Sizemore and Colwell 1977), including the open ocean (Hatosy
and Martiny 2015), marine sediments (Rahman et al. 2008) and
the polar environment (Rahman et al. 2015). Since ARGs are
retained even under the very low selective pressures (Gullberg

et al. 2011), it has been suggested that ARGs are disseminated
widely and persist in most environments. Unlike chemical pol-
lutants, which do not multiply in the environment, genetic pol-
lutants such as ARGs, originating both from natural and man-
made settings, can be replicated and increase in their abun-
dance in bacterial communities in the environment.

Among various genetically polluted environments, water
environments are the most probable, representing huge ARG
reservoirs into which clinical and terrestrial bacteria flow and
in which diverse human commensal bacteria thrive. Humans
and animals are readily exposed to the ARG-possessing bacteria
in the water environment, a situation that has been described
metaphorically as a ‘bazaar’ (Suzuki and Hoa 2012). Bacteria
colonise various substrate surfaces (Hall-Stoodley, Costerton
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and Stoodley 2004), forming multispecies microbial communi-
ties referred to as biofilms (Besemer 2015). In water environ-
ments, biofilms are found in many contexts such as rock sur-
faces, water treatment systems, hot springs, microplastics and
so on (Oberbeckmann et al. 2014; Besemer 2015; Michels et al.
2018). ARGs including tetracycline resistance genes, for exam-
ple tet(M) and tet(S), and sulphonamide resistance genes sul1–
sul3 are found in various water environments such as sea water
and sediments, aquacultures and fish (Kim, Nonaka and Suzuki
2004; Nonaka, Ikeno and Suzuki 2007; Hoa et al. 2008; Suzuki et al.
2019); these ARGs tend to migrate downstream and accumulate
in biofilms (Engemann et al. 2008; Zhang et al. 2009; Balcazar,
Subirats and Borrego 2015; Guo et al. 2018).

Horizontal gene transfer (HGT) and gene exchange are the
motive forces for dissemination of ARGs (Aminov 2011). Con-
jugation is presumably the principal route of HGT in bacterial
communities, and the conjugation elements such as conjuga-
tive plasmids often harbour multiple ARGs (Wozniak and Wal-
dor 2010). Goodman et al. (1993) and many other researchers
demonstrated that conjugation occurs under simulated marine
environment conditions or oligotrophic conditions. Angles, Mar-
shall and Goodman (1993) revealed that the transfer frequency
is higher between cells in biofilms attached to glass beads than
between cells in the aqueous phase. Hence, biofilms are thought
to be the main ARG reservoirs to proliferate ARGs and ARB in
the aquatic environments. ARBs that detached themselves from
biofilms can spread in the environments and may pose a threat
to human health.

Membrane vesicles (MVs) have recently been reported to be
abundant biological entities that are carrying environmental
DNA in ocean (Biller et al. 2014), with the potential to transfer
genes horizontally (Chiura et al. 2011). We hypothesise here that
biofilms and MVs constitute the huge ARG reservoir in aquatic
environments and that they play the important role in ARG’s
exchange. In this review, we focus on HGT mechanisms includ-
ing the MV-mediated gene transfer and the interconnections of
HGT and biofilms. We will describe first the general explanation
for biofilm development, and then recent progress in studying
HGT mechanisms while paying attention to the role of MVs. We
will also review the methodological developments, and discuss
the future challenges to fill gaps in our understanding of HGT in
biofilms.

BIOFILM FORMATION

Bacteria classically have been considered unicellular organisms,
but in nature, they prefer to form highly structured multicellular
communities, termed biofilms, to survive in harsh environments
(Flemming et al. 2016; Toyofuku et al. 2016). Diverse bacterial
species can live together in close proximity in biofilms, where
the cells show remarkable and distinct features that are not seen
in their planktonic form: heterogeneity of gene expression, divi-
sion of roles in the community and enhanced tolerance to antibi-
otics (Hall and Mah 2017). Bacterial cells in biofilms are embed-
ded at a high density within a matrix of extracellular polymeric
substances (EPSs). EPSs are biopolymers produced by the cells
within biofilms, and typically are composed of exopolysaccha-
rides, amyloid-like proteins, lipids and extracellular DNA (eDNA)
(Fulaz et al. 2019). Individual steps in biofilm formation have
been classified into attachment, microcolony formation, mat-
uration and detachment stages (Toyofuku et al. 2016; Guilhen,
Forestier and Balestrino 2017). Time scale for the biofilm devel-
opment differs between bacterial species, and heavily depends
on the culture conditions. According to in situ observation of

marine biofilms at a coastal area in southern Baltic Sea, micro-
colonies on the solid surface reached to the mature stage in 20–
25 days (Grzegorczyk et al. 2018). At the beginning of the biofilm
formation, planktonic cells attach to solid surfaces (for devel-
opment of adhesive biofilms) or gather at an air–liquid inter-
face (floating or pellicular biofilms). Then, the cells propagate
and aggregate to form microcolonies consisting of small num-
ber of the cells. During microcolony formation, the cells begin
to produce EPSs, which support the attachment and aggrega-
tion of cells, and serve as a scaffold for biofilms. EPSs are the
major component of biofilms, accounting for over 90% of the
biofilm mass (Fulaz et al. 2019). EPS production is controlled
by complex genetic regulation and environmental factors such
as nutrients and temperature (Cairns, Hobley and Stanley-Wall
2014; Obana, Nakamura and Nomura 2014; Toyofuku et al. 2016).
Cellular components from dead cells also are utilised to sta-
bilise the biofilm structure. In particular, eDNA released from
lysed cells within the biofilm is an important source of EPSs
(Das, Sehar and Manefield 2013; Ibanez de Aldecoa, Zafra and
Gonzalez-Pastor 2017; Fulaz et al. 2019). Microcolonies develop
into mature biofilms through further cell growth and EPS pro-
duction. During the development and maintenance of biofilms,
some cells detach themselves from the biofilms due to external
and internal factors (Toyofuku et al. 2016; Guilhen, Forestier and
Balestrino 2017); for instance, parts of biofilms can be torn apart
by external physical forces such as friction, pressure and rapid
water flow. On the other hand, subpopulations within biofilms
can turn into motile cells or into producers of EPS-degrading
enzymes by switching gene expression in response to inter- and
intracellular signals and environmental changes. The detached
cells then revert to their planktonic form, travelling to find new
niches.

MECHANISMS OF HGT IN BIOFILMS

Many studies have shown that bacteria frequently exchange
ARGs in biofilms (Table 1; Molin and Tolker-Nielsen 2003; Bal-
cazar, Subirats and Borrego 2015). ARGs often are encoded in
mobile genetic elements (MGEs) such as conjugative and non-
conjugative plasmids (Carattoli 2013), transposons (Partridge
et al. 2018), integrative and conjugative elements (ICEs) (Woz-
niak and Waldor 2010) and bacteriophages (Calero-Caceres, Ye
and Balcazar 2019). ARGs reside in accessory regions of the
MGEs, that is, regions that are not necessary for the mainte-
nance and mobilisation of the elements (Partridge et al. 2018).
HGT is thought to be driven by three major mechanisms: con-
jugation, natural transformation and bacteriophage infection.
The types of DNA transferred largely depend on the HGT mech-
anisms: conjugative plasmids and ICEs are transferred via con-
jugation, chromosomal DNA and non-conjugative plasmids via
transformation, and bacteriophage genomic DNA via infection.
In addition to these classic mechanisms of HGT, MVs, which are
abundant DNA reservoirs in aquatic environments (Biller et al.
2014), have the potential to transfer genes between bacteria. Fig-
ure 1 provides a schematic summary of the major well-studied
routes of HGT and newly notable mechanisms along with the
typical life cycle of biofilms. Examples of studies on HGT of ARGs
are listed in Table 1.

Conjugation

Conjugation transfers ICEs and conjugative plasmids through a
proteinaceous apparatus, the conjugation pilus, that serves as
a physical link between the donor and recipient cells (Partridge
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et al. 2018). Conjugation is a powerful mechanism to spread ARGs
in biofilms due to conjugation delivery of DNA beyond bacte-
rial species. In addition, conjugation elements often carry mul-
tiple ARGs: for example, a 204-kb conjugative plasmid pAQU1
isolated from a coastal aquaculture in Japan (Nonaka et al. 2012)
carries tet(M), tet(B), sul2, floR, a β-lactamase (blaCARB-9-like) gene,
and macrolide resistance genes mph(G) and mef(C). Its relative
plasmids and ARGs were also found in various aquatic environ-
ments in Japan, Taiwan and Thailand (Nonaka et al. 2014; Sugi-
moto et al. 2017). As another example, pB10, a 64-kb broad-host-
range conjugative plasmid, which was isolated from a wastew-
ater treatment plant, harbours tetA, sul1, an amoxicillin resis-
tance gene (oxa2), streptomycin resistance genes (strA and strB)
and mercury resistance genes (merA, merD, merE, merP and merT)
(Schluter et al. 2003).

Conjugation rarely occurs between motile planktonic cells
because the transfer requires a direct contact between the donor
and recipient cells. However, this disadvantage is overcome in
biofilms, where cells are attached to a matrix and located close
together for a more-extended interval. Indeed, many reports
indicate that biofilms enhance conjugation (Molin and Tolker-
Nielsen 2003; Madsen et al. 2012). Under laboratory conditions,
Staphylococcus aureus biofilms increased the transfer rate of a
conjugative plasmid (pGO1) carrying trimethoprim and gentam-
icin resistance genes, providing increases in transfer rates of
up to ∼16 000-fold compared to planktonic cells (Savage, Chopra
and O’Neill 2013).

Under aquatic conditions, the horizontal transfer of a con-
jugative plasmid (pKJK5) harbouring a trimethoprim resistance
gene (dfrA1) and a tetA was shown within microplastic-localised
biofilms composed of diverse species in lake water (Arias-
Andres et al. 2018). Neela et al. (2009) reported that tet(M) was
transferred from marine Lactococcus garvieae to human Ente-
rococcus faecalis, but not to Escherichia coli. In contrast, Vibrio
spp. transferred tet(M) to E. coli, but not to E. faecalis. These
donors (L. garvieae and Vibrio spp.) are fish-pathogenic bacteria;
in vivo, these organisms would form biofilms on fish intestine,
where the transfer of ARGs would occur. Additionally, biofilms
enhanced the persistence of pKJK5 (Bahl, Hansen and Sorensen
2007) and ARGs (Zhang et al. 2009) in the absence of selective
pressure. Persistence of tetracycline resistance genes has also
been reported in sea farms even in the absence of selective pres-
sure (Tamminen et al. 2011). Laboratory experiments showed
that pAQU1 and the related plasmids are stable within the com-
munity of non-culturable bacteria in sterile seawater and well
water without selective pressure, where the cells are in a state
of deep dormancy in response to adverse environments such as
severe starvation (Bien et al. 2015). Once a multidrug resistance
plasmid is introduced into the community, the episome should
persist stably in the environmental bacterial community even
during grazing by protists (Bien et al. 2017).

Nanotube

Recently, an elongated extracellular structure, named the nan-
otube, was discovered as another mechanism of DNA transfer;
nanotubes are employed in direct cell-to-cell contact in Bacillus
subtilis (Dubey and Ben-Yehuda 2011; Dubey et al. 2016). Nan-
otubes are membranous structures, and they are distinguish-
able from conjugation pili, which are composed of proteins.
Nanotubes were shown to transport a non-conjugative plas-
mid (pHB201) carrying a chloramphenicol resistance gene (cat)
and an erythromycin resistance gene (erm) between B. subtilis
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cells (Dubey and Ben-Yehuda 2011), although there is no evi-
dence of HGT mediation through nanotubes in aquatic environ-
ments. Nanotube-like structures have been described for vari-
ous species including E. coli, Acinetobacter baylyi, Desulfovibrio vul-
garis and Clostridium acetobutylicum (Benomar et al. 2015; Pande
et al. 2015; Baidya et al. 2018). Unlike conjugation pili that transfer
DNA associated with the relaxosome proteins, nanotube (-like)
structures are capable of transporting cytoplasmic components
such as nutrients and fluorescent marker proteins, as well as
DNA. Therefore, nanotubes likely play a significant role in dis-
tribution of biomaterials (beyond ARGs alone) within bacterial
communities.

Natural transformation

Natural transformation is a genetic alteration mediated by
uptake of exogenous DNA through the competence machin-
ery consisting of a transformation pilus and a DNA transporter
(Lorenz and Wackernagel 1994). DNA incorporated through
the machinery is integrated into the bacterial chromosome
by homologous recombination, or the introduced DNA is
autonomously replicated if able to function as an episome.
DNA transfer via this mechanism absolutely relies on bacterial
species with the ability to develop DNA competence. A total of 82
species, including Streptococcus pneumoniae, B. subtilis and Vibrio
cholerae, are now known to be naturally transformable (Johnston
et al. 2014). Unlike conjugation, transformation does not require
a physical contact between the donor and recipient cells. Free
DNA released by cell lysis can serve as the donor for transforma-
tion. Hannan et al. (2010) showed that a conjugative transposon
(Tn916) carrying tet(M) was transferred from Vellonella dispar liv-
ing cells to four different streptococcal species via conjugation
in their biofilms; even purified naked V. dispar DNA containing
Tn916 was able to serve as a donor for transformation.

In aquatic biofilms, Streptococcus mutans cells were natu-
rally transformed by addition of a plasmid (pDL289) encoding
a kanamycin resistance gene (Li et al. 2001). Acinetobacter sp.
BD413 biofilms formed in LB medium have been shown to be
transformable with an exogenous plasmid (pGAR1) that car-
ries a tetracycline resistance gene, using flow cell system (Hen-
drickx, Hausner and Wuertz 2003). Williams et al. (1996) demon-
strated that Acinetobacter BD413 cells in river biofilms were trans-
formable with pQM17, a mercury resistance plasmid.

Bacteriophages

Bacteriophages (phages) are viruses that infect bacteria (Penades
et al. 2015). Phages are important DNA reservoirs in natural
environments; indeed, phages are the most abundant biologi-
cal entities on the planet, and DNA packaged in phage particles
are stable, avoiding digestion by nucleases. Importantly, ARGs
in phages cannot be eliminated completely by wastewater dis-
infection treatments such as UV irradiation and chlorination
(Calero-Caceres and Muniesa 2016), because phages are non-
living entities and highly resistant to such treatments. Phages
inject their DNA into the host cells during infection, which is a
transduction gene transfer (Penades et al. 2015). Along with their
own genomes, phages can deliver non-viral DNA derived from
bacterial chromosomes, transposons and plasmids.

Some temperate phages, a subgroup of phages that insert
their genomes into the host chromosome upon infection (a pro-
cess called lysogenisation), possess antibiotic resistance genes
in their genomes; for instance, β-lactam resistance gene aci1 is
carried by an Acidaminococcus phage (Rands et al. 2018), and the

metallo β-lactamase gene mbl is carried by a Veillonella phage
(Rands, Brussow and Zdobnov 2019). Lysogenisation of such
phages confers antibiotic resistance upon the bacterial host.
Typically, temperate phages that reside in the bacterial genome
become active in response to DNA damage, at which point the
lysogenised phages begin to produce progeny. By contrast, B.
subtilis phage SPβ, carrying the probable aminoglycoside resis-
tance gene yokD (Klimecka et al. 2011), resides within a sporu-
lation gene (spsM); the phage genome is excised from the B.
subtilis chromosome during sporulation, thereby reconstituting
a functional spsM gene (Abe et al. 2014; Abe, Takamatsu and
Sato 2017a). A similar behaviour is observed in many temper-
ate phage (-like) elements in Gram-positive spore-forming bac-
teria (Sato, Samori and Kobayashi 1990; Abe et al. 2013; Abe et al.
2017b). The excised phage (-like) elements form a circular DNA
without packaging into phage particles. Although the fate of the
circular DNA remains unknown, it might be horizontally trans-
ferred via natural transformation or other pathways rather than
by phage infection. Such HGT by novel mechanisms may occur
in aquatic bacterial communities.

Metagenomic analyses have detected various ARGs in phage
fractions isolated from environmental water samples includ-
ing genes encoding resistance to aminoglycoside, β-lactam,
macrolide, quinolone and sulphonamide, and tetracycline
antibiotics from sewages, river water, seawater and WWTPs
(Colomer-Lluch et al. 2014; Lekunberri et al. 2017a,b; Wang et al.
2018; Yang et al. 2018). Phage-mediated transfer of ARGs has
been reported in many bacteria under laboratory settings (von
Wintersdorff et al. 2016). As examples, Solheim et al. (2013)
showed that the phage-mediated transfer of cat occurred inside
of E. coli biofilms in liquid medium. A Clostridium difficile phage
(phiC2) has been shown to deliver an erythromycin resistance
gene erm(B) (carried by a Tn6215 transposon) between C. difficile
cells (Goh et al. 2013). Likewise, Acinetobacter baumannii, which
is an important multidrug-resistant human pathogen, has been
shown to transfer blaNDM-1 (carried within a Tn125 transposon)
via phage transduction (Krahn et al. 2016). This bacterium is
a commensal species in water, suggesting that A. baumannii is
capable of transporting ARGs between the natural aqueous and
man-made environments.

MV-mediated exchange of ARGs

MVs are typically 20- to 400-nm-diameter lipid-bilayer-enclosed
particles released from bacteria (Toyofuku et al. 2015, 2019). MVs
originally were reported in the 1960s, when their release was
observed following outer membrane blebbing in Gram-negative
bacteria (Brown et al. 2015; Toyofuku et al. 2015); however, recent
work has shown that Gram-positive bacteria also produce MVs
(Brown et al. 2015; Sugimoto et al. 2016; Toyofuku et al. 2017b;
Toyofuku, Nomura and Eberl 2019). MVs are released not only
from planktonic cells but also within biofilms. MV production in
biofilms has been reported in Pseudomonas aeruginosa (Murphy
et al. 2014), Helicobacter pylori (Yonezawa et al. 2009), E. coli (Nakao
et al. 2018), B. subtilis (Brown et al. 2014) and S. aureus (Sugimoto
et al. 2016).

The first report of the MV-mediated gene delivery was trans-
fer of a R-plasmid carrying bla in Neisseria gonorrhoeae (Dorward,
Garon and Judd 1989). Since that first finding, many laboratory
studies have demonstrated the MV-mediated mobilisation of
ARGs in a wide range of bacteria (Domingues and Nielsen 2017),
although MV-mediated HGT in natural environments remains to
be proven. MV-mediated transfer of ARGs carried by plasmids
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Figure 1. Biofilm life cycle and HGT. The typical life cycle of biofilms includes attachment to surfaces, microcolony formation, maturation and detachment. MGE-
encoded factors and MVs enhance attachment and cell aggregation at the early stages of biofilm formation. Degradation of the biofilm matrix by phages facilitates cell

detachment. ARGs can be distributed via three classical mechanisms: conjugation, natural transformation and phage transduction (and ASEN), and two candidates for
new HGT mechanisms: MVs and nanotube (denoted as new candidate) in biofilms. Examples of ARGs transferred through each pathway are shown with the respective
references. DNA is depicted by red lines and circles.

was reported in experiments with E. coli and Salmonella enter-
ica using bla in pGFP (Yaron et al. 2000), in A. baylyi with bla
in pMU125 (Fulsundar et al. 2014), in A. baumannii with blaOXA-2

in pMMA2 and pMMCU3 (Rumbo et al. 2011), in Buttiauxella
agrestis with a chloramphenicol resistance gene in pBBRMCS-
1 (Tashiro et al. 2017) and in Thermus spp. with kan in pMKPn-
qosyfp (Blesa and Berenguer 2015). Moreover, interspecies plas-
mid transfer via MVs was reported from Aeromonas veronii, Enter-
obacter cloacae and E. coli donors into A. veronii, E. cloacae, E. coli,
P. aeruginosa recipients; transfer was detected using pLC291, a
broad-range plasmid that carries kan (Tran and Boedicker 2017).
MV-mediated transfer of chromosomal DNA containing ARGs
has been shown for kan in Thermus spp. (Blesa and Berenguer
2015) and for ermF and ermAM in Porphyromonas gingivalis (Ho
et al. 2015). Interestingly, MVs are capable of conveying quorum-
sensing (QS) signals in Gram-negative bacteria such as P. aerug-
inosa (Mashburn and Whiteley 2005), Paracoccus sp. (Toyofuku
et al. 2017a; Morinaga et al. 2018) and Vibrio sp. (Brameyer et al.
2018). QS signals are known to regulate conjugation (Piper, Beck
von Bodman and Farrand 1993), transformation (Suckow, Seitz
and Blokesch 2011) and phage induction (Laganenka et al. 2019).
Therefore, MVs may be involved in regulation of HGT, as well as
DNA transportation.

MVs are ubiquitous and are abundant in seawater samples
(∼6 × 106 and ∼3 × 105 particles/mL in coastal surface water
and Sargasso seawater samples, respectively; Biller et al. 2014).
MVs isolated from the seawater samples contained a diverse
pool of DNA with significant homology to members of 33 phyla
including Proteobacteria, Cyanobacteria, Bacteroidetes and Firmi-
cutes (Biller et al. 2014). MVs are also found in river water (Roose-
Amsaleg et al. 2017). Chiura et al. (2011) demonstrated that MVs
collected from seawater were capable to transfer auxotrophic
marker DNA to E. coli in the laboratory experiment. However,
there is no study that proves the MV-mediated HGT in biofilms.
Further study will be required to show the direct evidence.

INTERCONNECTIONS OF HGT MECHANISMS
AND BIOFILMS

Some conjugative plasmids facilitate biofilm development by
encoding biofilm-associated proteins. pCF10, an E. faecalis con-
jugative plasmid, encodes three cell-wall-anchoring proteins
(PrgA, PrgB and PrgC) that promote cell–cell adhesion at an early
stage of biofilm formation (Bhatty et al. 2015). pOLA52, a Klebsiella
pneumonia plasmid, possesses genes encoding type III fimbriae,
which are involved in cell attachment to surfaces (Burmolle et al.
2008). Escherichia coli has many conjugative plasmids, including,
for example, the F plasmid, which promotes biofilm formation
in a conjugation-pilus-dependent manner (Ghigo 2001).

Natural transformation is known to be closely connected
with biofilm formation in streptococci and V. cholerae (Ibanez de
Aldecoa, Zafra and Gonzalez-Pastor 2017; Veening and Blokesch
2017); eDNA, which is a major component of the biofilm matrix,
is released during the development of DNA competence. Strep-
tococcal species (e.g. S. pneumoniae and S. mutans) exhibit a phe-
nomenon called fratricide. The competent cells increase produc-
tion of extracellular cell-wall degrading enzymes and bacteri-
ocins, causing lysis of neighbouring cells and release of eDNA
(Steinmoen, Knutsen and Havarstein 2002; Moscoso and Clav-
erys 2004). Oggioni et al. (2006) showed that the addition of arti-
ficially synthesised competence-stimulating peptide (CSP) pro-
motes S. pneumoniae biofilm formation, whereas no biofilm was
formed by CSP receptor mutants. In S. mutans, the transforma-
tion efficiency correlates with development of the biofilm (Li
et al. 2001). As is the case in streptococci, V. cholerae compe-
tent cells kill neighbouring cells by injection of effector pro-
teins through a type VI pilus, leading to recipient cell death
and release of eDNA (Veening and Blokesch 2017). In addition
to the role in eDNA production, the V. cholerae competence pilus
itself promotes cell aggregations via pilus–pilus interaction at
the early stage of the biofilm formation (Adams et al. 2019).
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Phages invade biofilms by disrupting the matrix and killing
the embedded cells (Sutherland et al. 2004). Apparently, biofilm
formation and phages are mutually exclusive. However, recent
work has illustrated the positive role that phages can play in
supporting the life cycle of biofilms. In many cases, phage-
mediated cell lysis leads to production of eDNA, which strength-
ens the biofilm structures (Fernandez, Rodriguez and Garcia
2018). In another case, destruction of biofilms by the E. coli phage
Rac (Liu et al. 2015) and the P. aeruginosa phage Pf4 (Rice et al.
2009) results in detachment of the cells from biofilms. Moreover,
the P. aeruginosa prophage Pf4 also is involved in the stabilisation
of microcolonies, thereby shaping the mature biofilm structure,
and in virulence in mice (Rice et al. 2009).

MVs contribute to the development of biofilms in H. pylori
(Yonezawa et al. 2009), V. cholerae (Altindis, Fu and Mekalanos
2014) and Pseudomonas putida (Baumgarten et al. 2012); MVs pro-
mote adhesion of cells to surfaces and/or cell aggregation at
the early stages of biofilm formation, probably by increasing the
cell surface hydrophobicity. Perhaps the most significant fea-
ture of MVs is that these structures can contain and transport
various biomolecules such as DNA, RNA, proteins, metabolites
and QS signals, thereby participating in many physiological pro-
cesses including gene transfer, virulence, nutrient acquisition,
cell defence and cell–cell communication (Tashiro, Uchiyama
and Nomura 2012; Toyofuku et al. 2015). Importantly, cargos in
MVs such as DNA and proteins exhibit resistance to extracel-
lular enzymes (nucleases and proteinases) that would normally
degrade these substrates (Toyofuku et al. 2015). Because of their
ability to carry DNA and their abundance in nature, MVs now are
gathering attention as potential agents of HGT (Domingues and
Nielsen 2017).

MVs are known to modulate interactions between bacteria
and phages. Bacillus subtilis SPP1 phage-resistant cells, which
lack the SPP1 receptor protein, became susceptible to the phage
when they captured MVs containing the receptor, leading to
transduction of pBT163, a cat-encoding plasmid (Tzipilevich,
Habusha and Ben-Yehuda 2017). This phenomenon, named
ASEN (acquisition of sensitivity), may cause expansion of phage
infection in bacterial communities; however, at the same time, it
is likely to contribute to phage-mediated HGT beyond the host-
range limitation. The relationship between MVs and phage is not
limited to the modulation of phage susceptibility. Lysogenised
phages play a critical role in the MV production in bacterial
communities. Cell lysis caused by phage-derived lytic enzymes
releases MVs in P. aeruginosa (Toyofuku et al. 2014; Turnbull et al.
2016) and B. subtilis (Toyofuku et al. 2017b).

METHODOLOGIES FOR STUDYING HGT AND
BIOFILMS

From the past to the present, detection of ARGs and ARB has
been generally performed by quantitative PCR using environ-
mental DNA and genomic analysis of cultivated clonal ARB
isolated from the environments. Filter mating, transformation
and transduction assays are often used to verify the transfer
of ARGs in laboratories (Table 1). Currently, high-throughput
next-generation DNA sequencers (NGS) provide vast amounts
of whole-genome data of organisms, and NGS allow researchers
to obtain multispecies genomic data directly from uncultivated
bacteria in the natural environments (metagenome) (Bragg and
Tyson 2014). The sequenced data are deposited on the public
databases [e.g. comprehensive ARG database, CARD, (McArthur

et al. 2013)] and available for further analysis, such as classi-
fying ARGs and identifying HGT events. To date, many com-
putational pipelines and software have been developed to
detect HGT (Douglas and Langille 2019). In particular, Song
et al. (2019) and Li, Jiang and Li (2019) have recently created
MetaCHIP and LEMON, respectively, which are aimed for pre-
diction of HGT events in bacterial communities from metage-
nomic data. These authors mentioned the availability of these
software to detect mobilisation of ARGs. Utilisation of the soft-
ware may provide information of how ARGs have been trans-
ferred in the past within the individual microbial communities.
Although the recent environmental ARG research may largely
rely on the cultivation-independent metagenomic analysis, the
cultivation-based approach is still needed to study antibiotic
resistance properties of newly identified ARBs and mobilisation
of novel MGEs, whose information is not obtained only from the
sequencing data.

Combinations of experimental and bioinformatic method-
ologies contribute to discovery of new HGT pathways and mech-
anisms beyond detection of ARGs. For examples, Jiang et al.
(2017) and Nonaka et al. (2018) employed integrative approaches
to examine interspecies transfer of ARGs through combination
reactions of transposase/integrase-mediated transposition and
homologous recombination. Jiang et al. (2017) identified poten-
tial examples of ARGs within transposons transferred from acti-
nobacteria to proteobacteria by informatic analysis of genomic
sequences deposited in public databases, and then experi-
mentally confirmed the mobilisation. Their results suggest an
explanation for the emergence of antibiotic-resistant pathogens
through interspecies HGT. Nonaka et al. (2018) examined the
conjugative transfer of a multidrug resistance plasmid (pSEA1)
between E. coli and Vibrio ponticus. Whole-genome sequencing
of the transconjugant and subsequent molecular genetic anal-
ysis revealed the two-step mechanism underlying the inter-
species transfer of pSEA1, where during conjugation of thep-
SEA1, Tn6283 on the plasmid first transposes into the recipi-
ent genome and consequently, another transferred pSEA1 can be
integrated into the genome through a homologue recombination
event at the Tn6283 sequences between the recipient genome
and pSEA1. These examples demonstrate the usefulness of the
combination approaches.

For simulations of ARGs dissemination, mathematical mod-
els for HGT have been devised (Nielsen and Townsend 2004;
Sørensen et al. 2005; Mao and Lu 2016). Recently, Nazarian,
Tran and Boedicker (2018) reported a new computational model
for HGT in multispecies bacterial communities, taking MV-
mediated gene transfer into account, as well as the tradi-
tional mechanisms, conjugation, transformation and transduc-
tion. Computational simulations should be important to fore-
cast the ARGs dissemination in the environments.

Visualisation of biofilms with microscopies is essential to
understand their structures and properties. Schwartz et al. (2009)
reported the imaging and characterisation of natural biofilms on
water filter materials by use of scanning and transmission elec-
tron microscopy (SEM and TEM) and Raman microspectroscopy.
Sugimoto et al. (2016) developed atmospheric scanning electron
microscopy (ASEM) to observe nanostructures within biofilms
in liquid. Confocal microscopy is useful to observe dynamics of
viable and developing biofilms. Microfluidics devices combined
to confocal microscopy constitutes a powerful tool to observe
viable biofilms under non-invasive conditions (Christensen et al.
1998; Yawata, Nomura and Uchiyama 2008; Kiyokawa et al. 2017).
Not only laboratory observation, Grzegorczyk et al. (2018) also
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developed the in situ observation strategy for biofilms growing
in marine environments.

Li et al. (2018) and Qiu et al. (2018) reported the novel integra-
tive microfluidic systems, which consist of microfluidics, laser
confocal microscopy and flow cytometry. By use of gfp-carrying
conjugative plasmids as donor DNA, their systems are capa-
ble of in situ tracking HGT of the plasmid within viable biofilms
on the microfluidics devices, which allow temporal and spatial
analysis of HGT in 3D biofilms and quantification of the HGT
rate by counting transconjugants by following flow cytometric
analysis. They succeeded in calculation of real-time HGT rates
within activated sludge biofilms, suggesting that their systems
are applicable for determination of HGT rates within biofilms
collected from various environments, using conjugative and
non-conjugative plasmids, phages and MVs as donors. Further-
more, if combined with a cell sorter and NGS, the HGT pathway
may also be analysable in the system.

Since the discovery of MVs, TEM and SEM have been rou-
tinely used for analysis on their structures. In addition, the use
of recent high-resolution confocal microscopy has enabled in
vivo observation of MV release from bacterial cells (Turnbull et al.
2016; Toyofuku et al. 2017b); however, for observation of their
movements in solution, high-speed and -resolution microscope
technology will be needed. Moreover, little is known about the
behaviour of MVs in biofilms. Future research will require more
detailed analysis of the biogenesis/absorption of MVs by bacte-
ria and the development of imaging technology allowing the in
vivo tracking of MVs in liquid and in biofilms.

FUTURE CHALLENGES

Evidence that the aquatic environment is a huge reservoir
of ARGs is increasing (Zhang, Zhang and Fang 2009; Amos
et al. 2014). For the risk assessment of the ARB emergence in
the aquatic environments, investigation of the ARG transfer
mechanisms, rates and pathways is required urgently; how-
ever, due to the complexity of the multiple HGT mechanisms
and experimental limitations, it remains a challenging prob-
lem. We emphasise that closer integration of experimental and
computational approaches will be needed more to establish the
comprehensive strategy. Metagenomic analysis of water envi-
ronments provides information on the current status of the
ARGs and ARB dissemination in the environment. Analysis of
the metagenomic data with the HGT detection software (e.g.
MetaCHIP and LEMON) will be helpful to understand the history
of ARG transfer. The latest microfluidic systems combined with
laser confocal microscopy, fluorescent labelling of bacteria and
flow cytometry (Li et al. 2018; Qiu et al. 2018) can provide us the
in situ information of the quantitative rates of the ongoing HGT
events in viable biofilms collected from environments. Further, if
followed by cell sorting and metagenomic sequencing, it may be
also possible to reveal the ARG transfer pathway in the biofilms.
Such systematic experimental methodology will provide accu-
rate and quantitative data of HGT enough to build reliable math-
ematic models and computational simulations, which enables
us to predict the ARG dissemination in natural environments.
The integrative approaches will provide a better understanding
of the chronological distribution of ARGs and evolution of MGEs
through complicated HGT processes.

We have highlighted in this review the previous studies that
demonstrated the importance and potential of MVs as the HGT
agents; however, their biological properties are still not under-
stood fully. A very important and interesting open question is
whether ARGs are exchanged through MVs between spatially

separated biofilms in aquatic environments. If it is verified,
ocean will be considered as the hugest genetic reservoir, where
ARGs can be exchanged globally.

Water environments are very complex environments, in
which biofilms are the most probable micro-hot spot of HGT of
ARGs. Experimental and bioinformatic approaches are facilitat-
ing the accumulation of new evidence regarding HGT mecha-
nisms involving ARGs, which should continue to contribute to
future progress in ARB research.
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