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Brain–computer interfaces (BCIs) provide individuals with a means of interacting with a
computer using only neural activity. To date, the majority of near-infrared spectroscopy
(NIRS) BCIs have used prescribed tasks to achieve binary control. The goals of this
study were to evaluate the possibility of using a personalized approach to establish
control of a two-, three-, four-, and five-class NIRS–BCI, and to explore how various
user characteristics correlate to accuracy. Ten able-bodied participants were recruited for
five data collection sessions. Participants performed six mental tasks and a personalized
approach was used to select each individual’s best discriminating subset of tasks. The
average offline cross-validation accuracies achieved were 78, 61, 47, and 37% for the
two-, three-, four-, and five-class problems, respectively. Most notably, all participants
exceeded an accuracy of 70% for the two-class problem, and two participants exceeded
an accuracy of 70% for the three-class problem. Additionally, accuracy was found to
be strongly positively correlated (Pearson’s) with perceived ease of session (ρ =0.653),
ease of concentration (ρ =0.634), and enjoyment (ρ =0.550), but strongly negatively
correlated with verbal IQ (ρ = 0.749).−

Keywords: near-infrared spectroscopy, brain–computer interface, personalized tasks, multi-class, correlation
analysis

Introduction

Near-Infrared Spectroscopy Brain–Computer Interface
Brain–computer interfaces (BCIs) can be used as an access pathway for individualswith severemotor
impairments as they require only brain activations and no muscular control (Allison et al., 2007).
Near-infrared spectroscopy (NIRS) has recently gained attention as a BCI access modality due to its
non-invasive extraction methods, gel-less donning, and robustness to electrical noise (Ferrari et al.,
2004; Scholkmann et al., 2014). In general, NIRS can be used to detect changes in the amount of
oxygen in neuronal blood, which reflect changes in brain activation (Boas et al., 2014; Scholkmann
et al., 2014; Strait and Scheutz, 2014). A computer can be trained to discriminate between mental
tasks based on changes of the hemodynamic response resulting from the task being performed.

Currently, most hemodynamic BCIs use two prescribed tasks to achieve binary control of a
computer. When using binary BCIs for communication, these tasks can be mapped to a “scroll and
select” or “yes and no” output (Naito et al., 2007). A handful of studies have been conducted on
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NIRS–BCIs over the prefrontal cortex (PFC), achieving average
accuracies ranging from around 60 to 80% (Power et al., 2010,
2011; Naseer and Hong, 2013; Schudlo et al., 2013).

Multi-class BCIs (beyond binary) have the potential to provide
users with more outputs, thereby increasing the rate of commu-
nication (Shin et al., 2013). However, as the number of classes
increases, so will the difficulty in discriminating between classes.
To date, limited research on multi-class NIRS–BCIs has been
conducted. To the best of our knowledge, three studies have
explicitly exploredmulti-classNIRS–BCIs over the PFC that could
potentially be used for active computer control, namely Hirshfield
et al. (2009), Power et al. (2012a), and Herff et al. (2013a). Herff
et al. (2013a) classified mental workload states, using the n-back
task with an average three-class and four-class accuracy of 50.3
and 44.5%, respectively. Hirshfield et al. (2009) discriminated
between different levels ofmental workloads, achieving an average
three-class accuracy of 54%. Finally, Power et al. (2012a) were
able to distinguish between mental math (MM), mental singing,
and rest with an average accuracy of 56.2%. A second study by
Herff et al. also explored differentiating mental arithmetic, word
generation (WG), and mental rotation. Although the accuracies
for a three-class problem were not explicitly stated, the authors
indicated that the three-class accuracies were greater than chance
(Herff et al., 2013b). Overall, these studies demonstrate proof-of-
concept for a multi-class NIRS–BCI over the PFC, but are not at
the level that is required for effective BCI use. It appears that none
of the participants in these studies exceeded the 70% threshold,
often cited as required for BCI control (Kübler et al., 2001).

Personalized Tasks
One potential method for improving the classification accura-
cies achievable in an NIRS–BCI is the use of researcher-selected
personalized mental tasks, an approach whereby a user tries a
variety of tasks and subsequently a subset of tasks that are most
suitable for that user are selected by the researcher. Task selection
is usually based on the discriminating power of the tasks. To
date, personalized mental tasks have been explored in a two-class
offline NIRS–BCI study (Weyand et al., 2015b), as well as in a
two-class magnetic resonance imaging (MRI) BCI study (Sorger
et al., 2009) and in two-class (Palaniappan, 2006), three-class
(Chai et al., 2012), and four-class (Dobrea and Dobrea, 2009)
electroencephalography (EEG) BCI studies. Overall, these stud-
ies conclude that there is significant inter-subject variability in
brain activation elicited by the same mental tasks and cognitive
processes, and as a result, the tasks that are most effective for
controlling a BCI vary among users. Therefore, there is poten-
tial to improve classification accuracies by choosing the most
discriminating tasks for each user (Palaniappan, 2006; Dobrea
and Dobrea, 2009; Sorger et al., 2009; Chai et al., 2012; Weyand
et al., 2015b). To the best of our knowledge, to date, personalized
tasks have not been explored in an NIRS–BCI beyond the binary
paradigm.

Correlation Between BCI Accuracy and
User Characteristics
Another sparsely explored area in the literature is the prediction of
BCI accuracy based on user characteristics, such as demographic
traits, IQ, and state of mind. Determining the correlation between

user characteristics and performance may help to reduce some
of the large inter-subject variability in classification accuracies,
steer future BCI development, and provide additional measures
for selecting user-specific tasks.

To date, limited accuracy-user correlation research has been
conducted in the field of NIRS–BCIs. However, several studies
have examined the inter- and intra-subject correlations between
accuracy and characteristics of able-bodied participants using var-
ious EEG-based BCIs. Studies have reported increased accuracy
to be correlated with the following: increasing self-reported task
enjoyment (Pearson’s ρ = 0.3, p< 0.1) (Friedrich et al., 2013),
increasing challenge (Spearman’s ρ = 0.8, p< 0.01) (Kleih et al.,
2011), decreasing sleep (Mann–Whitney test, p< 0.05) (Guger
et al., 2009), increasing mood (multiple regression b= 0.498,
p< 0.05) (Nijboer et al., 2008), increasing mastery confidence
(multiple regression b= 0.578, p< 0.05) (Nijboer et al., 2008),
and increasing attention (Spearman’s ρ = 0.5, p= 0.02) (Hammer
et al., 2012). Conflicting trends have been reported on the associ-
ation of accuracy with fear of incompetence, i.e., anxiety of failing
the task. Studies have noted increased accuracy with increasing
(Spearman’s ρ = 0.37, p< 0.05) (Kleih et al., 2011), and decreasing
(multiple regression b= −0.616, p< 0.05) (Nijboer et al., 2008)
fear of incompetence, both when visual feedback was provided.
However, in the presence of auditory feedback accuracy and
fear increased together (multiple regression b= 0.47, p< 0.05)
(Nijboer et al., 2008).

Limited research has also been conducted on the correlation
of accuracy with user demographics. Randolph et al. (2006) doc-
umented a positive relationship between age and control signal
strength (multiple linear regression, p= 0.013). Meanwhile, Alli-
son et al. (2010) observed that older subjects and male subjects
tended to perform worse; however, it is noted that these trends
were not significant.

In contrast to the above, several researchers found no corre-
lations between accuracy and user characteristics; for example,
in Guger et al. (2009), gender, education, work duration, and
cigarette and coffee consumption were not statistically related
to accuracy, and in Hammer et al. (2012), intelligence, mood,
motivation, or learning abilities were not correlated with accuracy.

In addition to the studies on able-bodied participants, Nijboer
et al. performed an intra-subject correlation analysis on six indi-
viduals with amyotrophic lateral sclerosis to explore the effect
of quality of life, depression, mood, mastery confidence, incom-
petence fear, interest, and challenge on performance over time
(across sessions). They found that BCI performance was posi-
tively related to mastery (Spearman’s ρ = + 0.805) in one partic-
ipant, positively related to challenge (Spearman’s ρ = + 0.733) in
another, and negatively related to incompetence fear (Spearman’s
ρ = −0.824) in a third. No other correlations were found in the
remaining three participants (Nijboer et al., 2010).

Although, to the best of our knowledge, no studies have
explored correlations of NIRS–BCI performance with respect to
user characteristics, the variety of correlations reported in EEG-
BCI literature, along with the known dependencies of neural oxy-
genation levels on gender (Okada et al., 1993), handedness (Okada
et al., 1993), age (Kwee and Nakada, 2003; Schroeter et al., 2003),
and IQ (Graham et al., 2010), suggest that such an investigation is
warranted.
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Objectives
The first objective of this study was to use a personalized mental
task approach to determine the accuracies achievable for a two-,
three-, four-, and five-class NIRS–BCI. The second objective was
to ascertain the strength of the correlations between the accu-
racy achieved over five sessions by each participant and his or
her personal characteristics, specifically, gender, handedness, age,
verbal IQ score, average self-reported ease of session, average self-
reported session enjoyment, average self-reported user tiredness,
and average self-reported ease of concentration.

Materials and Methods

It is noted that the data collected during this study were
also analyzed to compare two-class prescribed and personalized
NIRS–BCI frameworks offline. For more information on this
work, please refer to Weyand et al. (2015b).

Participants
Ten able-bodied participants (four males, six females) were
recruited from the staff and students at Holland Bloorview Kids
Rehabilitation Hospital (Toronto, Canada). Signed consent was
obtained from all participants and the study was approved by
the ethics departments at Holland Bloorview Kids Rehabilitation
Hospital and the University of Toronto. All participants were
self-selected and naïve to NIRS–BCIs.

Criteria
Participants had normal or corrected-to-normal vision, were not
receiving psychoactive medication such as anti-depressants or
analgesics, and did not have any health conditions that may affect
the measurement of or one’s ability to perform mental tasks,
including, but not limited to, degenerative disorders, cardiovascu-
lar disorders, metabolic disorders, trauma-induced brain injury,
respiratory conditions, drug and alcohol-related conditions, and
psychiatric disorders. Lastly, participants had to communicate
in English, refrain from smoking, and avoid drinking alcohol or
caffeinated beverages 3 h prior to data collection.

Instrumentation
The Imagent Functional Brain Imaging System from ISS Inc.,
Champaign, IL (ISS Inc, 2012) was used to collect the NIRS
data at a sampling rate of 31.25Hz. Three photomultiplier tube
detectors and five laser diodes (emitting 690 and 830 nm light)
were arranged in a trapezoid, as shown in Figure 1. The trape-
zoid configuration allowed for discrete signal extraction at nine
points of interrogation, located between each detector and diode
that is separated by a distance of 3 cm (Naito et al., 2007). A
headband made of rubber polymer (3M 9900 series) was used
to position the detectors and light sources. All detectors and
diodes were held in place by opaque fabric pockets that pro-
vided shielding from ambient light, and minimized detector
and diode motion, while maximizing contact with the head.
The headband was positioned above the eyebrows and cen-
tered with respect to the nose. Additionally, an accelerometer
attached to the headband was used to collect information on head
movement.

FIGURE 1 | Experimental source and detector configuration. The solid
circles represent detectors; the open circles represent light source pairs; the
x’s represent points of interrogation (channels); and the starred areas
represent the approximate FP1 and FP2 positions of the international 10–20
EEG system.

Experimental Protocol
Study Structure and User Interface
Participants took part in five data collection sessions on five sepa-
rate days. Each session consisted of three data collection blocks.
During each block, a baseline of 30 s was collected followed by
24 task intervals. The task intervals consisted of a task being
performed for 20 s followed by a 17 s rest period. All six tasks were
performed four times in a random order. Participants were asked
to remain still during the task intervals.

Each task was performed 60 times by each participant (4 repe-
titions/block× 3 blocks/session× 5 sessions= 60).

Participants were provided with two forms of feedback as
follows: (1) a real-time trapezoidal topographic image that corre-
sponded to the hemodynamic changes over the entire interroga-
tion area and (2) a ball that rose and fell depending on the average
activation over the trapezoid. The goal of the neurofeedback was
to provide participants with real-time information about changes
in their hemodynamic activity when performing each of the tasks.
Participants were informed that they should not stop performing
the tasks; however, they could slightly modify the tasks, i.e., per-
form the tasks faster or slower, in order to try and achieve a more
consistent change in the feedback. In a study by Schudlo andChau,
it was found that 8 out of 10 participants adjusted their mental
strategies when using feedback (Schudlo and Chau, 2014).The
feedback was updated every 125ms, and was calculated using
cubic interpolation of the oxygenated hemoglobin (HbO) values at
equally spaced intervals between the points of interrogation. The
topographic image was 21 pixels in height with parallel sides of
21 and 61 pixels in length, as in Schudlo and Chau (2014) and
Weyand et al. (2015a). The red color on the feedback represented
an increase in hemodynamic activity, while the blue color rep-
resented a decrease in hemodynamic activity. The user interface,
including the two types of feedback, is shown in Figure 2.

Mental Tasks
In this study, we explored six mental tasks, selected on the basis
of past literature indicating their suitability for NIRS–BCI control.
Each of the six mental tasks is described in Table 1.

Additional Data Collection
The Ammons Quick Test was used to asses verbal IQ. The
Ammons Quick Test is a 5–15min standardized verbal IQ test
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FIGURE 2 | User interface for all sessions. The task name and symbol show which of the six tasks the user should perform, i.e., mental math, word generation,
happy thoughts, relaxing with focus, relaxing with slow counting, or unconstrained rest.

TABLE 1 | Mental tasks and descriptions.

Mental task Description

Mental math (MM) Users continuously subtract a randomly generated two-digit number from a randomly generated three-digit number. For
example, given the equation “593-11,” users would think “593-11= 582; 582-11= 571; 571-11= 560. . .” (Naito et al.,
2007; Ogata et al., 2007; Utsugi et al., 2007; Bauernfeind et al., 2008; Power et al., 2010, 2011, 2012b; Ang et al., 2012;
Herff et al., 2013b; Schudlo et al., 2013; Schudlo and Chau, 2014)

Word generation (WG) Users think of as many words that start with a randomly generated letter. For example, given the letter “D.” users may
think of “dog, data, dashboard, donut. . .” (Ogata et al., 2007; Utsugi et al., 2007)

Happy thoughts (HT) Users think of a past event in their life that made them happy (Tai and Chau, 2009)

Relaxing with focus (RF) Users concentrate on the trapezoid activation feedback. Focusing on either the increasing or decreasing portions
(Izzetoglu et al., 2011)

Relaxing with slow counting (RS) Users count slowly, starting from any number that they wish (Naseer and Hong, 2013)

Unconstrained rest (RR) Users are allowed to let their mind wander and may think of anything other than the five mental tasks (Naito et al., 2007;
Power et al., 2011, 2012b; Ang et al., 2012; Herff et al., 2013b; Schudlo et al., 2013; Schudlo and Chau, 2014)

designed by Robert and Carol Ammons in 1962 and was admin-
istered after the last data collection session. The test consists
of 50 questions in which users are asked to attribute a given
word with one of four given pictures. The Ammons Quick Test
has been shown to provide a good approximation of the full-
scale IQ as measured by the Wechsler intelligent scale for adults
(WAIS) with Pearson’s product moments of 0.85 (Zagar et al.,
2013) and 0.89 (Husband andDeCato, 1982). TheAmmonsQuick
Test has been used in several psychiatric studies (Advokat et al.,
2005; Marjoram et al., 2005). It should be noted that one of
the 10 participants (P4) chose not to complete the Ammons
Quick Test.

A background questionnaire was administered prior to data
collection to collect demographic data on each participant, includ-
ing the participant’s age range, gender, and handedness.

A post-session questionnaire was completed at the end of each
session. Participants evaluated the following subjective statements
on a 7-point Likert-type scale ranging from “Strongly Agree” to
“Strongly Disagree”: (1) I was tired before the session began, (2) I
found it easy to concentrate during the session, (3) the session was
fun, (4) it was easy to perform the tasks and session, and 5) the
headgear was comfortable. For correlation analysis, the answers
from all five post-session questionnaires were averaged for each
participant.

Data Analysis
As a result of observed participant head motion or loss of contact
between the head and the detectors, up to 20 data points (a max-
imum of four per class) were discarded from participants 3 and 9.

Filtering
The NIRS data were filtered in order to minimize noise due to
the Mayer wave at a frequency of 0.1Hz, the respiration cycle at
a frequency of 0.2–0.4Hz, and the cardiac cycle at a frequency
of 0.5–2.0Hz. A low-pass third-order Chebyshev infinite impulse
response (IIR) cascade filter was used with a pass-band from 0
to 0.1Hz, a transition band from 0.1 to 0.5Hz, a stop-band from
0.5Hz onward, and a pass band ripple of 0.1 dB.

Calculating Hemoglobin Concentrations
The modified Beer Lambert’s law (Delpy et al., 1988) was
used to calculate changes in the concentrations of deoxygenated
hemoglobin (Δ[Hb]), oxygenated hemoglobin (Δ[HbO]), and
total hemoglobin (Δ[tHb]), as in (Power et al., 2012b; Schudlo
et al., 2013; Schudlo and Chau, 2014; Weyand et al., 2015a,c).

Feature Extraction
Features extracted from the NIRS signal consisted of the tem-
poral and spatial changes in the concentrations of the three
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chromophores (Hb, HbO, and tHb) over the four time windows
(0–5s, 0–10s, 0–15s, and 0–20s). Specifically, the temporal fea-
tures consisted of the linear regression slope over the normalized
time windows for each of the 9 points of interrogation (4 time
windows× 3 chromophores× 9 points of interrogation= 108 fea-
tures), and the spatial features consisted of the linear regression
slope over the zero- to fourth-order discrete orthogonal Cheby-
shev image moments over the four time windows (4 time win-
dows× 3 chromophores× 15 image moments= 180 features).
For more information on the extracted features, please refer to
Schudlo et al. (2013) andWeyand et al. (2015b). Three distinct fea-
ture sets were considered during this study: temporal features only
(108 features), spatial features only (180 features), and temporal
combined with spatial (temporal–spatial) features (288 features).

Feature Selection
For each of the three distinct feature sets, a subset of the features
was selected from the training data to reduce the dimensionality
of the problem and reduce redundancy. The fast correlation-
based filter (FCBF) was implemented (Yu and Liu, 2003). FCBF
is useful for feature sets with high dimensionality and has been
used previously in EEG-BCI studies (Chanel et al., 2007; Koelstra
et al., 2010) and in the detection of the hemodynamic response by
MRI (Tripoliti et al., 2007). For more information on the FCBF,
please refer to Yu and Liu (2003). The FCBF typically reduced the
high-dimensional feature sets to subsets consisting of 3–5 features.

Data Analysis

Offline Classification
Offline classification accuracies were calculated using 10 itera-
tions of 10-fold cross-validation (Refaeilzadeh et al., 2009). For
each iteration of 10-fold cross-validation, the data were randomly
separated into 10 equal sized portions (folds). Ten classification
accuracies were calculated by iteratively using each fold as testing
data and the remaining folds as training data. Only training data
were used for feature selection and classifier training, and only
the testing data were used to estimate the classification accuracies.
Finally, all classification accuracies were averaged to estimate the
overall accuracy.

Multi-Class Classification Algorithm
Classification was performed for all possible n-class combinations
of the six mental tasks (where n= 2, 3, 4, or 5 classes). Specifically,
the 6 choose n (6Cn) task combinations for the 2-, 3-, 4-, and
5-class problems resulted in a total of 15, 20, 15, and 6 unique
task combinations being explored for each classification problem,
respectively.

Multi-class classification was conducted in a one-vs.-one
(OVO)manner by simplifying each n-class problem intom binary
problems (wherem= nC2) and voting on the majority class (Diet-
terich and Bakiri, 1995; Rocha and Goldenstein, 2014). The num-
ber of binary problems (m) given n= 2, 3, 4, and 5 classes, were 1,
3, 6, and 10, respectively.

The class of each of the m binary classifiers was determined by
themajority vote of three ensemble classifiers, one for each feature
set (temporal features only, spatial features only, and temporal and

spatial features). In particular, a bagging ensemble classifier with
10members of linear discriminant analysis classifiers was used for
each feature set.

Figure 3 shows an example of the classification algorithm for
one set of three tasks (Task A vs. Task B vs. Task C). The label for
the testing datawas predicted by amajority vote of the three binary
classifiers (A vs. B, A vs. C, and B vs. C), whose individual outputs
were derived from a majority vote of three ensemble classifiers
(temporal, spatial, and temporal-spatial).

Correlations Between Accuracy and User
Characteristics
The normality of the data was confirmed with the Shapiro–Wilk
normality test. Pearson’s correlations with α = 0.1 were computed
between accuracy and user characteristics following normal dis-
tributions, including IQ and state of mind data. Spearman’s Rho
correlations with α = 0.1 were computed between accuracy and
the demographic data. For brevity, only the correlations with
respect to the best two-class accuracies were reported. The alpha
value for the correlation analyses was set to 0.1 to minimize type
II errors – i.e., missing a correlation that exists. Although this
increases the probability of type I errors – i.e., finding a correlation
when there is not one – at this stage,we believe it ismore important
to find potential correlations (Banerjee et al., 2009). Moreover, a
similar value has been used in a previous EEG-BCI correlation
analysis (Friedrich et al., 2013).

Results

Accuracies Achieved
The accuracies achieved for the two-, three-, four-, and five-
class problems are shown in Figure 4. Average classification
accuracies of 78.4± 5.7, 60.5± 6.%, 46.7± 5.7, and 37.2± 5.4%,
were achieved for the two-, three-, four-, and five-class problems,
respectively.

All participants exceeded the 70% threshold for the two-class
problem, and two participants (P3 and P5) exceeded the 70%
threshold for the three-class problem.

All participants exceeded chance levels for all n-class problems.
Theoretically, for 2, 3, 4, and 5 classes, the chance level accuracies
are 50, 33, 25, and 20%, respectively. However, when the number
of trials is less than infinity, the chance levels are those values
plus or minus a confidence interval, given a value α (Mueller-
Putz et al., 2008). Using the equation presented in (Mueller-Putz
et al., 2008), the confidence limits for randomized class labels
were calculated (Table 2). For the classifier accuracy to be sta-
tistically greater than chance, accuracies must exceed the upper
confidence limit. In all cases, the classification of participant data
with randomized class labels fell within the confidence limits of
chance.

Task Frequency Analysis
The best task pairs for each of the participants and for all n-class
problems are shown inTable 3. Themost common combination of
tasks chosen for the two-, three-, four-, and five-class problems are
shown in the last row of Table 3. Additionally, the individual task
frequencies for each of the n-class problems are shown inFigure 5.
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FIGURE 3 | Classification scheme for a sample three-class problem. The output of each of the binary (two-class) classifiers was determined by a majority vote
of the three ensemble classifiers (temporal, spatial, and temporal–spatial). Subsequently, the output of the ternary (three-class) classifier was derived from the majority
vote of the three binary classifiers.

FIGURE 4 | Box plot of accuracies for the two-, three-, four-, and
five-class problems. Whiskers extend from min to max value. The dashed
line below each box plot shows the upper limit of chance accuracy for each
classification problem.

The most frequently chosen tasks over all classification problems
were happy thoughts (HT) and relaxing with focus (RF).

Correlations of Accuracy with User
Characteristics
Table 4 shows the correlations between assessed criteria and the
two-class classification accuracies over all participants. Strong
positive correlations were found between accuracy and con-
centration (ρ = +0.634, p< 0.05), ease of session (ρ = +0.653,
p< 0.05), and enjoyment (ρ = +0.550, p< 0.10), while accuracy
and verbal IQ were strongly negatively correlated (ρ = −0.749,
p< 0.05). It is noted that verbal IQ scores ranged from 80 to 116.
Additionally, a moderate non-significant negative correlation was

TABLE 2 | Chance levels and corresponding confidence limits for the two-,
three-, four-, and five-class problems given 60 trials per class and ααα =0.05.

Class Chance level (%) Confidence limits (%)

2 50 (36.8, 63.2)
3 33.4 (23.2, 44.2)
4 25 (17.2, 33.6)
5 20 (14.3, 26.5)

The Bonferroni correction was used to account for the multiple task-subsets explored
(Kaltenbach, 2012). Therefore, adjusted α values of 0.0033, 0.0025, 0.0033, and 0.0083
were used for the two-, three-, four-, and five-class problems, respectively.

TABLE 3 | Best task combinations for two-, three-, four-, and five-class
problems.

Participant Two-class Three-class Four-class Five-class

1 WG RF WG HT RF MM WG HT RF MM WG HT RF RS
2 MM RF WG HT RF MM WG RF RS MM WG HT RF RS
3 HT RF WG HT RR WG HT RS RR MM WG HT RF RR
4 MM WG MM WG HT MM WG HT RF MM WG HT RF RS
5 MM RF MM HT RF MM HT RF RR WG HT RF RS RR
6 HT RF HT RF RR MM HT RF RR MM WG HT RF RR
7 WG RF MM HT RF MM WG HT RF MM WG HT RF RS
8 MM HT MM HT RF MM HT RF RR MM WG HT RF RS
9 HT RF HT RF RR MM HT RF RR MM WG HT RF RR
10 MM RF MM HT RF MM HT RF RS MM HT RF RS RR
Most
common

HT&RF and
MM&RF

MM&HT&RF MM&HT&
RF&RR

MM&WG&HT&
RF&RS

MM, mental math; WG, word generation; HT, happy thoughts; RF, relaxing with focus;
RS, relaxing with slow counting; and RR, unconstrained rest.

found between accuracy and tiredness before the session. Finally,
weak to no correlation was found between accuracy and gender,
as well as between accuracy and handedness. However, it is noted
that there were six female participants and eight right-handed
participants. As a result of a homogeneous age range (seven of
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FIGURE 5 | Number of times that each task was chosen as the best
task for a participant for the two-, three-, four-, and five-class
problems. It should be noted that since there are 10 participants, if a task is
chosen 10 times, then it was chosen for all the participants. MM, mental
math; WG, word generation; HT, happy thoughts; RF, relaxing with focus; RS,
relaxing with slow counting; and RR, unconstrained rest.

TABLE 4 | Correlations between two-class accuracies and user
characteristics (ααα =0.1).

Correlation with two-class accuracy (ρρρ) p-value (p)

Verbal IQ Pearson’s ρ =−0.749 0.020
Enjoyment Pearson’s ρ = 0.550 0.100
Tiredness Pearson’s ρ =−0.449 0.193
Concentration Pearson’s ρ = 0.634 0.049
Ease of session Pearson’s ρ = 0.653 0.041
Gender Spearman’s ρ =−0.221 0.540
Handedness Spearman’s ρ = 0.015 0.968

Bold indicates p<0.1.

the participants were in their twenties), no correlation analysis
between age and accuracy was conducted.

Discussion

Comparison of Classification Accuracies
The average two-class accuracy achieved in this work (78.4%)
appears to be on par with the high-end of those reported in other
NIRS–BCI studies over the PFC (Power et al., 2010, 2011; Schudlo
et al., 2013). As expected, when moving beyond binary classifica-
tion there was a significant drop in the accuracies achieved as a
result of the increasing complexity of the classification problem.
Overall, our results show promising progress toward distinguish-
ing three and four mental tasks using an NIRS–BCI over the PFC.
Formost participants, the accuracies achieved in this study are still
not sufficient for real-world BCI use; however, two participants
(P3 and P5) were able to exceed the 70% threshold for a three-class
problem. It is noted that these two participants had the two highest
enjoyment, concentration, and reported ease-of-use ratings, and
had two of the three lowest verbal IQ scores.

The average three- and four-class accuracies achieved in this
work (61 and 47%) appear to be on par with the high-end of those
reported in other multi-class NIRS–BCI studies over the PFC
(Hirshfield et al., 2009; Power et al., 2012a; Herff et al., 2013a,b),
namely average three-class accuracies of 50% (Herff et al., 2013a),
54% (Hirshfield et al., 2009), and 56% (Power et al., 2012a),
and a four-class accuracy of 45% (Herff et al., 2013a). Moreover,
contrary to our study, it appears that in NIRS–BCI literature, to
date, no participant was able to exceed the 70% threshold for a
three-class problem.Additionally, to the best of our knowledge, no
other NIRS–BCI study has attempted to differentiate five mental
tasks over the PFC.

Note that the accuracies achieved for three- and four-class
NIRS–BCIs over the PFC are still much lower than those
achieved for EEG-BCIs and NIRS–BCIs over the motor cortex
(Palaniappan et al., 2002; Dobrea and Dobrea, 2009; Gupta
et al., 2009; Chai et al., 2012; An et al., 2013; Shin and Jeong,
2014). This is in line with similar trends of lower accuracies in
two-class NIRS–BCI studies over the PFC (Power et al., 2011),
when compared to two-class EEG-BCI studies (Nai-Jen and
Palaniappan, 2004) and NIRS–BCI studies over the motor cortex
(Sitaram et al., 2007). However, as previous researchers have
pointed out, there are numerous advantages to using NIRS over
the PFC. Specifically, the headband is not intrusive and requires
minimal set-up time when compared to both EEG-BCIs and
NIRS–BCIs over the motor cortex (Bauernfeind et al., 2008;
Power et al., 2012a; Herff et al., 2013b; Kopton and Kenning,
2014). Additionally, motor tasks may not be suitable for all users,
such as our target population of clients with motor impairments
(Curran et al., 2004).When conductingNIRS–BCImeasurements
over areas with hair, there are additional challenges, including
the integrity of the optode–skin contact and attenuation of light
by hair (Lloyd-Fox et al., 2010). To combat this, spring loaded
sources and detectors can be used, but these have been shown to be
uncomfortable (Lloyd-Fox et al., 2010), with several participants
dropping out of studies due to headset discomfort (Suzuki
et al., 2010; Cui et al., 2011). On the other hand, it appears that
users found the NIRS headband in this study to be comfortable.
Participants evaluated the post-session statement “The headgear
was comfortable” at an average rating of 5.3± 0.9 on the 7-point
Likert-type scale, indicating that on average participants agreed
with this statement. Moreover, none of the participants reported
the headset to be uncomfortable (no rating <4).

Correlation Between User Characteristics and
Accuracy
Although correlation analyses were conducted on only 10 partic-
ipants, several interesting trends warrant further exploration.

Increasing Accuracy with Decreasing Verbal IQ
Contrary to the EEG-BCI results by Hammer et al. (2012),
who found no correlation between accuracy and non-verbal
intelligence, in this study we found a strong negative correlation
between accuracy and verbal intelligence. This correlation may
seem surprising at first; however, upon further analysis, it appears
that this trend may be attributable to task difficulty and neural
efficiency.
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In addition to the correlation between IQ and accuracy,
a negative correlation was found between verbal IQ and the
range (max–min) of HbO concentrations of the chosen tasks
(ρ = −0.603, p< 0.1). This indicates that in general, individuals
with lower IQ elicited larger overall changes in their hemodynamic
activity. A possible explanation for this is that individuals with
lower verbal IQ scores tend to elicit stronger, more consistent
changes in neuronal hemodynamic activity when performing
mental tasks since they find them to be more challenging.

In literature, the relationship between intelligence and hemo-
dynamic brain activity is still widely debated, and is often referred
to as the “neural efficiency debate” (Graham et al., 2010). Sim-
ilar to findings in this study, several researchers reported that
a decrease in IQ or skill was associated with an increase in
brain activation. An MRI study conducted by Graham et al.
found that participants with average IQ showed greater PFC
activation during response selection than did high IQ partici-
pants. The authors argued that the participants with high IQs
invoked more resource-efficient cognitive strategies resulting in
less activation (Graham et al., 2010). Additionally, a positron
emission tomography (PET) study by Haier et al. (1992) con-
cluded that there was an inverse correlation between neural
activity and verbal IQ scores in several brain regions, including
areas of the frontal cortex. Moreover, an MRI study by Rypma
et al. showed that during a working memory task, higher per-
forming participants had overall less PFC activation than lower
performing participants. This study also found that higher per-
forming participants exhibited a larger increase in activation with
increased task difficulty (Rypma and D’esposito, 1999; Rypma
et al., 2002). Collectively, these results reveal a relationship
between task difficulty and IQ, and motivate further exploration
of personalized task difficulty levels for each participant based on
IQ scores.

Increasing Accuracy with State of Mind Changes
We found a strong significant positive correlation between accu-
racy and each of concentration and reported ease. These results
appear to be in linewith EEG-BCI literature. Specifically, Hammer
et al. (2012) noted a positive correlation between accuracy and
attention (ρ = 0.5, p= 0.02), while Nijboer et al. (2008) doc-
umented a positive correlation between accuracy and mastery
confidence (b= 0.578, p< 0.05).

Additionally, we found a strong significant positive correlation
between accuracy and task enjoyment. This finding also res-
onates with EEG-BCI literature. Friedrich et al. (2013) uncovered
a positive correlation between accuracy and self-reported task
enjoyment (ρ = 0.3, p< 0.1), while Nijboer et al. (2008) cited
a positive correlation between accuracy and mood (b= 0.498,
p< 0.05).

Finally, we found a moderate, but not significant, negative
correlation of accuracy with tiredness. This trend appears to be in
contrast to the previous EEG-BCI finding of increased accuracy
with decreased sleep in a P300 BCI (p< 0.05) (Guger et al., 2009).
However, due to the very different neural mechanism involved in
using a P300 BCI, this inconsistency is not surprising.

Overall, these findings motivate future research to enhance
NIRS–BCI accuracy via training for confidence and concentra-
tion, and maximizing enjoyment while minimizing fatigue.

Limitations and Future Work

This study was conducted under controlled conditions which
included a dimly lit room free of distractions. Future studies
should be conducted in more practical environments in order to
assess the functionality of the BCI in less than optimal conditions.

Second, the study was conducted on able-bodied participants.
For use as an access technology for individuals with severe motor
impairments, the results obtained likely do not reflect the per-
formance of this target population. Further research and testing
on a clinical population is necessary before conclusions about the
effectiveness of multi-class BCIs can be made.

Third, when using NIRS as an access modality for a BCI, there
is the potential for systemic contributions to the signal (Takahashi
et al., 2011). Although systemic noise is likely present, it has been
shown that the majority of the signal originates from the cerebral
cortex (Kirkpatrick et al., 1995; Hoshi et al., 2011; Funane et al.,
2014). Moreover, the cortical component has been shown to be
non-trivial; strong correlations have been reported between NIRS
and fMRI signals (Cui et al., 2011; Sasai et al., 2012; Sato et al.,
2013) and betweenNIRS and EEG signals (Moosmann et al., 2003;
Koch et al., 2008; Roche-Labarbe et al., 2010; Talukdar et al., 2015).

Fourth, in addition to the user characteristics described in
this work, several other factors may be correlated to NIRS–BCI
accuracy. Specifically, future work should explore the correlation
of anatomical features with accuracy, such as scalp-cortex dis-
tance and frontal sinus volume, as these have been shown to be
correlated with NIRS signal quality (Haeussinger et al., 2011).
Other future directions include correlation analysis with respect
to task performance, as well as the exploration of within-subject
correlations on a per-session basis.

Finally, this study was conducted offline and over a relatively
short period of time, with only five data collection sessions. It is
possible that when moving online (with the inclusion of real-time
performance feedback) and when conducting studies over longer
periods of time (with the possibility of learning and habituation),
performance and the correlation of performance with user char-
acteristics may change. Further research on online and long-term
trends is necessary.

Conclusion

This study explored the use of personalized mental tasks to
increase the number of outputs of an NIRS–BCI. Average clas-
sification accuracies of 78.4± 5.7, 60.5± 6.6, 46.7± 5.7, and
37.2± 5.4%were attained for the two-, three-, four-, and five-class
problems, respectively. All participants exceeded the 70% thresh-
old for the two-class problem, and most notably, two participants
were able to exceed an accuracy of 70% for the three-class problem.

Accuracy positively correlated with ease of session, ease of con-
centration, and enjoyment, and negatively correlated with verbal
IQ. Future multi-class NIRS–BCI research ought to consider the
development of training paradigms for maximizing user concen-
tration, enjoyment, and confidence, as well as personalization of
task difficulty based on IQ.

Overall, this research provides an incentive for further explo-
ration of multi-class NIRS–BCIs, as well as continued research on
the user characteristics that affect classification accuracies.
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