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Pericyte mediates the infiltration,
migration, and polarization of macrophages
by CD163/MCAM axis in glioblastoma

Hao Zhang,1,8,9,10 Nan Zhang,1,2,8,10 Wantao Wu,3,8 Zeyu Wang,1,8 Ziyu Dai,1,8 Xisong Liang,1,8 Liyang Zhang,1,8

Yun Peng,4,5,8 Peng Luo,6 Jian Zhang,6 Zaoqu Liu,7 Quan Cheng,1,8,* and Zhixiong Liu1,8,11,*

SUMMARY

Microenvironment cells (MCs) play a critical role in tumor proliferation, progres-
sion, and metastasis. However, it has not been adequately addressed whether
MCs could be used as a reliable prognostic marker in glioblastoma (GBM). In
the current study, the cell pair (CP) score was constructed in 1137 GBM samples
based on the cell pair algorithm and Gaussian finite mixture model (GMM) and
was verified in 73 GBM samples from the Xiangya cohort. CP score predicted
GBM patients’ survival and response to anti-PD-1 treatment with high sensitivity.
Macrophagemarkers CD68 and CD163 were co-expressed with pericyte markers
MCAM and MG2. Pericyte could mediate the infiltration, migration, and M2 type
polarization of macrophages by MCAM. The CP score was a valuable tool for pre-
dicting survival outcomes and guiding immunotherapy for GBMpatients. Cell pair
pericyte/macrophage and gene pair CD163/MCAM were biologically significant
in the tumor microenvironment of GBM.

INTRODUCTION

The World Health Organization (WHO) classification defines grade I and II glioma as low-grade glioma

(LGG). It defines grade III and IV glioma as high-grade glioma (HGG)(Louis et al., 2016), among which

glioblastoma (GBM) has been recognized as the most devastating primary brain tumor with an extremely

high mortality rate. Typically, the 10-year survival rate of patients with LGG is 47%, with a median survival

time of 11.6 years (Smoll et al., 2012), while the median survival time of patients with GBM is less than

15 months (Yang et al., 2022). Despite the surgical resection with adjuvant chemoradiotherapy, the prog-

nosis of GBM patients remains poor. So far, biomarkers including isocitrate dehydrogenase (IDH), 1p19q,

and O-6-methylguanine-DNA methyltransferase (MGMT) have been used for precise classification of

GBM patients to promote the clinical management and fulfill individualized treatment (Neftel et al.,

2019; Wang et al., 2017).

Microenvironment cells (MCs), including T cells, mast cells, tumor-associated macrophages (TAMs), can-

cer-associated fibroblasts (CAFs), and natural killer (NK) cells, could elicit a robust immune response

against tumor (Hiraoka, 2010; Zhang et al., 2020, 2021b). MCs play a central role in regulating the immuno-

surveillance of cancer (Beatty and Gladney, 2015) and creating a permissive microenvironment that accel-

erates tumor progression(Schreiber et al., 2011). Notably, MCs have been proposed to be either the medi-

ator of immunotherapy (Peng et al., 2020) or the immunotherapeutic target(Sabado et al., 2017). Besides, as

the rapid development of bioinformatics provides insight into cancer research based on large-scale anal-

ysis, numerous studies have established the microenvironment cell-based risk signatures in various cancer

types. However, the comprehensive role of MCs in the tumor microenvironment (TME) of GBM lacks in-

depth understanding (Chen and Hambardzumyan, 2018). Therefore, developing an MC-based signature

can be promising to help determine the prognostic value of MCs in GBM and improve the efficacy of immu-

notherapeutic approaches. However, although algorithms such as xCell, CIBERSORT, and TIMER have

been developed to quantify the expression level of MCs based on bulk sequencing datasets to facilitate

the research on MCs, these methods are restricted by the different reference genomes that might lead

to discrepant research results from other studies. Some computational deconvolution methods might

even require validation of the results using single-cell genomic and/or imaging methods. Given that the

fraction of each MC in the TME is within a relatively stable range due to intra-sample heterogeneity or
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Figure 1. Construction of CP score

(A) Flow diagram of the cell pair algorithm.

(B) Forest plot depicting the 13 cell pairs.

(C) The pattern of the logistic regression model correlated with the AUC values and was identified by a Gaussian mixture.

There are nine clusters of 8191 combinations. Kaplan–Meier curves for two CP score groups in (D). LGG samples, (E). GBM

samples, and F. glioma samples in the TCGA dataset. Logrank test, p< 0.001.

(G) Kaplan–Meier curves for two CP score groups in GBM samples from the Xiangya cohort. Logrank test, p< 0.001.
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inter-sample heterogeneity, exploring the ratio of different MCs could potentially optimize the quantifica-

tion of MCs in the research of TME.

In this study, 65 immune cell types were collected to construct a risk signature (Zhang et al., 2021c). These

cell types were quantified in GBM cohorts to estimate their prognostic value. A cell pair (CP) score was con-

structed based on the relative abundance of identified immune cell types. As a result, a high CP score pre-

dicted worse overall survival in GBMpatients. Besides, the CP score was profoundly associated with various

tumorigenic and immunogenic factors and could sensitively predict response to anti-PD-1 immunotherapy.

Meanwhile, cell pair macrophage/pericyte and gene pair CD163/MCAM was expected to be the potential

prognostic markers and therapeutic targets for GBM. Pericyte was further found to mediate the infiltration,

migration, and polarization of macrophages in the TME of GBM.

RESULTS

Construction of CP score and its prognostic value

The overall study design was shown in Figure S1. 26 prognostic immune cell types were identified by Uni-

variate Cox regression analysis in TCGA GBM samples and paired with 65 integrated immune cell types

collected from previously published studies. Each cell pair was assigned 1 or 0 as the score according to

the relative expression level. After calculating the 2-year area under the curve (AUC) of all cell pairs, 13 im-

mune cell pairs were identified with the highest 2-year AUC. After performing GMM, the CP score based on

6 immune cell pairs finally stood out with the highest AUC (Figure 1A). The HR of the 13 cell pairs with the

highest 2-year AUC value was shown in Figure 1B. AUC of the CP scoremodels sorted by theGMM classifier

in all the 8191 formulas was shown in Figure 1C. CP score predicted worse survival in LGG samples, GBM

samples, and pan-glioma samples from TCGA (logrank test, p < 0.001; Figures 1D–1F, respectively). More-

over, CP score was a hazardous factor in GBM samples and pan-glioma samples from the Xiangya cohort

(logrank test, p < 0.001; Figures 1G and 1H, respectively). The ROC analyses with the 2-year, 3-year, 4-year,

5-year AUC of 0.703, 0.738, 0.767, 0.797 confirmed that CP score served as a prognostic marker in predict-

ing the survival status of GBM patients from TCGA (Figure 1I). The CP score was further constructed and

verified in meta-cohort (Figure S2A) and each of the six GBM datasets (Figure S2B). Notably, the CP score

significantly stratified GBM patients’ survival and predicted worse outcomes. The Univariate Cox regres-

sion analyses confirmed that CP score was a hazardous factor in all six GBM datasets and meta-cohort (Fig-

ure S2C). The Univariate Cox regression analyses and Multivariate Cox regression analyses further proved

that CP scores and age were hazardous factors in TCGA and CGGA. At the same time, IDH mutation and

1p19q codeletion were favorable factors (Figure S2D).

Genomic features of the CP score groups

Given the prognostic value of the CP score, somatic mutation analysis and copy number variation (CNV)

analysis were performed to characterize the genomic features of the CP score in TCGA. A global CNV pro-

file exhibited insignificant differences regarding mutation frequency in two CP score groups (Figure S3A

and Table S2). Specifically, in the high CP score group, the high CP score group, and the mutation rates

of PTEN, TP53, EGFR, and TTNwere 33%, 27%, 26%, and 26%, respectively, in the high CP score group (Fig-

ure S3B). On the contrary, mutation rates of TP53, TTN, and EGFR were 43%, 35%, and 22%, respectively, in

the low CP score group (Figure S3C). Besides, the CP score showed high sensitivity in predicting the mu-

tation status of IDH with an AUC of 0.778 (Figure S3D).

Immune regulatory mechanisms related to CP score

Metabolism has been proposed to influence the activation and quiescence of immune cell (Pearce and

Pearce, 2013). A high CP score was significantly associated with glutathione metabolism, kynurenine

metabolism, and prostanoid biosynthesis in the Xiangya cohort and meta-cohort (Figures 2A and S4A,

respectively). The cancer immunity cycle has been proposed to comprehensively reflect the functions

of several chemokines and immunomodulators (Chen and Mellman, 2013; Xu et al., 2018). Of note,

most of the steps in the cancer immunity cycle were upregulated in the high CP score group, including

the release of cell antigens (Step 1), tumor antigen presentation (Step 2), recruitment of immune cells

Figure 1. Continued

(H) Kaplan–Meier curves for two CP score groups in glioma samples from the Xiangya cohort. Logrank test, p< 0.001.

(I) ROC curve measuring the sensitivity of CP score in predicting GBMpatient’s 2-year, 3-year, 4-year, and 5-year survival in

TCGA dataset. The area under the ROC curve was 0.703, 0.738, 0.767, and 0.797, respectively.
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(Step 4) (CD8 T cell, dendritic cell, Macrophage, myeloid-derived suppressor cell (MDSC), monocyte,

neutrophil, NK cell, Th1 cell, Th17 cell, Th22 cell), and infiltration of immune cells into tumors (Step 5)

in Xiangya cohort and meta-cohort (Figures 2B and S4B, respectively). The enhanced activities of the

multiple steps in the cancer immunity cycle may subsequently increase the infiltration levels of MCs in

the high CP score group. The RNA modification N6-methyladenosine (m6A) has been proved to signif-

icantly regulate immune recognition, immune activation, and immune cell fate decisions (Shulman and

Stern-Ginossar, 2020). Of interest, the high CP score group had a higher level of CBLL1, ELAVL1,

WTAP, RBM15B, YTHDC2, YTHDF1, YTHDF2, and YTHDF3 in meta-cohort (Figure S4E), while the expres-

sion differences of m6A regulators were not significant in Xiangya cohort (Figure S4C). Besides, a high CP

score group was associated with inflammatory activities in the Xiangya cohort and meta-cohort

(Figures S4D and S4F, respectively).

The immune escapemechanisms included four significant aspects: tumor immunogenicity, antigen presen-

tation capacity, microenvironment cell, and regulation of immune checkpoint (Schumacher and Schreiber,

2015). A series of tumorigenic and immunogenic factors were first evaluated. The high CP score group

exhibited a higher T cell-inflamed gene expression profile (GEP), indicating higher response rates of

anti-PD-1 therapy (Figure 2C) (Ayers et al., 2017). The high CP score group also displayed lower homolo-

gous recombination deficiency (HRD), an indicator of cell death (Figure 2D). Interestingly, a low CP score

group correlated with more segments (Figure 2E). Stroma signatures, including leukocyte fraction, stromal

fraction, TGF-b response, interferon-gamma (IFNG), IFNG.GS, and ISG.RS-related signatures, were higher

in the high CP score group (Figures 2F–2K, respectively). In terms of antigen presentation capacity, the high

CP score group exhibited higher levels of T cell receptor (TCR) Shannon, TCR Richness, and higher antigen

processing and presenting machinery (APM) score (Figures 2L–2N, respectively).

The immune infiltration characteristics of CP score groups were also assessed. As a result, the high CP score

group correlated with a higher ESTIMATE score, immune score, and stromal score in the Xiangya cohort

(Figure 3A). Based on three various algorithms, the high CP score group was significantly associated

with immune suppressive cells, including regulatory T cells (Tregs), TAMs, CAFs, and T helper 2 cells

(Th2) in the Xiangya cohort (Figure 3A). The association between CP score and seven types of immune

checkpoint molecules was next explored (Schreiber et al., 2011; Wang et al., 2020). The high CP score

group had significantly higher expression of the majority of immune checkpoint molecules, including

ICOSLG, PDCD1, CTLA4, and CD40, and might potentially evade immune response via these classical im-

mune checkpoint molecules in the Xiangya cohort (Figure 3B).

The GO results of GSVA confirmed that tumorigenic pathways, including regulation of ERBB signaling

pathway, Toll-like receptor signaling pathway, NF-kB transcription factor activity, glial cell activation,

and immunogenic pathways, including regulation of macrophage, chemokine production, mast cell activa-

tion, were more activated in high CP score group in Xiangya cohort (Figure S5A). The GO results of GSVA

were also validated in TCGA and meta-cohort (Table S3). Additionally, the high CP score group was signif-

icantly associated with PD-1 therapeutic effect, T cell signaling, Hypoxia signaling, exosome signaling, and

signalings of immunosuppressive cells in the Xiangya cohort (Figure S5B).

Figure 2. Immunogenic and tumorigenic characteristics of CP score in TCGA

(A) Heatmap illustrates the expression pattern of metabolic signatures in the CP score in the Xiangya cohort.

(B) Differences in the various steps of the cancer immunity cycle between high- and low-CP score groups in Xiangya

cohort.

(C) GEP score in high- and low-CP score groups.

(D) HRD in high- and low-CP score groups.

(E)Number of segments in high- and low-CP score groups.

(F) TGF-beta response in high- and low-CP score groups.

(G) Leukocyte fraction in high- and low-CP score groups.

(H) Stromal fraction in high- and low-CP score groups.

(I) IFNG score in high- and low-CP score groups.

(J) IFNG.GS score in high- and low-CP score groups.

(K) ISG.RS scores in high- and low-CP score groups.

(L) TCR Shannon in high- and low-CP score groups.

(M) TCR richness in high- and low-CP score groups.

(N) APM score in high- and low-CP score groups.
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CP score predicted immunotherapeutic responses

Immunotherapy has revolutionized cancer treatment. Therefore, the predictive value of CP score

in immunotherapeutic response was also explored. In the cohort exploring the anti-PD-1 immuno-

therapy response in GBM patients, patients responding to anti-PD-1 immunotherapy were less

likely to present a high CP score (Figure 3C). A high CP score in the melanoma dataset, GSE78220,

predicted a worse survival outcome (Figure 3D). Likewise, patients with stable and progressive

diseases were likely to present high CP scores (Figure 3E). CP score was also constructed in the

IMvigor210 cohort (urothelial carcinoma dataset). A high CP score predicted a worse survival outcome

(Figure 3F). Patients with stable and progressive diseases were likely to present high CP scores

(Figure 3G).

Functional annotation of cell pair macrophage/pericyte

Subsequently, we identified macrophage/pericyte as the most prognosis-related cell pair based on the

2-year AUC value. GBM patients were separated into two cell groups based on the relative abundance

of macrophage and pericyte, in which macrophage > pericyte was termed cell group M and

macrophage < pericyte was termed cell group P. The GO results of GSVA confirmed that immunogenic

pathways were more activated in the cell group M in TCGA (Figure S6A). And also, cell group M was signif-

icantly associated with multiple metabolic pathways (Figure S6B) and inflammatory activities (Figure S6C) in

TCGA. Based on six various algorithms, the two cell groups were significantly differentially associated with

immune suppressive cells, including Tregs, TAMs, and CAFs (Figure 4A). In addition, cell group M had

significantly higher expression of most immune modulator molecules, including TGF-b, CD27, CD80,

and CD40 (Figure S7A). The expression differences of immune checkpoint molecules in cell groups were

absent from somatic mutation and CNV but were strongly associated with methylation (Figure S7B).

Further, cell group M predicted worse survival in TCGA (Figure 4C). Moreover, the univariate and multivar-

iate cox regression analysis proved that cell pair macrophage/pericyte was a valuable prognostic marker in

GBM patients (Figure S8B).

Functional annotation of gene pair CD163/MCAM

After pairing the specific markers of macrophage and pericyte, CD163/MCAM was identified as the most

prognostic related gene pair based on the 2-year AUC value. GBM patients were then separated into two

gene groups based on the relative abundance of CD163 and MCAM, in which CD163 >MCAMwas termed

a high group, and CD163 <MCAMwas termed a low group. The GO results of GSVA confirmed that immu-

nogenic pathways were more activated in the high group in TCGA (Figure S9A). The high group was signif-

icantly associated with multiple metabolic pathways in TCGA (Figure S9B). Besides, the high group was

related to inflammatory activities in TCGA (Figure S9C). Based on six various algorithms, the two gene

groups were significantly differentially associated with immune suppressive cells, including Tregs, TAMs,

and CAFs (Figure 4B). The high group positively correlated with most immune modulator molecules,

including CD80, TGF-b, and CD40 (Figure S10A). The expression difference of immune checkpoint mole-

cules in cell groups was absent from somatic mutation and CNV but was strongly associated with methyl-

ation (Figure S10B).

Furthermore, the high group predicted worse survival in TCGA (Figure 4D). The prognostic value of gene

pair CD163/MCAMwas also explored in the five included datasets. Notably, the high group was associated

with significantly decreased survival in four datasets (Figure S8A). Furthermore, the univariate and multivar-

iate cox regression analysis proved that gene pair CD163/MCAMwas a valuable prognostic marker in GBM

patients (Figure S8C).

Figure 3. The predictive value of CP score in immunotherapy

(A) Heatmap illustrates the expression pattern of immune infiltrating cells in CP score.

(B) Heatmap illustrates the expression pattern of seven types of immunomodulators in the CP score.

(C) Expression differences of CP score in patients with or without anti-PD-1 responses. p = 0.012.

(D) Kaplan–Meier curves for two CP score groups in the GSE78220 dataset. Logrank test, p< 0.1412.

(E) CP score in groups with different anti–PD-1 clinical response statuses (CR/PR and SD/PD). Statistical significance was based on the Wilcoxon test (Wil-

coxon, p =0.036).

(F) Kaplan–Meier curves for two CP score groups in the IMvigor210 dataset. Logrank test, p = 0.00174.

(G) CP score in groups with different anti–PD-1 clinical response statuses (CR, PR, SD, PD). Statistical significance was based on the Kruskal–Wallis test

(Kruskal-Wallis, p =0.013).
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Validation of gene pair CD163/MCAM in Xiangya cohort

The high group was associated with decreased survival in the sequencing data of 73 GBM samples from the

Xiangya cohort (Figure 4E). Besides, IHC staining was performed on the 45 GBM samples from the Xiangya

cohort. Based on the H-scores of CD163 and MCAM in IHC staining results, 45 GBM samples were divided

into a high group (CD163>MCAM) and a low group (CD163<MCAM) (Figure 4G). Notably, the high group

was also associated with decreased survival based on IHC staining of the Xiangya cohort (Figure 4F).

Besides, the high group was significantly associated with PD-1 therapeutic effect, T cell signaling, hypoxia

signaling, exosome signaling, and signalings of immunosuppressive cells in the Xiangya cohort (Fig-

ure S11A). Based on six various algorithms, the high group was significantly associated with immune sup-

pressive cells such as TAMs and CAFs (Figure S11B). Additionally, the high group had higher classical im-

mune modulator molecule expression, including TIM3, TIGIT, PD-L2, PD-L1, PD-1, LAG3, IDO1, and

CTLA-4 (Figure S11C). The enhanced activities of the multiple steps in the cancer immunity cycle were

also observed in the high group (Figure S11D).

Pericytes mediate the infiltration, migration, and polarization of macrophages

To further elucidate the biological significance of gene pair CD163/MCAM and cell pair macrophage/peri-

cyte, multiplex immunofluorescence staining of macrophage markers CD68, CD163, and pericyte markers

MCAM, NG2 was performed in GBM samples. Notably, macrophage markers CD68 and CD163 were

almost coexpressed with pericyte markers MCAM and NG2 in the tumor region and perivascular area

(Figures 5A and S12). Moreover, the expression of M2 macrophage marker CD163 decreased along with

the reduced expression of pericyte markers MCAM and NG2, which suggested that pericytes might bio-

logically regulate the activity of macrophages. NG2/MCAM recognized pericytes, and cells at different dis-

tances from pericytes were quantified (Figures 5B and 5E). The number of DAPI⁺ cells, CD68⁺ cells, CD163⁺

cells, CD68⁺CD163⁺ cells, NG2⁺ cells, MCAM⁺ cells, and NG2⁺MCAM⁺ cells was calculated (Figures 5C

and 5F). Notably, increasing active pericytes were potentially surrounded by M2 macrophages

(Figures 5D and 5G). A co-cultured system between macrophage and pericyte was designed (Figure 6B).

Based on the ssGSEA algorithm, the ratio of macrophages and pericytes in the TME of GBM was approx-

imately 1:1 (Figure 6A). As microglia share thea similar property with macrophages in the CNS, the HMC3

cell line was used. So, HMC3 cells were co-cultured with primary pericyte cells at the ratio of 1:1 in the sub-

sequent experiments. The qPCR results showed that siRNA-1 and siRNA-2 could significantly suppress the

expression of MCAM (Figure 6C). The western blotting results further proved the knock-down efficiency of

this two siRNA (Figure 6D). In the co-cultured system for transwell assay, HMC3 cells had significantly

decreased ability in migration in two siRNA groups compared with the control group (Figure 6E). In the

co-cultured system for multiplex immunofluorescence staining, HMC3 cells were more likely to polarize

into M1 macrophages in two siRNA groups (Figure 6F). Correspondingly, HMC3 cells were less likely to

polarize intoM2macrophages in two siRNA groups (Figure 6G). The above results suggested that pericytes

could potentially mediate the M2-type polarization of macrophages in the TME of GBM.

DISCUSSION

MCs regulate both the immunosurveillance and immune escape of cancer cells. The prognostic value of

MCs has been reported in various cancer types. However, the overall survival benefits of multiple MCs in

GBM have not been fully explored. Moreover, considering the non-uniform reference genomes and im-

mune cell signatures, previous immune cell-derived prognostic models are limited in the cross-validation

of different transcriptomic datasets. To resolve this issue, we introduced the concept of cell pairs for con-

structing a prognostic immune signature. We explored the probability of using the relative abundance of

immune cells to calculate the CP score, which extensively eliminated the need for data normalization and

increased the accuracy of developing a signature.

Figure 4. Prognostic value of gene pair CD163/MCAM

(A) Estimation of the correlation between immune cells and cell pair macrophage/pericyte in different algorithms in TCGA.

(B) Estimation of the correlation between immune cells and gene pair CD163/MCAM in different algorithms in TCGA.

(C) Kaplan–Meier curves for two cell groups in TCGA. Logrank test, p< 0.001.

(D) Kaplan–Meier curves for two gene groups in TCGA. Logrank test, p = 0.00115.

(E) Kaplan–Meier curves for two gene groups based on sequencing data of Xiangya cohort. Logrank test, p = 0.04908.

(F) Kaplan–Meier curves for two gene groups based on IHC staining of Xiangya cohort. Logrank test, p = 0.02014.

(G) IHC staining for CD163 and MCAM in four representative samples of the Xiangya cohort (scale bar: 100um for 10X and 25um for 40X).
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Figure 5. Interaction between macrophages and pericytes

(A)Multiplex immunofluorescence staining of macrophage markers CD68, CD163, and pericyte markers MCAM, NG2 in

GBM samples.

(B) StrataQuest software recognizes pericytes by NG2/MCAM. Quantify the number of cells at different distances from

pericytes: 0–25mm (green area), 25–50mm (brown-yellow area).

(C) The scatterplot shows the number of DAPI⁺ cells, CD68⁺ cells, CD163⁺ cells, CD68⁺CD163⁺ cells, NG2⁺ cells, MCAM⁺

cells, NG2⁺MCAM⁺ cells.

(D) The scatterplot shows the number of CD68⁺CD163⁺ cells at different locations from NG2⁺MCAM⁺ cells: 0–25mm,

25–50mm.

(E) StrataQuest software recognizes pericytes by NG2/MCAM. Quantify the number of cells at different distances from

pericytes: 0–25mm (green area), 25–50mm (brown-yellow area).

(F) The scatterplot shows the number of DAPI⁺ cells, CD68⁺ cells, CD163⁺ cells, CD68⁺CD163⁺ cells, NG2⁺ cells, MCAM⁺

cells, and NG2⁺MCAM⁺ cells.

(G) The scatterplot shows the number of CD68⁺CD163⁺ cells at different locations from NG2⁺MCAM⁺ cells: 0–25mm,

25–50mm.
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Figure 6. Pericytes mediate the migration and polarization of macrophages

(A) The relative expression of macrophages and pericytes in the TME of GBM based on the ssGSEA algorithm.

(B) The flow diagram of the co-culture system between macrophages and pericytes.

(C) The relative RNA expression of MCAM in the NC and three siRNA target groups.

(D) The protein expression of MCAM in the NC group and three siRNA target groups.

(E) Transwell assay for the co-cultured pericytes. Statistical analysis of the migrated pericytes in different siRNA groups.

ll
OPEN ACCESS

iScience 25, 104918, September 16, 2022 11

iScience
Article



In this study, CP score was established in GBM samples from TCGA and could significantly stratify the OS

of GBM patients. In the Xiangya cohort, a high CP score was associated with inferior survival in GBM and

glioma patients. Likewise, ha high CP score predicted decreased survival in CGGA and GEO datasets.

CP score was a hazardous marker in all included GBM samples. Furthermore, the annotated genomic

features of the CP score revealed that the IDH1 missense mutations more frequently occurred in the

low CP score group (14%), in line with the fact that IDH mutations confer favorable survival outcomes

in glioma patients(Yan et al., 2009). PTEN and EGFR, two of the most overrepresented mutated genes

in the high CP score group (33 and 26%, respectively), have been frequently activated in GBM and confer

terrible survival outcomes in glioma patients(Benitez et al., 2017; Cancer Genome Atlas Research

Network, 2008). Surprisingly, TP53 (43%) and TTN (35%) were more enriched in the low CP score group.

CP score could also sensitively predict the IDH mutation status and may thus be a potent predictor for

the oncogenic process.

The immune characteristics of two CP score groups were summarized. The cancer immunity cycle was high-

ly active in the high CP score group, indicating an increased level of MCs. Notably, immunosuppressive

cells, including Tregs, MDSCs, TAMs, and CAFs, were more actively and abundantly observed in the

high CP score group, indicating the potential immune evasion in the TME. Moreover, GBM samples with

high CP scores presented higher tumor immunogenicity, antigen presentation capacity, and stroma signa-

tures than GBM samples with low CP scores, all of which have been used as a reliable marker in predicting

the immune escape of cancer (Tauriello et al., 2018). The significant correlation between CP score and clas-

sical immune checkpoint molecules such as ICOSLG, PDCD1, CTLA4, and CD40 also suggested that CP

score could effectively predict immune checkpoint blockade (ICB) therapy response (Zhang et al.,

2021a). The above findings suggested an orientation for including CP score as the indicator of immunosup-

pression. Immunotherapy, especially ICB, has tremendously revolutionized tumor treatment. Based on a

recent clinical trial exploring the anti-PD-1 response rates in GBM, patients with higher CP scores exhibited

lower response rates. Notably, high CP scores also predict worse survival outcomes and worse immuno-

therapy response rates in two widely used immunotherapy cohorts, the IMvigor210 cohort, and the

GSE78220 dataset.

Subsequently, macrophage/pericyte was identified as the most prognostic related cell pair. Based on the

specific markers of macrophage and pericyte, CD163/MCAM was further identified as the most prognostic

corresponding gene pair. The immunogenic and tumorigenic features of macrophage/pericyte and

CD163/MCAM revealed that macrophage and CD163 were more involved in promoting tumor progression

and suppressing the immune response. Macrophage and CD163 correlated with more immune checkpoint

molecules, and the difference in macrophage/pericyte and CD163/MCAM were not caused by mutation

but were closely connected to methylation. The prognostic value of macrophage/pericyte and CD163/

MCAM were also proved in both sequencing data and IHC staining of the Xiangya cohort.

The biological function of the interaction betweenmacrophage and pericyte has been proved during tissue

repair and inflammation (Minutti et al., 2019; Shibahara et al., 2020). However, whether the macrophage/

pericyte axis plays a role in the TME of GBM remains unknown. The remarkable biological significance

of cell pair macrophage/pericyte and gene pair CD163/MCAM in our bioinformatic analyses was further

validated in our in vitro experiments. Surprisingly, macrophage markers CD68, CD163, and pericyte

markers MCAM, NG2 was highly coexpressed in GBM samples. Pericytes also mediate the migration

andM2-type polarization of macrophages. Taken together, pericyte was proposed to correlate withmacro-

phage and regulate its biological activity in GBM. When the balance between pericyte and macrophage

was broken, cell pair macrophage/pericyte and gene pair CD163/MCAM became prognostic biomarkers.

We comprehensively collected the immune cell types in the TME and introduced a cell pair algorithm for

developing a robust immune signature in GBM. The immune signature could help identify GBM patients

Figure 6. Continued

(F)Multiplex immunofluorescence staining of M1 macrophage markers CD68, CD11c in the cocultured system between

macrophages and pericytes. Statistical analysis of the positive M1 macrophages in different siRNA groups (scale bar:

25um).

(G)Multiplex immunofluorescence staining of M2 macrophage markers CD68, CD163 in the cocultured system between

macrophages and pericytes (scale bar: 25um). Statistical analysis of the positive M2 macrophages in different siRNA

groups. Data are represented as mean GSD.
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with better immunotherapy responses. Moreover, macrophage/pericyte and CD163/MCAM significantly

affected GBM patients’ survival. Notably, pericytes could mediate the infiltration, migration, and M2

type polarization of macrophages in GBM.

Limitations of the study

The complex regulatory network leading to the prognostic cell pair macrophage/pericyte and gene pair

CD163/MCAM remains further explored. An in vivo mouse model is needed to verify the biological signif-

icance of cell pair macrophage/pericyte and gene pair CD163/MCAM.
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Further information could be directly consulted to the lead contact, Zhixiong Liu (zhixiongliu@csu.edu.cn).

Materials availability

This study did not generate new materials or reagents.

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit polyclonal anti-CD163 Proteintech 16646-1-AP

Rabbit polyclonal anti-MCAM antibody Proteintech 17564-1-AP

HRP-labeled Goat Anti-Rabbit IgG ZSGB-BIO PV9000

Rabbit polyclonal anti- NG2 antibody Proteintech 55027-1-AP

Rabbit polyclonal anti- CD68 antibody Servicebio GB113150

Rabbit polyclonal anti- CD163 antibody Proteintech 16646-1-AP

horseradish peroxidase-conjugated

secondary antibody

Servicebio GB23301

Mouse polyclonal anti-b-actin antibody Proteintech 66009-1-Ig

HRP goat anti-mouse IgG Proteintech SA00001-1

HRP goat anti-rabbit IgG Proteintech SA00001-2

Mouse polyclonal anti- CD68 antibody ThermoFisher 14-0688-82

Rabbit polyclonal anti- CD11c antibody Proteintech 17342-1-AP

Anti-mouse IgG secondary antibody ThermoFisher A11008

Anti-rabbit IgG secondary antibody ThermoFisher A11005

Deposited data

TCGAGBM UCSC Xena platform https://xena.ucsc.edu/

CGGA311 The Chinese Glioma Genome Atlas http://www.cgga.org.cn

CGGA668 The Chinese Glioma Genome Atlas http://www.cgga.org.cn

GSE4412 Gene Expression Omnibus https://www.ncbi.nlm.nih.gov/geo

GSE83300 Gene Expression Omnibus https://www.ncbi.nlm.nih.gov/geo

GSE108474 Gene Expression Omnibus https://www.ncbi.nlm.nih.gov/geo

Experimental models: Cell lines

HMC3 iCell http://www.icellbioscience.com

HUM-iCell-n011 iCell http://www.icellbioscience.com

Oligonucleotides

b-actin F ACCCTGAAGTACCCCATCGAG This paper N/A

b-actin R AGCACAGCCTGGATAGCAAC This paper N/A

MCAM F CACCGTCCCTGTTTTCTACCC This paper N/A

MCAM R TCCCCTTCCTTCAGCATTCCCA This paper N/A

Software and algorithms

R (version 3.6.3) Downloaded from the R Project for

Statistical Computing

https://www.r-project.org/

GraphPad Prism (version 8.4.3) Downloaded from the GraphPad Prism

for Statistical Computing

https://www.graphpad-prism.cn
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Data and code availability

This paper analyzes existing publicly available data and those datasets are listed in the key resources table.

The original data has been uploaded to China National Center for Bioinformation (ID: HRA001618). Data

reported in this paper will be shared by the lead contact upon request. This paper does not report the orig-

inal code. Any additional information required to reanalyze the data reported in this paper is available from

the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines

HMC3 cells were purchased from iCell and cultured in 1640 complete medium (Sigma, R8758-500ML) with

10% FBS at 37�C with 5% CO2. HUM-iCell-n011 were purchased from iCell and cultured in a specific me-

dium (iCell, Primed-icell-015) at 37�C with 5% CO2.

METHOD DETAILS

Datasets collecting and preprocessing

The publicly available GBM cohorts were collected from The Cancer Genome Atlas (TCGA; https://

xenabrowser.net/), Chinese Glioma Genome Atlas (CGGA; http://www.cgga.org.cn/), and Gene Expres-

sion Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/). A total of 523 GBM patient samples were

from TCGA. A total of 1137 GBM patient samples from 6 cohorts were defined as meta-cohort. The infor-

mation on the platforms and patient samples are provided in Table S1.

Raw data from the microarray dataset generated by Agilent and Affymetrix was downloaded from the GEO

database. Gene expression profiles generated by Illumina and corresponding clinical information were ob-

tained from TCGA and CGGA. Our previous finding provided a detailed procedure for processing the raw

data(Zhang et al., 2021d).

Datasets collecting of the Xiangya cohort

Glioma tissues were collected and written informed consent was obtained from all patients. The included

glioma tissues were approved by the Ethics Committee of Xiangya Hospital, Central South University.

Immune cell signature collection

Immune cell signatures were integrated from publicly available resources(Zhang et al., 2021c). The gene

sets of the immune cell types from different literature were combined and considered reliable.

Development of a reliable risk signature in GBM

Univariate Cox analysis was performed to screen out prognosis-associated immune cell types with prog-

nostic values in the GBM dataset, TCGAGBM (523 samples). Prognosis-associated immune cell types

(Ci) were paired with all 65 microenvironment cell types (Cj). For a cell pair started with Ci, Ci and Cj,

Score_ij = 1 (exp_Ci – exp_Cj > 0) and Score_ij = 0 (exp_Ci – exp_Cj < 0). 2 year- Area Under the Curve

(AUC) was adopted to estimate the performance of each Score_ij and find out the cell pair with statistically

significant prognosis and highest 2 year-AUC (Harrell et al., 1996). For each Ci, Score_ij was identified with

the highest 2 year-AUC. The identified cell pairs with the highest 2 year-AUC were further sorted with the

hazard ratio (HR)>1, and duplicate cell pairs were removed. Subsequently, classification was conducted

with cell pair model-based hierarchical agglomerative clustering based on the Gaussian finite mixture

model (GMM). Then, the CP score was calculated with these selected Score_ij:

CP score = S Score_ij

GBM patients were grouped into high and low CP score groups based on the cutoff value of the CP score

according to the optimal cut-off value determined by the survminer package.

Genomic alterations in CP score

Somatic mutations and copy number variations (CNVs) data corresponding to the GBM samples were

downloaded from TCGA. Somatic mutations were visualized using R package maftools. CNVs associated

with the two CP score groups were determined using GISTIC 2.0 analysis.
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Functional annotation of CP score

The gene signatures for 115 metabolism-relevant signaling pathways were from published work(Rosario

et al., 2018). Seven immune checkpoint molecules were from a previous study(Thorsson et al., 2018). The

diverse immune modulators were collected(Thorsson et al., 2018). The xCell algorithm(Aran et al., 2017),

TIMER algorithm(Zhang et al., 2017), EPIC algorithm(Racle andGfeller, 2020), MCPcounter algorithm(Becht

et al., 2016), quanTlseq algorithm(Moll et al., 2014), and CIBERSORT algorithm(Newman et al., 2015) were

used for identifying microenvironment cells in the tumor microenvironment of GBM.

Prediction of CP score in immunotherapy response

GBM samples receiving anti-PD1 immunotherapy in the PRJNA482620 dataset were collected for evalu-

ating the predictive value of CP score(Zhao et al., 2019). The IMvigor210 cohort (urothelial carcinoma

cohort) and the GSE78220 (melanoma dataset) were further used to predict the immunotherapy response

(Hugo et al., 2017; Wang et al., 2020). The processing of raw data from both datasets was based on the

DEseq2 R package. The expression value of the raw matrix was transformed to the TPM value. CP score

was calculated in these two cohorts, respectively.

Identification of cell pair macrophage/pericyte and gene pair CD163/MCAM

Based on the 2y-AUC, the most prognosis-related cell pair was explored. Functional annotation, including

biological processes, metabolic pathways, inflammatory signature, and immune infiltration, was performed

for the identified cell pair macrophage/pericyte.

CD31, NG2, PDGFR beta, MCAM, and Nestin were used as the markers for pericyte, while CD11b, CD68,

CD163, CD14, and CD16 were used as the markers for macrophage. Markers from macrophages and

markers from pericyte were then paired. The most prognosis-related gene pair was also explored based

on 2y-AUC. Functional annotation, including biological processes, metabolic pathways, inflammatory

signature, and immune infiltration, was performed for the identified gene pair CD163/MCAM.

Transcriptomic sequencing of Xiangya cohort

RNAstore-fixed tumor tissues from 105 glioma patients were used for RNA sequencing(Zhang et al., 2021d).

The detailed procedures were as follows. RNA was sheared followed by sequencing library preparation us-

ing the NEBNext Ultra RNA Library Prep Kit. After targeting region capture by biotin-labeled probes, the

captured libraries were sequenced on an Illumina Hiseq platform to generate 125/150 bp paired-end

reads. In-house perlscripts were used to process raw data (raw reads). Then, reads containing adapter

and ploy-N, and low-quality reads were removed to obtain clean data (clean reads). Reference genome

and gene model annotation files were obtained from the genome website. The index of the reference

genome was built using Hisat2 v2.0.5 and paired-end clean reads were aligned to the reference genome.

FeatureCounts v1.5.0-p3 was then used to count the read numbers mapped to each gene. The TPM value

of each gene was calculated on the basis of the gene length and reads count.

Immunohistochemistry

Patients (n = 45) undergoing the surgical removal of GBM in Xiangya Hospital, Central South University,

were the sources of tissues. Tissues were then fixed by formalin and embedded in paraffin for subsequent

obtaining of slices (4 mm). The sections were dewaxed in xylene 3 times for 10 minutes each. The dewaxed

sections were then dehydrated in 100% ethanol, 95% ethanol, 90% ethanol, 85% ethanol, 80% ethanol, and

70% ethanol for 5 minutes each time. The sections were then placed in a citric acid buffer and boiled for

antigen retrieval, and 3% H2O2 was adopted as a blocker of HRP activity from endogenesis. 5% BSA

was used for section blocking. Rabbit polyclonal anti-CD163 (Rabbit, 1:1000, 16646-1-AP, Proteintech,

China) and anti-MCAM antibody (Rabbit, 1:200, 17564-1-AP, Proteintech, China) were the primary anti-

bodies, while the HRP-labeled Goat Anti-Rabbit IgG (PV9000, ZSGB-BIO, China) was the secondary

antibody. Sections with the primary antibody were incubated at 4 degrees Celsius overnight. Substrate

(3, 30-diaminobenzidine, DAB) with a mixture of solutions 1 and 2 at 1 drop/1 mL was used for checking

the signal. Hematoxylin was used in slices-staining. An optical microscope was finally used for observation

after staining. As for the intensity score, four intensity levels, negative, weak, moderate, and strong,

were assigned with 0, 1, 2, and 3, respectively. As for extent score (proportion of stained cells), 10%,

10–25%, 25–50%, 50–75%, >75% were assigned with 0, 1, 2, 3, and 4, respectively. The H-score was calcu-

lated as extent*intensity and had the range of 0–12.
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Multiplex immunofluorescence staining

The tissue microarray was purchased from the Wuhan Bioyeargene Biotechnology company (NCT805, Wu-

han, China) and the ethics was approved. Paraffin sections of the tissue microarray of 80 cores from 35 GBM

samples and 5 normal samples (duplicated cores per case) were deparaffinized. After antigen retrieval, sec-

tions were blocked with 3% H2O2 and 2% BSA. Different primary antibodies, NG2 (Rabbit, 1:3000, 55027-1-

AP, Proteintech, China), MCAM (Rabbit, 1:100, 17564-1-AP, Proteintech, China), CD68 (Rabbit, 1:3000,

GB113150, Servicebio, China), CD163 (Rabbit, 1:3000, 16646-1-AP, Proteintech, China), were sequentially

applied, followed by horseradish peroxidase-conjugated secondary antibody incubation (1:500, GB23301,

GB23303, Servicebio, China) and tyramide signal amplification (TSA) (FITC-TSA, CY3-TSA, 594-TSA and

647-TSA (Servicebio, China)). After labeling the human antigen, the nucleus was coated with 40,6-Diami-

dino2-phenylindole dihydrochloride (DAPI), and an antifade mounting medium was applied. Multispectral

images were obtained by scanning stained slides using the Pannoramic Scanner (3D HISTECH, Hungary).

DAPI emits blue light through UV excitation wavelength 330–380 nm and emission wavelength 420 nm in

fluorescence analysis. CY3 emits red light through excitation wavelength 510–560 nm and emission wave-

length of 590 nm. 594 emits fuchsia light through excitation wavelength 594 nm and emission wavelength

615 nm. FITC emits green light through excitation wavelength 465-495nm and emission wavelength 515–

555nm. 647 emits pink light through excitation wavelength 608–648nm and emission wavelength 672–

712nm. Multispectral images were analyzed using case viewer (C.V 2.3, C.V 2.0) and pan luminosity viewer

(P.v 1.15.3) image analysis software, and positive cells were quantified at the single-cell level. The spatial

analysis of the stained cells was performed using the StrataFAXS software.

RT-qPCR assay

The primers of b-actin (F ACCCTGAAGTACCCCATCGAG; R AGCACAGCCTGGATAGCAAC) and MCAM

(F CACCGTCCCTGTTTTCTACCC; R TCCCCTTCCTTCAGCATTCCCA) were designed using the primer

5.0. Total RNAs were extracted and reversely transcribed into cDNA by HiScript Q RT SuperMix for RT-

qPCR. The expression levels of b-actin and MCAM were quantified using 2-DDCT.

Western blotting assay

The western blotting assay assessed the expression level of MCAM and b-actin. Anti-MCAM (Rabbit,

1:2000, 17564-1-AP, Proteintech, China) and anti-b-actin (Mouse, 1:5000, 66009-1-Ig, Proteintech, China)

were used as the primary antibody. HRP goat anti-mouse IgG (Mouse, 1:5000, SA00001-1, Proteintech,

China) and HRP goat anti-rabbit IgG (Rabbit, 1:6000, SA00001-2, Proteintech, China) were used as the sec-

ondary antibody. ECL development was used for visualization.

Coculture of HMC3 and human microvascular pericyte for transwell assay

Human microvascular pericyte (HUM-iCell-n011) and human microglia cell line (HMC3) were purchased

from iCell (http://www.icellbioscience.com). At the density of 2 3 105/mL, human microvascular pericytes

were added to the 6-well plate and transfected with si-NC and si-MCAM. The treated human microvascular

pericytes were then digested and resuspended using 10% DMEM and were added to the lower chamber.

After human microvascular pericytes were transfected for 48h, HMC3 cells were also digested and resus-

pended at 1 3 106/mL. 100ul HMC3 cells were added to the upper chamber. At the ratio of 1:1, human

microvascular pericytes and HMC3 cells were cocultured for 48h. After being washed with phosphate buffer

saline (PBS) twice, the upper chamber was fixed using acetone and methyl alcohol at the ratio of 1:1 for

20 min. The upper chamber was then stained with 0.5% crystal violet for 5 min for photographing.

Coculture of HMC3 and human microvascular pericyte for multiplex immunofluorescence

staining

The transfected humanmicrovascular pericytes were added to the upper chamber (13 105 each well), while

HMC3 cells were added to the lower chamber and placed on the cell slides (1 3 105 each fall). After cocul-

turing for 24h, the cell slides were washed twice with PBS and fixed with 4% paraformaldehyde for 30 min.

0.3% triton was added to the cell slides for 30 min under 37�C. The cell slides were blocked with 5% BSA for

60 min. After being washed with PBS three times, the cell slides were added with primary antibodies CD68

(1: 50, Mouse, 14-0688-82, ThermoFisher, America), CD11c (1: 50, Rabbit, 17342-1-AP, Proteintech, China),

and CD68 (1: 50, Mouse, 14-0688-82, ThermoFisher, America), CD163 (1: 50, Rabbit, 16646-1-AP, Protein-

tech, China), respectively. Anti-mouse (1:200, A11008, ThermoFisher, America) and anti-rabbit (1:200,

A11005, ThermoFisher, America) IgG secondary antibodies were then added. The cell nucleus was stained
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with DAPI for 10 min. The cell slides were finally blocked with buffer glycerin and observed with a

microscope.

QUANTIFICATION AND STATISTICAL ANALYSIS

Survivorship curves were generated using the R package survminer. The univariate and multivariate Cox

regression analyses determined the clinical significance of prognostic factors. Correlation coefficients

were calculated by Pearson correlation to analyze. The receiver operating characteristic (ROC) analysis

was visualized using the R package pROC. The R package maftools were used for depicting the mutation

landscape of TCGA via OncoPrint(Gu et al., 2016). For normally distributed variables, significant quantita-

tive differences between and among groups were determined by a two-tailed t-test or one-way ANOVA,

respectively. For nonnormally distributed variables, significant quantitative differences between and

among groups were determined by a Wilcoxon test or a Kruskal–Wallis test, respectively. All statistical an-

alyses were performed on R project 3.6.3 and GraphPad Prism 8.4.3. p < 0.05 was considered statistically

significant.
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