
  Transl Androl Urol 2021;10(3):1410-1431 | http://dx.doi.org/10.21037/tau-20-592© Translational Andrology and Urology. All rights reserved.

Introduction

Infertility is defined by the World Health Organization 
as “a disease characterized by the failure to establish a 
clinical pregnancy after 12 months of regular, unprotected 
sexual intercourse” (1). Although the causes of infertility 
are often complicated and difficult to identify, health and 
lifestyle factors affect the ability of both men and women 
to reproduce. In men, abnormalities in sperm count, 
morphology and motility all have an impact on successful 
fertilization (2). Oxidative stress, which is an imbalance 
between oxygen-derived free radicals and antioxidants 
leading to cell damage, has also been identified as a factor 
which may affect sperm quality and fertilization potential (3).

Nearly 50 million couples worldwide experience 
infertility (4,5). According to the 2009–2010 Canadian 
Community Health Survey, estimates of the prevalence 
of infertility in Canada range from 10% to 15.5% of 

couples (6). Male factor infertility accounts for 20–30% 
of total cases, with an additional 20–30% being due to a 
combination of male and female factor infertility (7). 

There is mounting evidence to suggest a relationship 
between various dietary components and fertility. While 
adherence to a prudent diet appears to be protective for 
fertility in both men and women, results from randomized 
controlled trials (RCTs) on the effect of specific antioxidant 
and micronutrient supplements are less consistent (8-10). 
The inconsistent results from supplementation studies 
may be due, in part, to genetic differences in absorption, 
distribution, metabolism and excretion of specific dietary 
components. However, little research to date has examined 
how genetic variation modifies the relationship between 
diet and fertility. Ultimately, knowledge of an individual’s 
genotype could lead to the development of tailored 
nutritional recommendations to optimize fertility. The 
present review summarizes the evidence on the relationships 
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between specific dietary components (micronutrients, 
macronutrients, and other food bioactives) and fertility in 
men. The potential effects of genetic variation on these 
relationships are discussed (summarized in Tables 1,2).

Micronutrients and male fertility

Vitamin A

Vitamin A plays an important role in both male and female 
reproductive health. Vitamin A supports the immune 
system, which mediates reactive oxygen species (ROS) 
activity and thus protects the gonads and reproductive 
tissues from oxidative stress (68). Vitamin A circulates in 
two main forms in the body: beta-carotene (inactivated) 
and retinol (activated). Retinoic acid, another vitamin A 
metabolite, may play a role in male fertility via its influence 
on regulation of sperm morphology and concentration 
(Figure 1) (68-70). 

Retinoic acid induces spermatogenesis during early 
development and throughout childhood (71). Higher serum 
retinol has been observed in men with normozoospermia 
compared to those with oligospermia, asthenozoospermia, 
and azoospermia (68). With a deficiency of retinoic acid, 

the blood-testis barrier (BTB) is compromised by halting 
meiosis I/II and post-meiotic spermatid development, which 
occurs behind the immunological BTB (12,13). Vitamin 
A deficiency damages the seminiferous epithelium of the 
epididymis, prostate, and the seminal vesicle, which results 
in the termination of spermatogenesis (71). Despite vitamin 
A deficiency leading to early cessation of spermatogenesis, 
one recent study found that long-term chronic excessive 
intake of vitamin A impairs sperm production, morphology, 
motility and viability in mice (72). 

The beta-carotene mono-oxygenase 1 (BCMO1) enzyme, 
which is encoded by the BCMO1 gene, converts circulating 
beta-carotene to retinol (Figure 1). It has been shown that 
about 70% of individuals possess the GG variant of the 
BCMO1 (rs11645428) gene (73), which is associated with 
inefficient conversion of beta-carotene to retinol (11). Two 
genes that play a role in spermatogenesis in humans, STRA8 
and REC8, are both induced by retinoic acid (74). Sequence 
variants in genes encoding tight junction proteins that 
fortify the BTB have yet to be identified. Further studies 
are needed to identify all proteins involved in vitamin A 
metabolism, sperm development and vitality. Additional 
human studies exploring toxicity of excessive vitamin A 
intake on male fertility parameters are also needed.

Table 1 Overview of the potential impact of genetic variation in micronutrient metabolism on male fertility

Micronutrient Gene and SNP Impact

Retinoic Acid BCMO1: rs11645428 (11) Meiosis I/II and post meiotic spermatid development (12,13)

Vitamin B12 FUT2: rs602662 (14) Sperm count, quality and motility (15)

Vitamin C GSTT1: insertion or deletion (16) Semen volume, concentration, sperm count, morphology 
and motility (17)

Vitamin D CYP2R1: rs10741657 (18); GC: rs2282679 (18,19) Sperm motility and morphology (20); sex hormone binding 
globulin (SHBG) (21)

Vitamin E CYP4F2: rs2108622 (22); SCARB1: rs11057830 (22); 
APOA5: rs12272004 (22)

Acrosome reaction (23); sperm morphology (24)

Folate MTHFR: rs1801133 (25) Sperm density and morphology (26)

Choline CHDH: rs12676 (27,28); PEMT: rs4646343 (29); PEMT: 
rs7946 (29)

Sperm motility (27,28)

Betaine CHDH +432: rs12676 (30); PEMT -744: rs12325817 (30) Spermatogenesis (31)

Iron TMPRSS6: rs4820268 (32); TFR2: rs7385804 (33); 
HFE: rs1800562 (34); SLC17A1: rs17342717 (35); HFE: 
rs1799945 (34); TF: rs3811647 (34)

Spermatogenesis (36); sperm volume, density, motility and 
morphology (37); excess leads to oxidative DNA damage (38)

Calcium GC: rs7041 (39); GC: rs4588 (39) Sperm maturation (40), motility (41), morphology (42), and 
overall function (43,44)
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Figure 1 Vitamin A metabolic pathway. Beta-carotene mono-oxygenase 1 (BCMO1) converts circulating beta-carotene to retinal (aldehyde), 
the aldehyde form is then converted into retinoic acid. Retinoic acid induces STRA8 and REC8 expression, which aids in spermatogenesis.

Table 2 Overview of the potential impact of genetic variation in metabolism of macronutrients and other food bioactive ingredients on male 
fertility

Dietary component Gene and SNP Impact

Ratio of unsaturated to saturated fat TCFL2: rs7903146 (45,46) Improper ratio can lead to obesity, insulin resistance, 
negatively impacting semen quality (47,48)

Omega-3 NOS3: rs1799983 (49); FADS1: rs174547 
(50); FADS2: rs2727270, rs498793 (51,52)

Sperm motility; membrane fluidity; sperm 
concentration (53,54)

Saturated fat APOA2: rs5082 (55) Elevated BMI; sperm count, concentration, motility, 
morphology (56,57)

Sugar GLUT2: rs5400 (58) Sperm motility and count (59)

Fiber TCF7L2: rs12255372 (60) Low fiber diet can lead to insulin resistance and type 
2 diabetes, negatively impacting spermatogenesis, 
sperm maturation (61)

Gluten HLA: rs2395182, rs7775228, rs2187668, 
rs4639334, rs7454108, rs4713586 (62)

Androgen resistance (63); sperm morphology and 
motility (64)

Caffeine CYP1A2: rs7662551 (65) Sperm motility, count and morphology improved at 
low amounts (66); testosterone levels and sperm 
volume impaired on high amounts (67)

Beta-Carotene 
[Plant Sources]

Retinoic acid

Retinol esters  
[Animal Sources]

Retinol

BCMO1 − Beta-carotene mono-oxygenase 1
RALDH − Retinaldehyde dehydrogenase
CYP26 − Cytochrome P450−26

Spermatogenesis

Hydroxylated retinoic 
acid products (inactive)

Retinal

RALDH
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BCMO1  

Gene
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Vitamin B12 

Vitamin B12, in combination with folate, plays an integral 
role in the remethylation cycle of homocysteine (Hcy) to 
methionine (Met) (Figure 2) (75). Circulating homocysteine 
concentrations have been positively associated with oxidative 
stress (76). Vitamin B12 acts as a cofactor to the enzyme 
methylene-tetrahydrofolate-reductase, which catalyzes 
the remethylation of homocysteine to methionine (77).  
Hyperhomocysteinemia, a condition associated with 
poor in-vitro fertilization outcomes and reduced sperm 
concentration, quality (DNA fragmentation index) and 
motility (78-80), is most often attributable to low folate and 
vitamin B12 levels (80). 

In addition to vitamin B12 obtained from food, the stability 
of human plasma concentrations depends on gut de novo  
microbial biosynthesis and transport (81). In humans, the 
fucosyltransferase 2 (FUT2) enzyme is regulated by the 
FUT2 gene and is responsible for vitamin B12 homeostasis 

and transport throughout the body. Variation in the FUT2 
gene is associated with differing levels of circulating vitamin 
B12. Indeed, the GG variant of FUT2 (rs602662) is linked 
to lower plasma vitamin B12 (14) and has been observed in 
about 50% of the population (82). Since dietary vitamin 
B12 is only naturally derived from animal food sources, 
vegetarians and vegans are at an increased risk of vitamin 
B12  deficiency if supplementation does not occur, and this 
risk is even greater among those with the GG genotype for 
FUT2 rs602662 (14). The relationship between vitamin B12 

intake and fertility may, therefore, be partly mediated by the 
FUT2 genotype. 

Circulating vitamin B12 levels also correlate with sperm 
concentration, motility, morphology and sperm DNA 
damage (15). Low plasma levels of vitamin B12 have been 
associated with male infertility (83). Few studies have 
reported on the role of dietary B12 on semen parameters in 
humans (80,84). Recent in vitro evidence has shown that 

Figure 2 Folate metabolic pathway. Methylene tetrahydrofolate reductase converts 5,10-methylenetetrahydrofolate, an intermediate in the 
folate metabolic cycle, to 5-methyltetrahydrofolate (5-MTHF). 5-MTHF is a methyl group donor in the conversion of homocysteine to 
methionine. 
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B12 insufficiency resulting in hyperhomocysteinemia creates 
a toxic environment which reduces both sperm count and 
motility (85). Overall, the available evidence emphasizes 
the importance of vitamin B12 in male reproductive health 
through its role in Hcy metabolism and nucleic acid 
synthesis.

Vitamin C

Vitamin C, or ascorbic acid, has various physiological 
functions including aiding in tissue and hormone 
development, acting as a co-factor for enzymes and reducing 
oxidative damage via its role as a powerful antioxidant (86).  
Enzymes called glutathione S-transferases, or GSTs, are 
responsible for maintaining the glutathione-ascorbic 
acid antioxidant cycle. The GSTT1 enzyme aids in the 
conversion of dehydroascorbic acid into ascorbic acid, and is 
encoded by the glutathione S-transferase T1 gene (GSTT1). 
Variation in this gene, specifically, possessing two copies of 
the deletion variant of GSTT1, which has been observed in 
20–40% of the population, depending on ethnicity (35), can 
impair GSTT1 enzymatic activity (87). GSTT1 genotype 
influences the relationship between dietary intake of vitamin 
C and circulating ascorbic acid. Individuals homozygous for 
the deletion variant of GSTT1 are at a much greater risk of 
being deficient when they do not meet the recommended 
daily allowance (RDA) for vitamin C (16). Results from a 
small (N=24) two-week intervention providing a high fruit 
juice and vegetable antioxidant-rich diet in healthy males 
and females with varying glutathione-S-transferase (GST) 
genotypes showed evidence of an increase in GST activity in 
the GSTT1+ group compared to baseline and the GSTT1– 
group (16). There was evidence that plasma vitamin C levels 
in the GSTT1 deletion group were different from baseline, 
while there was no difference in total antioxidant capacity or 
retinol levels. Dietary intake did not differ between groups, 
leading to the conclusion that response to the diet varied 
by genotype. Therefore, it may be especially important for 
individuals who are homozygous for the deletion variant of 
GSTT1 to meet the vitamin C RDA for both overall and 
reproductive health. 

Vitamin C intake has been positively associated with 
healthy semen parameters, as dietary intake influences 
seminal ascorbic acid concentrations (88). Seminal ascorbic 
acid concentrations can measure up to 10 times that of serum 
ascorbic acid (89) and have been shown to protect against 
oxidative damage to sperm DNA when sufficient (90).  
Ascorbic acid may account for 65% of seminal antioxidant 

activity (91) and affects the integrity and structure of 
sperm by promoting an environment where sperm can 
thrive, develop and reproduce, minimizing structural and 
functional flaws (86). Despite some studies showing no 
benefit of vitamin C to sperm quality (92-94), other studies 
including RCTs have supported a positive association 
between vitamin C intake, serum and semen ascorbic acid 
concentrations, and healthy semen parameters including 
semen volume, and sperm concentration, number, motility 
and morphology, and overall fertility (95). Higher dietary 
vitamin C intake has been linked to reduced sperm DNA 
damage (90,96-98) and low levels of seminal vitamin C have 
been associated with higher sperm DNA fragmentation in 
infertile men (99).

Variation in the GSTT1 gene influences susceptibility 
to deficiency of vitamin C (16). Despite the evidence for 
beneficial effects of vitamin C on male fertility, consuming 
an excess amount of vitamin C poses the risk of promoting 
oxidative stress by acting as a pro-oxidant (100). Further 
research is needed to determine concentrations at which 
this effect occurs (101).

Vitamin D

Vitamin D has a well-known role in bone health through 
modulation of calcium metabolism as well as a variety of 
other proposed functions such as immune and inflammatory 
modulation and reproductive system regulation (102,103). 
Vitamin D can be obtained through the diet and through 
endogenous production after exposure to sunlight (104). To 
exert its biological functions, both dietary and endogenous 
vitamin D must be activated to 1,25-hydroxyvitamin D 
by the enzyme vitamin D 25-hydroxylase (105), which is 
regulated partly by the CYP2R1 gene (18). Activated vitamin 
D is transported throughout the body by the vitamin 
D binding protein (DBP), which is encoded by the GC  
gene (18). Certain variants of both genes impact functioning 
of both vitamin D 25-hydroxylase and DBP, such that 
individuals who possess the GG or GA variant of CYP2R1 
(rs10741657), and/or the GG variant of GC (rs2282679), 
together prevalent in over 80% of the population (106,107), 
have an increased risk of lower circulating vitamin D (18,19). 

The biologically active 1,25-hydroxyvitamin D binds 
to target genes via the vitamin D receptor (VDR), 
triggering their transcription and subsequent physiological 
effects (108). The VDR and the 25-hydroxyvitamin D 
metabolizing enzyme 1α-hydroxylase (CYP27B1) have active 
roles in sperm motility. CYP24A1 expression has also been 
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identified as a differential marker for sperm quality (109). 
VDRs are present in the testicular Leydig cells, epididymis, 
prostate, seminal vesicles and sperm (110), suggesting a 
need for vitamin D in such tissues for spermatogenesis 
and sperm maturation (109,111). Vitamin D modulates 
cholesterol and triglycerides in sperm head membranes, 
which are important for the protection of sperm DNA, 
and may potentially have an impact on sperm viability, 
motility, and fertilization capacity (110,112). Vitamin 
D’s role in maintaining calcium homeostasis may also 
contribute both to motility and to the acrosome reaction, 
which potentiates fertilization (20,113,114). Human studies 
analyzing circulating vitamin D and semen parameters 
are less common than rodent models, but some have 
shown that serum 25-hydroxyvitamin D concentrations 
correlate positively with sperm motility and normal  
morphology (20) as well as circulating testosterone levels 
(115-117). However, there appears to be a U-shaped 
relationship between serum vitamin D and androgen 
concentrations, where both deficiency and excess may be 
associated with adverse reproductive outcomes (118).

In  a  RCT invest igat ing  the  e f fects  o f  d ie tary 
supplementation on sperm motility in men with idiopathic 
oligoasthenozoospermia, eighty-six participants were 
divided into two equal groups and given 200 IU vitamin D 
and 600 mg calcium daily, or 100 mg vitamin E and 100 mg 
vitamin C daily for 3 months (119). There was evidence that 
sperm count per ejaculate increased in the calcium/vitamin 
D group, while there was no evidence of a difference in 
the lower dose supplementation group from baseline. The 
calcium/vitamin D group achieved pregnancy in 16.3% of 
cases, compared to 2.3% in the vitamin E/vitamin C group. 
Another RCT of 300 infertile men in Denmark investigated 
the effect of 1,400 IU vitamin D and 500 mg calcium daily 
for 5 months on male infertility by analyzing the relationship 
between serum 25-hydroxyvitamin D concentration with 
ionized calcium on testicular function (120). The baseline 
characteristics suggested that infertile men with vitamin 
D deficiency had fewer motile sperm, lower sex hormone 
binding globulin (SHBG) and a lower testosterone/
estradiol ratio. Men with serum 25-hydroxyvitamin D  
>75 nmol/L [considered sufficient (121)] had higher sperm 
motility compared to men with serum 25-hydroxyvitamin 
D <25 nmol/L [considered deficient (121)]. However, the 
study showed that there was no evidence of an association 
between vitamin D supplementation and sperm parameters 
(morphology, motility and DNA fragmentation) between 
the two study groups or in comparison to baseline within 

each group. The noted difference in hormone profiles were 
higher free testosterone and estradiol and lower SHBG 
levels in men with serum 25-hydroxyvitamin D <25 nmol/L.  
Furthermore, higher spontaneous pregnancy rates were 
seen in couples with the male in the vitamin D/calcium 
supplementation group. Lower calcium intake levels were 
associated with higher sperm motility and a more favourable 
hormone profile (21). 

A study compared serum 25-hydroxyvitamin D with 
serum 1,25-dihydroxyvitamin D levels in males with 
fertility and infertility (122), and results showed no evidence 
of an association between serum 25-hydroxyvitamin D  
concentrations and semen parameters, but there was evidence 
of an association between higher 1,25-dihydroxyvitamin D 
concentrations and improved sperm motility and total sperm 
count in infertile men. This suggests 1,25-dihydroxyvitamin 
D concentration may potentially have a stronger association 
with sperm parameters in comparison to circulating 
25-hydroxyvitamin D.

Vitamin E

Vitamin E, or alpha tocopherol, is a vital antioxidant in the 
cell membrane supporting reproductive function in men. It 
has been observed that there is inter-individual variability 
in the metabolism of α-tocopherol in humans and mice fed 
vitamin E-enriched diets (123). Bioavailability of vitamin 
E varies by age, gender, absorption, catabolism and the 
presence of other nutrients, such as vitamin K (124). Single 
nucleotide polymorphisms (SNPs) associated with variation 
in vitamin E status encode for cytochrome P450 4F2 
(CYP4F2), a plasma membrane receptor for HDL which is 
involved in tissue uptake (SCARB1), and genetic variance in 
APOA5 (22).

In men, sperm membranes are composed of cholesterol, 
phospholipids, and polyunsaturated fatty acids (125). 
Appropriate distribution and proportion of these 
components are integral to the function and vitality 
of sperm. As an antioxidant and protector of sperm 
membrane lipids, vitamin E is important in promoting 
motility and proper morphology of sperm (24), as well as 
fertilization within the acrosome reaction (23). Dietary 
vitamin E correlates with both serum and seminal alpha-
tocopherol levels (126,127), which are positively related 
to fertility (128) and normal sperm parameters (68). RCTs 
have shown improved sperm motility and reduced lipid 
peroxidation in sperm as a result of vitamin E and selenium 
supplementation (126,127), which was also associated with 
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greater chance of clinical pregnancy (24). Further research 
is needed on the combination of genetic factors that 
predicts vitamin E status and its effect on semen parameters 
and fertility.

Folate

Folate, or vitamin B9, is best known for its preventative 
effects on the development of neural tube defects (NTDs) 
in a fetus during the early stages of pregnancy (129). The 
methylene tetrahydrofolate reductase (MTHFR) enzyme 
is one of the enzymes involved in converting folate to 
5-methyltetrahydrofolate, which is a methyl group donor in 
the conversion of Hcy to Met (Figure 2) (130). The MTHFR 
gene regulates MTHFR enzyme activity (131). A common 
variant of the gene is the 677TT genotype, which affects 
approximately 40% of the population (132), is associated 
with reduced capacity to methylate DNA, lower levels of 
circulating folate and higher serum Hcy concentrations (25). 

Low levels of serum and seminal folate can result in 
high levels of Hcy, which may induce oxidative stress, 
sperm DNA damage and apoptosis lowering sperm 
counts (78,79,133). Though some studies have shown 
no relationship between folate intake and semen quality  
(134-137), others suggest a positive effect of folate intake on 
male reproductive health. Folate supplementation has been 
positively associated with lower sperm injury (98), higher 
sperm density, normal sperm morphology (80), overall 
higher semen quality (26) and negatively associated with 
infertility (84). RCTs have shown that folate supplements 
increase sperm concentration (136,138) and motility (139) 
among men. 

The MTHFR gene has been associated with fertility in 
men. Specifically, the 677TT genotype has been associated 
with infertility (140), azoospermia (80,141-143), sperm 
DNA fragmentation, and spontaneous abortion (144). Low 
sperm concentration related to possession of the 677TT 
genotype can be improved with folate supplementation (134). 
Thus, adequate folate intake may play a part in offsetting 
the effect of MTHFR genotype on semen parameters. 
A study investigating the relationship between Hcy and 
MTHFR SNP carriers emphasized the importance of 
analysis in couples experiencing infertility is important. The 
study concluded that physiological doses of 5-MTHFR are 
more effective than high doses of folic acid in reducing Hcy 
levels and improving the methylation process for MTHFR 
SNP carriers (145).

Choline

Choline is an essential nutrient found in a variety of foods 
in the diet, with high concentrations found in animal-
based products such as liver, eggs, and wheat germ (146). 
It is present in dietary sources in both hydrophilic and 
lipophilic forms, which affect absorption and metabolism 
within the body (147). Despite being an essential nutrient, 
intake for women and men frequently falls below the 
recommended adequate intake level (148). Choline is 
an important source of one carbon (1C) units for DNA 
methylation (149) and is critical for regulation of gene 
expression as well as for the biosynthesis of lipoproteins 
and membrane phospholipids (150). Single nucleotide 
polymorphisms in the choline metabolizing gene choline 
dehydrogenase (CHDH) are associated with greater risk 
for infertility. It has been reported that men with a genetic 
variation in CHDH (rs12676) had reduced sperm motility 
or asthenospermia (27,28). SNPs in folate and choline 
metabolizing genes increase the need for dietary choline 
by favoring phosphatidylcholine (PC) biosynthesis via 
the cytidine diphosphate-choline pathway (29,151). As 
phosphatidylethanolamine N-methyltransferase (PEMT) 
catalyzes the synthesis of choline, PEMT variants rs4646343 
and rs7946 also affect endogenous phosphatidylcholine 
homeostasis (29). 

Betaine

Betaine is a naturally occurring amino acid found in high 
concentrations in seafood and whole wheat products (152).  
This nutrient functions to protect cells from environmental 
stressors, including differences in osmolarity and temperature, 
and is a methyl donor in the Hcy-Met cycle (152). Betaine 
consumption in animal studies have been shown to raise 
sperm density and improve spermatozoa quality, with 
these effects occurring on a timespan shorter than one 
spermatogenic cycle (153). 

Circulating betaine concentration depends on both 
folate and choline metabolism, and betaine status can 
be impacted by polymorphisms through two pathways: 
choline dehydrogenase, CHDH (+432 G→T; rs12676) 
and phosphatidylethanolamine N-methyltransferase 
(PEMT; −744 G→C; rs12325817) genes (30). Studies of 
MTHFR knockout mice have found a beneficial effect of 
betaine on spermatogenesis (31), and in folate deficiency, 
both betaine and choline supplementation prevent DNA 
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hypomethylation (154). In humans, the consumption of 
a varied and balanced diet with adequate supply of both 
choline and betaine may mitigate loss of activity in the 
CHDH pathway on fertility (155). 

Iron 

Iron is an essential nutrient for the maintenance of healthy 
red blood cells, oxygen transport in the blood, immune 
function and free radical homeostasis (156). Deficiency 
can lead to impaired immune function and compromised 
oxygen availability to bodily tissues (156); however, iron in 
excess can act as a pro-oxidant and cause iron overload, in 
which iron deposits in tissues, impairing their function (157). 

Iron is essential to ejaculate fluidity and maintaining 
sperm pH within a functional range (158). In addition, 
Sertoli and Leydig cells are sources of ferritin, an 
iron transport protein, to developing sperm. Ferritin 
also protects testicular tissue (159,160). Furthermore, 
mitochondrial redox reactions create ATP, which support 
spermatogenesis and contribute to sperm motility, but 
require oxygen to occur (161,162). Iron deficiency anemia, 
a manifestation of low serum iron, results in reduced 
circulatory oxygen transport and therefore creates a hypoxic 
environment to the testes (36). Individuals with health 
conditions leading to low serum iron such as sickle cell 
disease often have compromised fertility; men with the 
condition are known to have reduced ejaculate volume, 
sperm density, motility, and morphology (37). However, it 
is difficult to attribute compromised fertility parameters to 
low serum iron alone. 

Though dietary iron relates to individual iron status, 
individual variation may in part be controlled by genes 
that regulate iron absorption and transport in the 
body, specifically TMPRSS6, TFR2 and TF genes. The 
transmembrane protease, serine 6 (TMPRSS6) gene 
codes for matriptase-2, a protein that influences hepcidin, 
which controls iron absorption at the gut epithelium. The 
transferrin receptor 2 (TFR2) gene regulates the TFR2 
protein that aids in iron transport across cell membranes, 
and the transferrin (TF) gene codes for transferrin, which 
carries iron in the blood. Variation in each of these genes 
can cause reduced functioning of the proteins they code for, 
which collectively can impact individual risk for low iron 
status (32-34). Individuals with variants of these genes that 
increase risk of iron deficiency may require higher dietary 
iron, or supplemental iron. 

Conversely, genetic variation in the human hemochromatosis, 

or HFE, and sodium-dependent phosphate transport 
protein 1 (SLC17A1) genes can alter coding of HFE and 
SLC17A1 proteins, which also influence gut absorption of 
iron and risk of iron overload (33,35,163). Iron overload 
poses risk for detrimental effects to the male reproductive 
system. Excess iron levels in seminal plasma have been 
associated with teratozoospermia and decreased motility, 
with the proposed mechanism being increased levels of 
reactive oxygen species leading to lipid peroxidation (164). 
Additionally, high levels of testicular iron are associated 
with impaired spermatogenesis (159), as well as direct 
damage to sperm (165). Iron deposits in the pituitary gland 
can lead to lower levels of testosterone (166). Further, any 
antioxidant in high quantities can exhibit pro-oxidative 
effects. Iron can cause oxidative damage to sperm DNA (38), 
and impair spermatogenesis and fertility in excess (167,168). 
Those possessing genetic variants that increase risk of iron 
overload are advised not to over-consume iron rich foods 
and should avoid combining iron- and vitamin C-containing 
foods as the presence of an acid helps keep iron in its more 
soluble ferrous form (Fe2+) (169). Additionally, individuals at 
risk for iron overload may be recommended to make dietary 
changes from sources of heme to non-heme iron, which 
is absorbed less efficiently than heme iron. Both low iron 
status and iron overload are conditions that can adversely 
impact the reproductive system. Monitoring dietary and 
genetic factors can help to achieve iron homeostasis.

Calcium

Calcium is important for a variety of functions in the 
body including promoting bone health, heart function, 
blood clotting and muscular contractions (170). It also 
plays a role in reproductive health due to its effects on 
vitamin D homeostasis, inflammation, and facilitating  
fertilization (171). Circulating calcium levels and, 
therefore, calcium available to reproductive tissues can be 
determined in part by individual genetic differences. The 
GC gene encodes vitamin D-binding protein, which helps 
regulate vitamin D absorption and transport. This affects 
circulating calcium levels since vitamin D is necessary 
for its metabolism and homeostasis. Individuals with the 
G allele of GC rs7041 and C allele of GC rs4588, which 
affects approximately 60% of the population (172,173), 
are at a higher risk for low circulating vitamin D, which is 
associated with lower circulating calcium, when calcium 
intake is low (39).

In men, calcium is known to regulate sperm motility (174) 
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and is responsible for triggering the acrosome reaction, 
which allows for effective fertilization (175,176). Epididymal 
and prostate fluid contains 2–3 times the amount of calcium 
found in serum (177), suggesting its essence in sperm 
development and function. Though the mechanism through 
which calcium regulates fertility in men is not fully known, 
it has been demonstrated that vitamin D deficient mice that 
become hypocalcemic can restore fertile capabilities with 
calcium supplements only (171,178). This may be due to 
the positive effect of calcium on sperm maturation (40), 
motility (41), morphology (42) and overall function (43,44). 

Other food bioactive ingredients and male fertility

Gluten

Celiac  disease (CD) is  an autoimmune-mediated 
enteropathy of the small intestine characterized by 
intolerance to dietary gluten in individuals with susceptible 
genotypes, human leukocyte antigens (HLA)-DQ2 and 
-DQ8, which are necessary but not sufficient for onset of 
disease (62). Ninety-nine percent of people with CD possess 
the DQ2 and DQ8 risk variants, which can be determined 
by 6 SNPs in the HLA gene region, compared with 30% of 
the general population (179,180). Two immune pathways 
are involved in CD; one through deamidation of glutamine 
residues in gluten peptides by human transglutaminase 
2 and generation of autoantibodies, and the other by 
activation of  the innate immune system, leading to atrophy 
of intestinal villi (181). A viral infection model suggests 
that reovirus infections may trigger loss of oral tolerance of 
gluten (182). In addition, the microbiome plays pathogenic 
and protective roles through interactions that may modulate 
autoimmune risk in individuals with HLA-DQ2 (183).

CD is associated with extra-intestinal symptoms, such as 
infertility and decreased bone density (63,184,185). Before 
treatment with a strict gluten-free diet, men may experience 
impaired pituitary regulation of gonadal endocrine  
function (186). The inflammatory response to gluten 
consumption in individuals with gluten intolerance creates 
an adverse environment for reproductive tissue maintenance 
and function (187). Available evidence does not show an 
increased risk of subfertility in men with CD, although 
auto-antibodies can be found in seminal fluid of men with 
unrecognized disease (187,188). 

Anti-sperm antibodies associated with the autoimmune 
response that CD incurs when gluten is consumed, as well 
as compromised nutritional status due to the disease, may be 

related to the pathogenesis of reduced sperm morphology 
and motility (64). The gut is a site of conversion of 
testosterone to dihydrotestosterone and influences hormone 
metabolism (189). In untreated celiac disease, low levels of 
testosterone and subsequent hormone imbalances can cause 
hypogonadism (63) and hypothalamic pituitary resistance, 
oligospermia, and azoospermia, disrupting reproductive 
function (64,190). However, with the removal of gluten 
from the diet, semen parameters can increase and fertility 
can be restored (191). Further consequences of untreated 
CD in men include micronutrient deficiencies. These can 
include folate, vitamin A, vitamin E, zinc, and selenium, all 
of which play an important role in maintaining reproductive 
health and protecting fertile tissues (192). Further research 
on this topic is warranted as more fortified, functional 
gluten-free foods come to the marketplace and these may 
reduce the risk of micronutrient deficiencies associated with 
a gluten-free diet (193,194). 

Caffeine

Studies linking caffeine consumption to various health 
outcomes remain inconsistent. This may be due, in part, to 
genetic differences in caffeine metabolism. The cytochrome 
P450 1A2 (CYP1A2) gene codes for the CYP1A2 enzyme, 
which is responsible for 95% of caffeine metabolism 
within the body (65,195). Individuals with the CA or CC 
genotypes of rs762551 make up approximately 60% of the  
population (196), and are known to metabolize caffeine 
slower than those who have the AA genotype (65). Slower 
clearance of caffeine from the bloodstream in combination 
with high consumption is associated with increased risk 
of a number of adverse health outcomes, including heart  
attack (65).

In men, caffeine crosses the blood-testes barrier, and 
can be harbored in the gonadal tissues and excreted into 
the semen (197,198). There is evidence to suggest that 
caffeine consumption is associated with increased incidence 
of aneuploidy, and other DNA damage in sperm cells (199). 
Though some studies have not found a positive or negative 
effect of this phenomenon on fertility (67,200-203), others 
have reported dose-dependent effects of caffeine on sperm 
motility, number and morphology, such that consuming 
1–2 cups of coffee per day had a positive effect on semen 
parameters, whereas consumption of zero or more than  
2 cups per day was associated with diminished sperm 
motility and count, as well as poor morphology (66). 
However, higher intake of caffeine (>175 mg/day) has 
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been positively associated with semen volume and 
circulating testosterone in men (67). There may be an 
inverse relationship between higher caffeine intake in 
men and lower fecundity (204,205), but additional studies 
that include analysis of participant CYP1A2 genotype are 
needed. 

Macronutrients and male fertility

Fat

Dietary fat has several important functions within the body. 
Its physiological roles include acting as an energy source, 
insulating organs and playing a crucial part in the creation 
of hormones, cell membranes and tissue membranes (206). 
However, diets high in fat can increase serum and semen 
triglyceride levels, which may increase oxidative stress in 
reproductive tissues (207), and have been linked to a higher 
risk of obesity (208,209). Genetics play a role in dietary 
preference for fat. The cluster of differentiation 36 (CD36) 
gene impacts the transport of fat in the blood throughout 
the body, and overall perception of dietary fat. As such, 
“super tasters,” or carriers of the GA or GG variants, can 
detect dietary fat at a heightened level in comparison to 
a “typical taster,” or an individual with the AA variant of 
CD36 (210). It has been suggested that “super tasters” of fat 
may consume less dietary fat than “typical tasters” (211). 

Transcription factor-7 like 2 (TCFL2) genotype 
controls the impact of dietary fat on body composition 
and several metabolic factors. Individuals who carry the 
TT genotype for rs7903146 comprise approximately 
10% of the population. Those with the TT variant who 
consume a high proportion of dietary fat may be more 
likely to be overweight and experience insulin resistance 
compared to those with the CC or TC genotypes (45,46). 
Both of these outcomes can have negative implications 
on fertility due to hormonal imbalances, oxidative 
stress causing sperm damage, and increased testicular  
temperature (208,209,212,213).

In men, total dietary fat intake has been negatively 
associated with sperm count and concentration (47). Diets 
higher in fat can lead to hormonal disruption and a lack 
of testicular energy supply, compromising germ cells and 
mitochondria (214). Observed effects include disrupted 
sperm membranes, impaired motility and function, 
and decreased sperm quality (48). However, the most 
important factor when analyzing the relationship between 
dietary fat and fertility in men is the type of fat, as the 

ratio of unsaturated to saturated fat can influence semen  
quality (47,48).

Omega-3 fat

Polyunsaturated omega-3 fat is a component of a healthy 
diet, found in fatty fish, nuts, seeds, and oils, and can help 
to maintain healthy levels of circulating triglycerides. 
The protein nitric oxide synthase (NOS) regulates the 
interaction between dietary fat and plasma triglycerides 
and is encoded by the nitric oxide synthase-3 gene (NOS3). 
Variation in this gene changes how the NOS protein is 
expressed, and therefore different genotypes can affect 
circulating triglyceride levels in response to plasma omega-3 
levels. In one study, individuals with the GT or TT 
genotype of NOS3 had higher circulating triglycerides when 
plasma omega-3 fats were low, compared to those with 
the GG genotype (49). Circulating triglycerides have been 
shown to be positively correlated with sperm concentration, 
as well as having a concentration-dependent effect on sperm 
morphology (215).

Omega-3 and omega-6 fatty acids are metabolized 
into long-chain polyunsaturated fatty acids (LC-PUFAs) 
that modulate blood pressure, blood clotting, and 
inflammation through the formation of eicosanoids (216).  
The production of LC-PUFAs is regulated by the fatty 
acid desaturase enzymes encoded by the FADS gene 
cluster. In particular, polymorphisms of the FADS1 and 
FADS2 genes are known to affect the rate of LC-PUFA 
synthesis (50). Polymorphisms in these genes influence 
the circulating levels of various metabolic forms of n-3 
and n-6 fatty acids including eicosanoid precursors (217). 
Multiple studies have found that carriers of the C allele 
in the FADS1 gene (rs174547) had reduced endogenous 
production of LC-PUFAs (51,52,218). SNPs in the FADS2 
gene (rs2727270, rs498793) have also been correlated with 
altered PUFA metabolism (51,52). The effects of these 
FADS polymorphisms on circulating lipid profiles and 
levels of eicosanoid precursors may affect male reproductive 
health through altering inflammatory responses and sperm 
membrane characteristics.

Omega-3 fats have been suggested to be the most 
important component in sperm membranes because of their 
contribution to sperm motility and membrane fluidity, as 
well as fertile potential of sperm (53,54). Polyunsaturated 
fats in the sperm membrane are targets of lipid peroxidation, 
creating oxidative stress in the semen (219). Therefore, 
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antioxidants such as vitamins E and C are necessary to 
protect unsaturated fats composing sperm and oocyte 
membranes, maintaining the integrity and function of these 
structures (59,220). Lower ratios of omega-6 to omega-3, 
and saturated to unsaturated fatty acids have been associated 
with better semen parameters, specifically sperm count, 
motility and morphology in oligoasthenoteratozoospermic 
men (221,222).

In a 3-month trial of omega-3 fatty acid-based supplements 
from fish and algal oils for 10 men with asthenozoospermia, 
reduced concentrations of omega-3 fatty acids in seminal 
plasma and sperm fatty acid profile were seen following 
supplementation, but no changes in seminal parameters 
were observed (223). In contrast, a randomized, double 
blind study of men undergoing evaluation for infertility who 
were given 1,500 mg per day of docosahexaenoic acid (DHA, 
a type of omega-3 fatty acid)-enriched oil over a 10-week  
period resulted in improvement in DHA and omega-3 
fatty acid content in seminal plasma, and a reduction in 
the percentage of spermatozoa with DNA damage (224). 
Overall, the majority of studies suggest that increased 
intakes of omega-3 fatty acids are correlated with improved 
semen quality parameters (225). However, future research 
should focus on examining how NOS3 and FADS1/2 
genotypes directly modify these associations.

Saturated fat

Saturated fat has long been regarded as a marker of poor 
diet quality, due to its suggested link to diseases such as 
obesity (226). Apoprotein A-II (APOA2), a major protein 
of HDL, reduces the reverse efflux of cholesterol transport 
and its antioxidant function and is regulated by the APOA2 
gene (55). Variation in the APOA2 (rs5082) gene is known 
to affect the way saturated fat intake impacts body mass 
index (BMI), such that carriers of the CC genotype had a 
stronger correlation between saturated fat intake and BMI 
than those with the TC or TT genotypes (55). Individuals 
with a higher BMI score and the CC genotype have been 
observed to have higher saturated fat intakes than lower-
weight carriers of the T allele of the APOA2 gene (55), 
which can impact circulating fatty acids (226) and the 
composition and quality of reproductive tissues in men 
(47,227). Further, higher BMI is a risk factor for infertility 
(209,212). Therefore, carriers of the APOA2 CC genotype 
may benefit from a limited intake of saturated fats. 

Dietary saturated fat has been shown to negatively 

affect sperm count and concentration (47,228,229), as 
well as poor sperm motility (229,230) and morphology 
(231,232). Saturated fat content in sperm membranes has 
been shown to be higher in infertile men, specifically with 
asthenozoospermia and oligozoospermia when compared 
to normozoospermic men (56,57). Sperm membrane 
composition is integral to fluidity and function, as well 
as sperm motility, viability and susceptibility to lipid 
peroxidation (233-235), which are compromised in infertile 
men (56,236). 

Sugar

The 2015–2020 Dietary Guidelines for Americans 
recommend an intake of no more than 10% of calories 
from added sugars (237). The glucose transporter type-2  
(GLUT2) protein influences glucose levels in the body 
and variation in the GLUT2 (rs5400) gene dictates its 
production. Carriers of the T allele have been shown to 
have a lower sensitivity and thus higher preference for 
glucose when compared to carriers of the CC genotype (58). 
Sugar intake can be an important factor contributing to 
daily caloric intake, and in excess can drive the development 
of chronic diseases such as obesity and type 2 diabetes (238), 
which can have negative implications on fertility (239-242). 
The existing literature focuses on one concentrated source 
of added sugar: sugar-sweetened beverages (SSBs). 

Higher sugar-sweetened beverage consumption has been 
associated with lower sperm motility and sperm count, 
after adjustment for caffeine and BMI (243). Male mice 
fed an SSB analog had reduced fertility rates by 25% in 
comparison to controls not provided an SSB analog (244). 
In a large cohort of Asian men, higher intake of sweet snacks 
and SSBs was associated with lower sperm count (245).  
Additionally, a prospective cohort study of 2,554 Danish 
men found that self-reported consumption of SSBs 
negatively correlated with sperm count, concentration, 
and morphology. However, the study’s results may have 
also been influenced by poorer lifestyle factors among 
the high SSB-consuming individuals, including higher 
self-reported consumption of red meats and alcohol (59). 
Other health effects of excess sugar consumption in men 
include insulin resistance, oxidative stress, and an altered 
hormone profile, all of which are linked to poor semen 
parameters and infertility (213,246). However, some studies 
have found no association between SSB intake and semen  
parameters (67,247).
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Fiber

Whole grain wheat is a rich source of methionine, 
betaine, choline and folate, all of which are involved in 
the methylation of DNA. Whole grains also provide 
dietary fiber, which can mitigate rapid increases in blood 
glucose following ingestion of carbohydrates. Diets rich 
in fiber are known to be inversely associated with insulin 
resistance and incidence of type 2 diabetes (248,249). The 
transcription factor-7 like-2 (TCF7L2) protein plays a 
role in the development of type 2 diabetes by impacting 
insulin secretion and hepatic glucose production, and 
is encoded by the TCF7L2 gene (60). Possession of the 
T allele of the TCF7L2 (rs12255372) gene is associated 
greater expression of the TCF7L2 protein, impaired insulin 
sensitivity, and thus a higher risk of developing type 2  
diabetes, which can have detrimental effects on male 
fertility (250). As an endocrine disorder, type 2 diabetes can 
alter a man’s hormone profile such that spermatogenesis,  
steroidogenesis, sperm maturation, and ejaculation are 
negatively impacted (61). Glucose transporter function 
and therefore the bioavailability of glucose are integral 
to processes such as sperm production, maturation, and 
fertilization (236,251). The presence of type 2 diabetes may 
compromise sperm motility, DNA integrity and seminal 
composition (251,252), negatively impacting overall  
fertility (241). Sperm DNA damage may be attributable to 
diabetes-induced oxidative stress and lipid peroxidation (253),  
which can result in poor implantation, embryonic 
development, and low clinical pregnancy rate (252).

Research has shown that a diet rich in whole grains 
promotes better sperm morphology and motility (26,254). 
High fiber diets can play an important role in supporting 
greater fecal microbiome diversity, but little evidence 
exists on the direct influence of diet on the reproductive 
microbiome. It is known that host genetics and diet 
influence the development of the microbiome (255,256). 
Also, obesity, insulin resistance, inflammation and 
dyslipidemia occur less frequently in individuals with greater 
microbiome diversity (257). There is a need for research 
exploring the interaction between diet, reproductive health 
and the microbiome (258). 

Conclusion and future directions

Overall, evidence to date suggests that nutritional status 
plays an important role in male fertility, and common 
genetic variations influence nutrient metabolism and 

response to dietary intake. The interaction between 
nutrition, male fertility and genetic variation remains 
little explored, but there is evidence that these three 
factors are interrelated and should be examined together 
in scientific literature and clinical practice to increase 
our understanding of reproductive function and enhance 
fertility outcomes. Men experiencing infertility may 
seek support from registered dietitians to ensure dietary 
intakes meet requirements for essential nutrients. Future 
research may provide clarity by focusing on tailoring 
dietary recommendations to individuals based on genetic 
susceptibilities to deficiencies and toxicities. 
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