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Abstract

Radical S-adenosylmethionine (rSAM) enzymes use a 5’-deoxyadensyl 5’-radical to methyl-

ate a wide array of diverse substrates including proteins, lipids and nucleic acids. One such

enzyme, Elongator protein-3 (TgElp3), is an essential protein in Toxoplasma gondii, a proto-

zoan parasite that can cause life-threatening opportunistic disease. Unlike Elp3 homologues

which are present in all domains of life, TgElp3 localizes to the outer mitochondrial membrane

(OMM) via a tail-anchored trafficking mechanism in Toxoplasma. Intriguingly, we identified a

second tail-anchored rSAM domain containing protein (TgRlmN) that also localizes to the

OMM. The transmembrane domain (TMD) on Toxoplasma Elp3 and RlmN homologues is

required for OMM localization and has not been seen beyond the chromalveolates. Both

TgElp3 and TgRlmN contain the canonical rSAM amino acid sequence motif (CxxxCxxC)

necessary to form the 4Fe-4S cluster required for tRNA modifications. In E. coli, RlmN is

responsible for the 2-methlyadenosine (m2A) synthesis at purine 37 in tRNA while in

S. cerevisiae, Elp3 is necessary for the formation of 5-methoxycarbonylmethyl-2-thiouridine

(mcm5s2U) at the wobble tRNA position. To investigate why these two rSAM enzymes local-

ize to the mitochondrion in Toxoplasma, and whether or not TgRlmN and TgElp3 possess

tRNA methyltransferase activity, a series of mutational and biochemical studies were per-

formed. Overexpression of either TgElp3 or TgRlmN resulted in a significant parasite replica-

tion defect, but overexpression was tolerated if either the TMD or rSAM domain was

mutated. Furthermore, we show the first evidence that Toxoplasma tRNAGlu contains the

mcm5s2U modification, which is the putative downstream product generated by TgElp3

activity.
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Introduction

Radical S-adenosylmethionine (rSAM) enzymes utilize a [4Fe-4S] cluster and SAM to generate

a 5’-deoxyadenosyl radical intermediate required for methylation reactions. These enzymes

are defined by the presence of a conserved cysteine motif that coordinates the formation of an

[4Fe-4S] cluster. Although these motifs vary in the number of cysteines and amino acid length,

the most common motif is CxxxCxxC. Over the last decade, studies have shown that rSAM

enzymes play a pivotal role in the modification of RNA [1]. RNA post-transcriptional modifi-

cations affect RNA structure and stability, which impacts translation and ultimately affects

numerous downstream biological processes. The study of rSAM enzymes is required to better

understand the biological implications of RNA modifications.

Virtually nothing is known about the function of rSAM domain proteins in the obligate

intracellular protozoan parasite Toxoplasma gondii. A member of the phylum Apicomplexa

and Chromalveolata supergroup, Toxoplasma is a promiscuous pathogen that causes signifi-

cant disease in humans and livestock. In humans, toxoplasmosis is typically an opportunistic

disease of immune compromised patients. The definitive host for Toxoplasma includes feline

species, which spread the parasite through shedding of infectious oocysts that are stable in the

environment for a year or more. In addition, Toxoplasma can form infectious cysts in the tis-

sues of vertebrate animals, facilitating its spread to new hosts through predation. If infected for

the first time while pregnant, Toxoplasma can transmit across the placenta from mother to

child. A better understanding of parasite biology will be helpful in the design of future drug

targets directed against this parasite.

We previously found that the Elongator protein-3 homologue present in Toxoplasma gondii
(TgElp3) is essential for parasite viability [2]. TgElp3 possesses two conserved domains, a

rSAM domain and lysine acetyltransferase domain, along with a unique C-terminal trans-

membrane domain (TMD) that is only present in the phylum Apicomplexa and select chro-

malveolates [2]. We further determined that TgElp3 is a tail-anchored protein present at the

parasite’s outer mitochondrial membrane (OMM) [2]. In yeast, Elp3 was originally character-

ized as the histone acetyltransferase subunit of the RNA polymerase II Elongator complex, an

important regulator of transcriptional elongation [3,4]. More recent studies have determined

that Elp3 possesses a second enzymatic function as a tRNA modification enzyme that synthe-

sizes the 5-methoxycarbonylmethyl (mcm5) and 5-carbamoylmethyl (ncm5) groups present

on uridines at the wobble position in tRNA [5], an activity that relies on the protein’s rSAM

domain [6]. Cells without Elp3 lack the mcm5U modification, resulting in inefficient transla-

tion of mRNAs enriched with -AA ending codons [5,7]. Given its location at the OMM, we

hypothesized that TgElp3 is more likely to play a role in RNA modification than transcrip-

tional elongation. However, the presence of the mcm5U tRNA modification has yet to be con-

firmed in Toxoplasma.

Intriguingly, our recent analysis of the entire tail-anchored protein family in Toxoplasma
uncovered a second rSAM domain containing protein (rRNA large subunit methyltransferase

gene N, TgRlmN) that also localizes to the OMM like TgElp3 [8,9]. RlmN homologues have

previously been identified in bacteria and plants, but not in higher eukaryotes [6,10]. In E. coli,
the RlmN methyltransferase is responsible for the methyl-2 (m2) modification at rRNA posi-

tion A2503 in 23S rRNA and the conserved purine at position 37 in tRNA [8,11]. Purine 37

modifications are thought to stabilize the first base pair of the codon-anticodon interaction

while the m2A 2503 rRNA modification may alter the translation arrest mechanism in

response to specific peptide sequences [11]. With the loss of RlmN in E. coli, translation accu-

racy was disrupted due to the read through of UAG stop codons [11]. Although studies in E.

Elp3 and RlmN at Toxoplasma mitochondrion
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coli suggest that the m2A nucleoside plays a pivotal role in translational accuracy, the function

of RlmN in Toxoplasma has not been investigated.

In this study, we examined the functional significance of these two mitochondrial tail-

anchored rSAM domain containing proteins (TgElp3 and TgRlmN) in Toxoplasma. As these

proteins share similar protein characteristics and previous attempts to disrupt TgElp3 have

failed [2], we used an overexpression strategy to assess their importance in parasite biology.

Overexpression of TgElp3 or TgRlmN results in a significant parasite replication defect unless

the rSAM domain is mutated or the TMD is removed. Recent studies regarding Elp3 and

RlmN in various organisms have determined that these enzymes modify tRNAs, which regu-

lates translation and subsequently affects protein homeostasis [11–13]. Polyribosomal profiling

revealed that neither TgElp3 nor TgRlmN overexpression has a significant impact on global

protein production in Toxoplasma. As an independent confirmation, we report the first use of

puromycin incorporation to monitor global protein synthesis in Toxoplasma, which also

found that overexpression of TgElp3 or TgRlmN did not alter translation. The course of these

studies did, however, provide the first evidence that the mcm5s2U tRNA modification, which

is generated by Elp3 in other species, is present in Toxoplasma.

Results

Generation of wildtype and mutant TgElp3 parasite lines

As previous attempts to knockout TgElp3 have failed and localization of TgElp3 to the mito-

chondrion is essential for parasite viability, we sought to characterize the molecular function

of TgElp3 [2,9]. Since TgElp3 possesses two highly conserved enzymatic domains, a radical S-

adenosylmethionine (rSAM) and a lysine acetyltransferase (KAT) domain [2], we decided to

take a targeted mutational approach to determine which domain(s) is required for TgElp3

function. As a control, we replaced the endogenous locus with hemagglutinin (HA)-tagged

wild-type cDNA (HATgElp3) in RHΔhxΔku80 parasites; recombination frequency was ~50%.

Correct integration was confirmed by PCR and protein expression was assessed by Western

blot using anti-TgELP3 [14] and anti-HA antibodies (Fig 1). Immunofluorescent assays (IFA)

confirmed HATgElp3 localization to the parasite mitochondrion using the established mito-

chondrial marker F1B ATPase (Fig 1) [15,16].

To determine if parasites could survive when either the rSAM or KAT domains were

mutated, we generated two more HATgElp3 allelic replacement constructs: rSAM mutant

(C284A) and KAT mutant (Y715A/Y716A); in other species, these rSAM and KAT mutations

are critical for Elp3 function [6,17–19]. Despite multiple attempts, we were unable to generate

rSAM or KAT mutants at the endogenous TgElp3 locus. Since the endogenous replacement of

TgElp3 with wild-type recombinant HATgElp3 was obtained, we conclude that both enzymatic

domains are likely required for TgElp3 function and parasite viability.

Overexpression of TgElp3 at the mitochondrion causes a significant

replication defect

Since we were unable to knockout or mutate endogenous TgElp3 and a recent CRISPR/Cas9

genetic screen identified TgElp3 as crucial for parasite growth (CRISPR score -3.28) [20], we

pursued an overexpression strategy to gain insight into parasite processes affected by TgElp3.

To ectopically overexpress HATgElp3, we generated an expression construct driven by the con-

stitutively active Toxoplasma tubulin promoter. This construct was transfected into the RHΔhx
parasite strain and several independent clones were obtained. Overexpression of TgElp3 was

Elp3 and RlmN at Toxoplasma mitochondrion
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confirmed by Western blot using antibody to TgElp3, and IFA confirmed its expected localiza-

tion at the parasite OMM (Fig 2A–2C).

Upon initial observation, TgElp3 overexpressing parasites (TgElp3OE) appeared to grow

slowly in culture. A plaque assay quantitatively confirmed a growth defect in the TgElp3OE

parasites compared to the parental line (Fig 2D). To further investigate this growth defect, we

performed a doubling assay to assess parasite replication. Fig 2E shows that the replication rate

of TgElp3OE parasites is significantly slower than parental parasites. This replication defect was

observed in multiple independent clones as well as type II ME49 parasites engineered to over-

express TgElp3 (S1 Fig).

We considered two possibilities why TgElp3 overexpression causes a replication defect: (1)

independent of TgElp3 function, increased levels of protein at the OMM may negatively

impact mitochondrial function, and (2) the replication defect is specific to the enzymatic activ-

ity of TgElp3 at the mitochondrion. To address these possibilities, we generated several mutant

TgElp3OE constructs: rSAM(C284A/C287A)OE, KAT(Y716A)OE and a construct containing a

premature stop codon to remove the transmembrane domain (ΔTMDOE). In addition, we gen-

erated a double mutant parasite line containing both rSAM and KAT mutations (rSAM

(C284A/C287A)/KAT(Y716A)OE). For all parasite strains, protein expression was assessed by

Western blot and localization by IFA using the anti-HA antibody (Fig 2A–2C). Mutations in

the rSAM or KAT domains (or both) did not disrupt trafficking to the OMM, but as expected

Fig 1. Endogenous replacement of TgElp3. (A) Diagram of the construct used to replace the endogenous TgElp3 locus by double homologous recombination. Arrows

indicate location of PCR primers. For PCR1, the forward primer is located upstream of the recombination site and the reverse primer is located within the HA-tag. The

PCR2 primers are intron spanning. (B) Correct integration of HATgElp3 at the endogenous locus is confirmed by genomic PCR analysis. (C) For each sample, 100 μg of

protein was used for Western blot analysis of parental RHΔhxΔku80 and HATgElp3 parasites. The blot was probed with anti-TgELP3, anti-HA and anti-SAG1 (as a loading

control) antibodies. (D) IFAs stained for anti-HA (green) and the mitochondrial maker anti-TgF1B ATPase (red). Images merged with the DNA stain DAPI (blue). Scale

bar = 3μm.

https://doi.org/10.1371/journal.pone.0189688.g001
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removal of the TMD did (Fig 2C). Given the fact that we cannot control for the number of

ectopic gene copies or where they integrate within the genome, we isolated and performed the

following experiments on at least two independent clonal parasite lines for each mutant con-

struct to ensure results were in agreement.

Using the transgenic mutant TgElp3OE parasite lines, we performed a plaque assay to assess

parasite growth. Compared to parental parasites, the KAT(Y716A)OE parasites grew signifi-

cantly slower, similar to the unmodified TgElp3OE parasites (Fig 2D). In contrast, parasites

expressing a rSAM mutation or mislocalized TgElp3 (ΔTMDOE) grew at the same rate as

parental parasites (Fig 2D). To assess parasite replication, doubling assays were performed.

Consistent with the plaque assay results, a significant replication defect was detected in the

unmodified TgElp3OE and KAT(Y716A)OE parasite lines at 24 and 30 hour time points (Fig

2E). Also consistent with the plaque assays, overexpression of TgElp3 harboring a rSAM muta-

tion or mislocalized TgElp3OE (ΔTMDOE) did not alter parasite replication. Considering that

both the TgElp3 rSAM(C284A/C287A)OE and double mutant rSAM(C284A/C287A)/KAT

(Y716A)OE parasite lines grew the same as parental, we conclude that the significant growth

defect is not simply a result of too much protein at the OMM, but instead is due to increased

levels of TgElp3. Moreover, since mislocalized overexpression of TgElp3 was tolerated with no

detrimental effect on parasite growth, the replication defect in the TgElp3 overexpressing para-

sites seems directly linked to its function at the mitochondrion.

Overexpression of TgElp3 results in a significant replication defect whereas overexpression

of a rSAM mutant TgElp3 is tolerated, suggesting this domain is essential for protein function.

Despite mutating a functionally conserved amino acid previously reported as essential for Elp3

KAT activity in other species, we cannot rule out that this residue may function differently in

Toxoplasma. To address this concern, a second TgElp3OE KAT mutant parasite line was engi-

neered by mutating two conserved tyrosine residues previously reported as essential for bind-

ing acetyl-coA to phenylalanine (KAT(Y715F/Y716F)OE) [17]. Phenotypic assays were

performed and a significant replication defect similar to the KAT(Y716A)OE parasite strain

was observed [21].

In summary, overexpression of TgElp3 protein at the OMM significantly slows parasite rep-

lication. Normal growth rate is restored if the TMD is removed or if the rSAM domain is

mutated, but not if the KAT domain is mutated. These results suggest that the rSAM domain

of TgElp3 is critical for protein function, and confirms that TgElp3 activity is dependent on its

localization to the OMM.

Overexpression of TgRlmN at the OMM reduces parasite replication

We recently performed an analysis of the 59 predicted tail-anchored proteins present in the

Toxoplasma genome and identified a second rSAM domain containing protein (TgRlmN) that

also localizes to the parasite OMM like TgElp3 [9]. Similar to TgElp3, the CRISPR score for

TgRlmN (-1.82) suggests that this gene is also integral for parasite growth [20]. In E. coli,
RlmN is responsible for the 2-methlyadenosine (m2A) synthesis on purine 37 in the tRNA

Fig 2. Overexpression of TgElp3 at the outer mitochondrial membrane in Toxoplasma causes a significant replication defect. (A) Schematic of the TgElp3OE

construct and various mutant forms. The constitutive tubulin promoter (pTub) was used to express full-length HA-tagged TgElp3 cDNA (cElp3). Letters in red

represent mutated amino acids. (B) Western blot analysis of protein (100 μg) isolated from parental RHΔhx, TgElp3OE and mutant TgElp3OE parasite strains using anti-

TgELP3 and anti-SAG1 (loading control) antibodies. (C) IFA using anti-HA to detect TgElp3 (green) and anti-TgF1B ATPase as a known mitochondrial marker (red).

DAPI (blue) was used as a co-stain to visualize the nuclei (note large nuclei are those of the host cells). Scale bar = 3μm. (D) Plaque assays to assess parasite

proliferation. Plaque area was quantified using Image J; mean area of 30 plaques ± s.d. is depicted, �P<0.05 (two-way ANOVA). (E) Doubling assays to assess parasite

replication rate. The number of parasites in 100 random vacuoles was quantified 24 and 30 hrs post-infection and the percentage of vacuoles containing the designated

number of parasites ± s.d. is shown, �P<0.05 (two-way ANOVA).

https://doi.org/10.1371/journal.pone.0189688.g002
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anticodon stem-loop and is required for translational accuracy [11]. Both TgElp3 and TgRlmN

contain the canonical rSAM amino acid sequence motif (CxxxCxxC) that forms a [4Fe-4S]

cluster required for methylation reactions. While these two proteins are both reported to

modify tRNAs [5,11] and share a rSAM and TMD, the rest of the protein sequence is not

well conserved. Moreover, TgRlmN is nearly half the size of TgElp3 (68 kDa versus 108 kDa,

respectively) and lacks a lysine acetyltransferase domain.

Since TgRlmN and TgElp3 reside at the same subcellular locale and possess similar protein

characteristics, we hypothesized that overexpression of TgRlmN at the OMM will also cause a

replication defect. To test this possibility, we substituted the endogenous TgRlmN genomic

locus with an in-frame sequence to tag the N-terminus with an HA epitope (HATgRlmN) in

RHΔhxΔku80 parasites (Fig 3A). The allelic replacement was confirmed by genomic PCR (Fig

3A). Expression of the tagged HATgRlmN protein was assessed by Western blot, and IFA dem-

onstrated its localization to the OMM (Fig 3B and 3C).

To determine whether altered TgRlmN levels produce a similar phenotype as seen for

TgElp3, we overexpressed a wild-type (unmodified) TgRlmN (TgRlmNOE), a rSAM mutant

(rSAM(C229/232S)OE), and a mislocalized TgRlmN (ΔTMDOE) driven by the constitutively

active tubulin promoter. Overexpression of each version of HATgRlmN was confirmed by

Western blot using anti-HA (Fig 3B). As seen for TgElp3, IFA revealed that the rSAM muta-

tions did not disrupt trafficking to the OMM, but the removal of the C-terminal TMD did (Fig

3C).

We performed a plaque assay to assess parasite growth using the transgenic HATgRlmN par-

asite strains. Compared to the parental parasite strain, the TgRlmNOE parasites grew signifi-

cantly slower whereas the radical SAM mutant (rSAM(C229/232S)OE) and mislocalized

TgRlmN (ΔTMDOE) parasite strains grew the same as parental (Fig 3D). In accordance with

the observed growth defect, a significant replication defect was detected in the TgRlmNOE par-

asite strain at 24 hr and 30 hr time points (Fig 3E). Mirroring our TgElp3 data, these results

signify a functional role for the rSAM domain of TgRlmN and demonstrate that protein locali-

zation at the mitochondrion is important for function.

Global translation is not altered by overexpression of TgElp3 or TgRlmN

The results presented above support the idea that the rSAM domain of TgElp3 and TgRlmN is

critical for parasite growth. Both TgElp3 and TgRlmN contain the cysteine-rich rSAM domain

(CxxxCxxC) that is required for RNA methylation reactions in other species. It was recently

observed that the loss of wobble uridine mcm5 and mcm5s2 tRNA modifications in Elp3/Uba4

deficient Saccharomyces cerevisiae resulted in a decrease of global protein levels [12]. Similarly,

loss of RlmN in E. coli increased misreading of the UAG stop codon, resulting in an error-

prone phenotype and disrupted protein synthesis [11]. As these previous studies identified

Elp3 and RlmN as important regulators of translation, we decided to assess protein synthesis

in both of our overexpressing parasite strains (TgElp3OE and TgRlmNOE) using two indepen-

dent methods, polyribosome profiling and puromycin incorporation [22,23].

To evaluate the effect of TgElp3 or TgRlmN overexpression on global translation we first

performed polyribosome profiling. This technique uses a sucrose gradient to separate mRNA-

associated ribosome complexes [24]. Separation of these complexes is based on the number of

associated ribosomes: free ribosome (small or large ribosome subunits), monosome (one ribo-

some residing on an mRNA), and polysome (multiple ribosomes residing on an mRNA). We

treated freshly egressed parasites with cycloheximide to block the translocation step in protein

synthesis, essentially “freezing” the ribosomal mRNA complexes. Parasite lysate was then sub-

jected to polyribosome fractionation and analyzed by UV spectrometry. No overt differences

Elp3 and RlmN at Toxoplasma mitochondrion

PLOS ONE | https://doi.org/10.1371/journal.pone.0189688 January 2, 2018 7 / 21

https://doi.org/10.1371/journal.pone.0189688


Fig 3. Overexpression of HATgRlmN at the OMM in Toxoplasma causes a significant replication defect. (A) Diagram of the construct used

to replace the endogenous genomic TgRlmN locus by double homologous recombination. The replacement allele was identical except that it

Elp3 and RlmN at Toxoplasma mitochondrion
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were observed in the polysome profiles of parental parasites versus those overexpressing

TgElp3 or TgRlmN (Fig 4A).

In addition to polyribosome profiling, which provides a snapshot of translation at the

mRNA level, we performed a second method to assess translation at the protein level. This

method uses puromycin, a tyrosyl-tRNA analog that is incorporated into nascent polypeptide

chains. Puromycin incorporation inhibits further protein synthesis and results in C-terminally

labeled proteins. To determine if protein synthesis is altered in TgElp3 or TgRlmN overexpres-

sing parasite strains, we incubated freshly egressed parasites with puromycin for 5, 10, and 15

minutes; in addition, we used the protein synthesis inhibitor cycloheximide as a negative con-

trol. Western blot analysis using the anti-puromycin antibody revealed puromycin incorpo-

ration into Toxoplasma proteins in a time-dependent manner while cyclohexamide treatment

blocked protein synthesis (Fig 4B). The amount of puromycin incorporation over time was

used to assess translation rate for each parasite strain. No differences in puromycin incorpo-

ration were observed between the TgElp3 or TgRlmN overexpressing parasites and their

respective parental controls (Fig 4B), suggesting that the fitness defect is not due to global per-

turbations in protein synthesis.

The mcm5s2U tRNA modification is unchanged in TgElp3 overexpressing

parasites

Very little is known regarding tRNA modifications in Toxoplasma. To date, only a single

tRNA modification (pseudouridine) has been identified [25]. Given that Elp3 contains the

canonical rSAM domain and is a tRNA modification enzyme in other species [26,27], we

sought to determine if the Elp3-associated mcm5s2U tRNA modification exists in Toxoplasma.

Previous studies have shown that the loss of Elp3 in S. cerevisiae correlates with the loss of

the mcm5 side-chain, generating resistance to the Kluyveromyces lactis killer toxin (γ-toxin)

[5,28,29]. This γ-toxin is a tRNA endonuclease that cleaves tRNA at the 3’ end of the wobble

nucleoside mcm5s2U [30] (Fig 5A). The mcm5s2U tRNA modification identified in S. cerevisiae
is only present in lysine, glutamic acid, and glutamine tRNAs, and its formation requires two

enzymes: (1) Elp3 for the formation of mcm5 modification, and (2) cytosolic thiouridylase

(Ctu1/Ctu2) for the formation of the 2-thio (s2) group [26,27,31–33]. Blast analyses of the

Toxoplasma proteome using S. cerevisiae Ctu1/Ctu2 sequences identified two putative cytosolic

thiouridylase proteins, TGME49_309020 and TGME49_294380 (ToxoDB v.9.0, [34]), suggest-

ing that the mcm5s2U tRNA modification may exist in Toxoplasma.

To perform the γ-toxin in vitro enzymatic assay, we used total RNA samples isolated from

parental, TgElp3OE, and rSAM(C284A/C287A)OE parasite lines, along with an uninfected

human foreskin fibroblast (HFF) control sample, and incubated them with recombinant γ-

toxin or an empty vehicle control. To assess cleavage, we used Northern blot probes specific to

Toxoplasma glutamic acid tRNA (Tg-tRNAGlu) as well as a control probe for serine tRNA (Tg-

encoded an HA epitope tag fused in-frame at the N-terminus. Genomic PCR analysis confirmed correct replacement of the TgRlmN allele with

the version that encodes HATgRlmN protein. The reverse primer for PCR1 is located within the HA-tag and PCR2 spans the 3’ recombination

site. (B) Schematic of the construct used to ectopically overexpress TgRlmN and various mutant forms. The constitutive tubulin promoter

(pTub) was used to express wild-type and mutant forms of TgRlmN cDNA; red letters show the amino acid mutations. Western blot analysis of

protein (100 μg) isolated from parental (RHΔhxΔku80), endogenously tagged (HATgRlmN), and TgRlmN overexpressing (OE) parasite strains.

Short exposure was sufficient to detect overexpressed versions of TgRlmN (upper panel), but overexposure was needed to detect the
HATgRlmN driven by its native promoter (middle panel). SAG1 was analyzed as a loading control (lower panel). (C) IFA using anti-HA to

detect TgRlmN (green) and anti-TgF1B ATPase (red) as a mitochondria marker, co-stained with DAPI (blue) to visualize the parasite nucleus.

Scale bar = 3μm. (D) Parasite growth assessed by plaque assay. The mean area of 30 plaques ± s.d. was quantified using Image J, �P<0.05 (two-

way ANOVA). (E) Parasite replication rate assessed at 24 and 30 hours by doubling assays. The percentage of vacuoles ± s.d. containing the

designated number of parasites from 100 random vacuoles is shown, �P<0.05 (two-way ANOVA).

https://doi.org/10.1371/journal.pone.0189688.g003

Elp3 and RlmN at Toxoplasma mitochondrion

PLOS ONE | https://doi.org/10.1371/journal.pone.0189688 January 2, 2018 9 / 21

https://doi.org/10.1371/journal.pone.0189688.g003
https://doi.org/10.1371/journal.pone.0189688


Fig 4. Overexpression of TgElp3 or TgRlmN does not affect global protein synthesis. (A) Equal amounts of lysate from TgElp3OE,

TgRlmNOE, and the respective parental parasite strains were separated on a 10 to 50% sucrose gradient and polyribosome profiles were
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tRNASer), which does not possess the mcm5s2U tRNA modification. Since Toxoplasma is an

intracellular pathogen, host cell contamination is possible, so we used RNA extracted from

both intracellular and extracellular tachyzoites, and included Northern blot probes specific

to human glutamic acid (Hs-tRNAGlu) and serine tRNAs (Hs-tRNASer). Interestingly, Tg-

tRNAGlu contains an extra nucleotide in the D-loop, making it 73 bp long compared to the Hs-

tRNAGlu composed of 72 bp. This extra base pair makes the Toxoplasma wobble uridine base

pair 35, not the typical 34 (Fig 5B).

Upon treatment with γ-toxin, we observed cleavage of the Tg-tRNAGlu, demonstrating that

this mcm5s2U tRNA modification is present in Toxoplasma (Fig 5C). A similar pattern was

observed in the HFF control sample when probed with anti-Hs-tRNAGlu (Fig 5C). As

expected, there was no cleavage of Tg-tRNASer or Hs-tRNASer with treatment of γ-toxin (Fig

5C). Despite efforts to design probes specific to either human or Toxoplasma, we observed

some non-specific binding of the Hs-tRNASer probe to the Toxoplasma RNA; however, the Tg-

tRNASer appears specific to Toxoplasma (Fig 5C).

Unexpectedly, a doublet was observed in the Toxoplasma samples when using the Tg-

tRNAGlu probe (Fig 5C). Initially, we thought this may be due to host cell contamination; how-

ever, when using the Hs-tRNAGlu probe against the Toxoplasma samples, we did not detect

Hs-tRNAGlu (Fig 5C). Non-specific binding of the Tg-tRNAGlu probe to another Toxoplasma
tRNA could explain the doublet. The Toxoplasma aspartic acid tRNA (Tg-tRNAAsp) shares the

closest sequence homology, matching 17 of the 28 nucleotides in the Tg-tRNAGlu probe.

Despite some sequence similarity between the Tg-tRNAGlu and Tg-tRNAAsp sequences, there

is a one-third mismatch between Tg-tRNAGlu probe and the Tg-tRNAAsp sequence, making it

unlikely to be the cause of the doublet. Another possibility is that there may be a portion of Tg-

tRNAGlu that has some unresolved secondary structure causing a band shift in the gel. Curi-

ously, a doublet has also been observed in S. cerevisiae when probed for the glutamic acid

tRNA [37], but an explanation remains unknown. Nevertheless, there is no difference in the

levels of intact or cleaved Tg-tRNAGlu levels between the parental, TgElp3OE, and rSAM

(C284A/C287A)OE samples, indicating that the fitness defect in the TgElp3 overexpressing

parasites is not due to excessive mcm5s2U tRNAGlu modifications (Fig 5C).

Discussion

This study is the first to explore the functional significance of two mitochondrial tail-anchored

rSAM domain containing proteins, TgElp3 and TgRlmN, in an early-branching eukaryote

of medical importance. In these studies, we determined that overexpression of TgElp3 or

TgRlmN at the parasite mitochondrion results in a significant replication defect, but overex-

pression of these proteins bearing a mutant rSAM domain or lacking their TMD is well-toler-

ated and does not impair fitness. These findings highlight the importance of TgElp3 and

TgRlmN as being intimately connected to their presence at the OMM, and confirm the essen-

tial nature of the rSAM domain in their biological activities. In other species, the rSAM

domain of Elp3 and RlmN is responsible for post-transcriptional tRNA modifications, specifi-

cally the mcm5 and ncm5 wobble uridine modifications and methylation of adenosine 37,

generated. (B) Freshly egressed parasites were incubated with 10 μg/mL puromycin (+Puro) for 5, 10, and 15 minutes (min). Control parasites

were incubated with 100 μg/mL cycloheximide (CHX) for 10 min prior to a 15 min incubation with puromycin. At each time point, parasites

were immediately lysed and 50 μg of protein was analyzed by Western blot using the anti-puromycin antibody. Ponceau S staining and probing

with anti-TgIF2α show relatively equal loading and transfer. Representative blots of three independent assays are shown. Linear regression

analysis showed no significant differences between the rate of puromycin incorporation between the parental and overexpressing parasite

strains.

https://doi.org/10.1371/journal.pone.0189688.g004
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Fig 5. The tRNAGlu mcm5s2 modification is present in Toxoplasma. (A) Depiction of where the γ-toxin endonuclease cleaves the mcm5s2U tRNA modification.

Scissors represent cleavage site. (B) Sequence of the human (Hs-tRNAGlu) and Toxoplasma glutamic acid tRNAs (Tg-tRNAGlu); underlined and italicized
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respectively. These tRNA modifications are thought to alter protein synthesis in a context

dependent manner, but the exact mechanisms are not well understood [38–41].

In a S. cerevisiae Elp3/Uba4 knockout strain, the loss of the mcm5s2 tRNA modification is

associated with drastically decreased protein levels as determined by Coomassie blue staining,

but protein levels were partially restored with overexpression of tRNALys [12]. In a subsequent

study, ribosomal footprinting identified an accumulation of ribosomes at the GAA and CAA

codons in a knockout Elp3 yeast strain, suggesting that these codons were translated less effi-

ciently by hypomodified tRNAs; however, polyribosome gradient profiles of the mcm5s2 defi-

cient strains were indistinguishable from wild-type, suggesting that polyribosome profiling

may not be sensitive enough to identify small alterations in global protein synthesis [42]. Since

initiation is typically the rate-limiting step of eukaryotic translation, and tRNA modifications

predominantly affect translation elongation, changes at the elongation step may be missed by

global protein synthesis assays [43,44]. In accordance, we did not detect significant differences

between the TgElp3 or TgRlmN overexpression and parental parasites using polyribosomal

profiling or puromycin incorporation. These methods are limited in that they are unlikely to

identify small changes in protein synthesis, and codon-specific translation defects may only

affect a subset of genes required for a particular cellular process. Additional study is required

before definitively concluding that overexpression of TgElp3 or TgRlmN does not alter trans-

lation on a subset of mRNA transcripts.

In this study, we established that the puromycin incorporation can be applied to assess pro-

tein synthesis in Toxoplasma. This technique can likely be adapted to other apicomplexan par-

asites including Plasmodium spp. and Cryptosporidium spp., which adds a valuable new tool for

studying protein synthesis in these protozoa.

Using the in vitro γ-toxin assay, we identified a second tRNA modification in Toxoplasma,

tRNAGlu mcm5s2U35. This wobble uridine modification is predicted to change the physical

interaction between the anticodon and codon with the mcm5 modification preferentially

translating–G ending codons while the mcm5s2 favors–A ending codons [45,46]. In these stud-

ies, we were unable to attribute the TgElp3OE replication defect to changes in the tRNAGlu

mcm5s2U35 modification levels. Knowing that the tRNAGlu mcm5s2U35 modification requires

a second enzyme (Ctu1/Ctu2), and that Elp3 is known to modify 11 different tRNAs in other

organisms [5,37], we cannot rule out the possibility that overexpression of TgElp3 is causing

hypermodification of tRNAs and subsequent slowed parasite growth. Since we only assessed

changes in the Elp3 putative downstream modification mcm5s2U35 on a single tRNAGlu, more

studies are needed to quantitatively assess the modification status of each tRNA.

While Elp3 is well-conserved across all domains of life, RlmN-like genes are only present in

bacteria, plants, and algae [6,10]; however, here we report the first RlmN-like gene identified

in a protozoa. Despite sequence conservation of Elp3 in Toxoplasma, homologues to the other

five components of the Elongator complex in which Elp3 typically associates with are missing

[2]. Even more intriguing is the localization of TgElp3 and TgRlmN to OMM via a TMD posi-

tioned with the catalytic domains protruding into the cytosol [9]. This TMD is only present in

the phylum Apicomplexa and few select species within the Chromalveolata supergroup, sug-

gesting these rSAM enzymes may have an alternative function that is linked to the mitochon-

drion in these species.

sequences were used for Northern blot probe design. Predicted Hs-tRNAGlu and Tg-tRNAGlu structures generated by tRNAscan-SE [35,36]. (C) Northern blot of

5 μg total RNA isolated from intracellular and extracellular parental, TgElp3OE, and rSAM(C284A/C287A)OE parasites, as well as uninfected human foreskin

fibroblast cells (HFF), incubated with or without the γ-toxin endonuclease for 10 min at 30˚C. GluTTC and SerCGA probes specific to T. gondii and H. sapiens
were used. The probe used for each blot is listed on the left along with an image representative of intact or cleaved tRNA.

https://doi.org/10.1371/journal.pone.0189688.g005
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One possible reason for this peculiar localization is that specific tRNAs may require modifi-

cation in order to be imported into the parasite mitochondrion. Due to the complete lack of

tRNA genes in the mitochondrial genome, Toxoplasma must import all tRNAs required for

mitochondrial translation [47]. Several reports suggest that tRNA modifications could regulate

which tRNAs are imported into the mitochondria and which remain in the cytosol [48,49].

For example, in Leishmania tarentolae nuclear encoded tRNAs containing the mcm5 modifica-

tion are found mostly in the mitochondria; in contrast, cytosolic tRNAs contain both the

mcm5 and s2 modifications (mcm5s2), indicating that the cytosol specific 2-thiolation could

play an inhibitory role in mitochondrial tRNA import [48].

Materials and methods

Plasmid DNA construction

For all constructs, the In-Fusion HD cloning kit was used to insert DNA fragments into plas-

mid backbones (Clontech #011614). Primers for each of the constructs are listed in S1 Table.

The Phusion High Fidelity DNA Polymerase (Thermo Fisher #F530L) was used for all PCR

amplification reactions. Details specific to each plasmid are below.

Allelic replacement plasmids. To generate the TgElp3 allelic replacement plasmids the

upstream promoter region (~1,500bp) of TgElp3 was amplified from RHΔhxΔku80 genomic

DNA using primers F3/R3, and HATgElp3 cDNA was amplified using primers F4/R4 from the

previously published construct: TubHX-HATgElp3 [2]. These two PCR products were com-

bined and used as template for a “stitching PCR” reaction using primers F3/R4 to create the

TgElp3prom+ HATgElp3cDNA PCR product. Next, the downstream region (~1,500bp) of

TgElp3 was amplified from RHΔhxΔku80 genomic DNA using primers F5 and R5. The

TgElp3 downstream region amplicon was inserted into the HindIII restriction site of the

pDHFR-TS plasmid (pDHFR-TS-dsElp3) [50,51]. This plasmid (pDHFR-TS-dsElp3) was then

digested using DraIII and the TgElp3prom+ HATgElp3cDNA PCR amplicon was inserted to

create the HATgElp3 endogenous replacement construct (TgElp3-pDHFR-TS).

The QuickChange II XL Site-Directed Mutagenesis kit (Agilent Technologies. #200521)

was used to generate the mutant constructs: HATgElp3-rSAMmut(C284A) and HATgElp3-

KATmut(Y715/716A), using primers F6/R6 and F7/R7, respectively. Constructs were

sequenced using primers F8 and R8. Prior to transfection, plasmids were linearized using the

restriction enzyme SpeI. Parasites were screened for correct genomic integration using primers

F1/R1 and F2/R2.

To generate the TgRlmN allelic replacement vector, the TgRlmN gene genomic DNA

(7,204 bp; F9/R9), promoter (1,817 bp; F10/R10) and downstream (3,315 bp; F11/R11) regions

were amplified from RHΔhxΔku80 genomic DNA. The TgRlmN promoter was inserted into

the HindIII site of the pDHFR-TS plasmid [50]. To N-terminally tag the TgRlmN gene the

genomic DNA amplicon (7,204 bp) was first subcloned into the EcorV site of the previously

published TubHA tagging vector [9]. The HA-TgRlmN gene was then amplified from the sub-

cloning vector (F14/R14) and inserted into the EcorV site immediately downstream of the

TgRlmN promoter in the pDHFR-TS backbone. The downstream amplicon (3,315 bp) was

inserted into the XbaI restriction site to generate the TgRlmN allelic replacement vector

(TgRlmN-pDHFR-TS). This construct was sequenced using the M13 forward and reverse

primers. Prior to transfection, the construct was linearized using the restriction enzyme NcoI.

Parasites were screened for correct genomic integration using F12/R12 and F13/R13.

Overexpression plasmids. To generate the overexpression mutant constructs, the previ-

ously published wild-type TgElp3OE construct [2] was used. The QuickChange II XL Site-

Directed Mutagenesis kit (Agilent Technologies. #200521) was used to generate the following
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mutant constructs: rSAM(C284/C287A)OE (F15/R15 & F16/R16), KAT(Y716A)OE (F17/R17)

and ΔTMDOE (F18/R18). Site-Directed mutagenesis was performed multiple times using dif-

ferent primers to generate both cysteine mutations in the rSAM domain and for the KAT

+ rSAM mutant. The plasmid sequences were confirmed using primers F23 and R23. Prior to

transfection each plasmid was linearized using the NotI restriction enzyme.

To overexpress TgElp3 in the type II ME49 parasite strain, wild-type TgElp3 was amplified

from the HATgElp3OE construct and inserted into the HindIII restriction site of the pDHFR

plasmid using primers F19/R19.

To generate the TgRlmN overexpression constructs, TgRlmN cDNA was amplified from

the previously published TubHA-RlmN-DHFR3’UTR-pDHFR-TS plasmid [9] using F20/R20

primers or the F20/R20b primers to remove the TgRlmN TMD. These amplicons were

inserted into the BglII and EcorV restriction sites within the TubHX cloning vector [51]. The

QuickChange II XL Site-Directed Mutagenesis kit (Agilent Technologies #200521) was used

with primers F22 and R22 to generate the TgRlmN rSAM(C229/232S)OE mutant construct.

The plasmid sequences were verified using primers F23 and R23. The NotI enzyme was used

to linearize the TgRlmN overexpression plasmids prior to transfection.

Parasite maintenance and generation of transgenic parasites. For all experiments,

Toxoplasma was cultured in human foreskin fibroblasts (HFF). The HFF cell line is commer-

cially available from: ATCC, HFF-1 SCRC-1041™. HFFs were cultured with Dulbecco’s Modi-

fied Eagle’ Medium (DMEM) supplemented with 10% heat-inactivated fetal bovine serum

(FBS) at 37˚C and 5% CO2. The HFF medium was changed to DMEM supplemented with 1%

FBS prior to parasite inoculation.

To express various plasmids ectopically or to modify the endogenous locus, freshly egressed

Toxoplasma tachyzoites (RHΔhxΔku80, RHΔhx, or ME49 as described in the text) were elec-

troporated with 75 μg of linearized DNA. A pmini-Ku80 plasmid (Chunlin Yang and Gustavo

Arrizabalaga, unpublished) was simultaneously transfected with each ectopic overexpression

construct into the HATgRlmN parasite line (RHΔhxΔku80 background) to facilitate genomic

integration using non-homologous end joining. Following transfection, parasites were split

evenly between multiple flasks containing confluent HFF monolayers to isolate independent

clones. Drugs used for selection were added 24 hours post-transfection and parasites were

maintained under selection for a minimum of three passages prior to isolation of individual

clones. To select for parasites containing overexpression plasmids (HXGPRT gene), 25 μg/mL

of mycophenolic acid (MPA) and 50 μg/mL of xanthine (XAN) was used for selection [52].

For the allelic replacement plasmids containing the DHFR-TS gene, 1 μM pyrimethamine

selection was used [50]. Limiting dilution was used to isolate individual clones from popula-

tions of transfected parasites.

Western blot analysis

Parasites from a freshly lysed T-25 cm2 flask (~3 x 107 parasites) were pelleted and washed

once in ice-cold phosphate buffered saline (PBS) followed by lysis in RIPA buffer supple-

mented with cOmpleteTM, Mini, EDTA-free protease inhibitor (Roche #11836170001) and

sonicated three times on ice for 10 seconds with a microtip sonicator. Insoluble material was

removed by centrifugation at 21,000 x g for 10 min at 4˚C and cleared lysate was quantified

using a detergent compatible (DCTM) protein assay kit (Bio-Rad #5000111). For each sample,

equal amounts of protein were mixed with Laemmli sample buffer supplemented with 5%

beta-mercaptoethanol and heated at 95˚C for 10 min. Samples were centrifuged at 21,000 x g

for 3 min and subjected to SDS-PAGE with precast 4 to 20% Mini-PROTEAN TGX gels (Bio-

Rad #4568094). The Transblot SD semidry transfer system was used to transfer proteins to a
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nitrocellulose membrane (Bio-Rad #1703940). Blots were subjected to Ponceau S staining to

ensure relatively equal protein loading and transfer. Membranes were then washed with Tris

buffered saline-Tween 20 (TBST) and blocked with 5% milk-TBST for 30 min. Membranes

were incubated with primary antibodies at 4˚C overnight. Membranes were washed 3 x 10

min in TBST followed by incubation with secondary HRP-linked antibodies for 1 hour at

room temperature. Membranes were washed for 3 x 10 min and proteins were detected with

SuperSignalTM West Femto Maximum Sensitivity Substrate (Thermo Fisher #34094) and

imaged on a FluorChem R imager (Bio-Techne).

The following primary antibodies were used at the dilutions indicated: rat anti-HA

(1:2,000, Roche #11867423001), rabbit anti-TgELP3 (1:2,000) [14], mouse anti-SAG1 (1:2000,

Genway #MA1-83499), mouse anti-TgF1B ATPase (1:4,000) [15,16], and mouse anti-puromy-

cin clone 12D10 (1:2,000, Sigma Aldrich #MABE343). Secondary HRP-linked antibodies for

Western blot analysis included donkey anti-rabbit (1:2,000, GE Healthcare #NA934), sheep

anti-mouse (1:5,000, GE Healthcare #NA931) and goat-anti rat (1:2,000, GE Healthcare

#NA935).

Immunofluorescence assays

Freshly lysed parasites were inoculated onto confluent HFF monolayers grown on coverslips

in a 24-well plate. Plates were fixed with 4% paraformaldehyde in PBS and blocked for 30 min

in 3% bovine serum albumin (BSA) in PBS. Cells were permeabilized with 0.2% Triton X-100

in BSA-PBS for 10 min. All antibodies were diluted in 3% BSA-PBS and were applied in

sequential order. Cells were incubated with rat anti-HA (1:2,000, Roche #11867423001) for 1

hour at room temperature followed by 3 x 10 min PBS washes and 1 hour incubation with

anti-rat Alexa Fluor 488 (1:5,000, Thermo Fisher #A-11006) at room temperature. Cells were

washed 3 x 10 min with PBS followed by overnight incubation with mouse anti-TgF1B ATPase

(1:4,000) [15,16] at 4˚C. Cells were washed 3 x 10 min followed by 1 hour incubation with

anti-mouse Alexa Fluor 594 (1:5,000, Thermo Fisher A-11005) at room temperature. Cover-

slips were washed 3 x 10 min with PBS. The nucleic acid stain 4’, 6-diamidino-2-phenylindole

dihydrochloride (DAPI, Life Technologies #D1306) diluted 1:1,000 in PBS was applied for 10

min at room temperature and then washed 3 x 10 min at room temperature. Coverslips were

mounted using Vectashield antifade mounting medium (Vector Labs #H-1000).

Parasite growth assays

Plaque assays were used to assess parasite growth [53,54]). Intracellular parasites were har-

vested from the host cell monolayer by scraping, syringe lysing (25-guage needle) and filtering

through a 3.0 μm polycarbonate filter. Parasites were counted using a hemocytometer and 500

parasites were inoculated into a single well of a 12-well plate containing confluent HFFs. For

each assay, an individual parasite line was plated in triplicate. Four hours after inoculation,

uninvaded parasites were removed and fresh medium was replaced. The cultures were incu-

bated undisturbed for 6 days and then fixed with 100% ice-cold methanol. To visualize pla-

ques, plates were stained with crystal violet (Sigma-Aldrich #C38886). Pictures of individual

plaques were taken at random using a Leica inverted DM16000B microscope (40x dry objec-

tive). The mean area of 30 plaques was measured using ImageJ for each of three independent

experiments. The plaque area was analyzed using two-way analysis of variance (ANOVA)

using GraphPad Prism version 7.03 for Windows, GraphPad Software, La Jolla California

USA, http://www.graphpad.com.

Doubling assays were used to assess parasite replication [55,56]. Intracellular parasites were

harvested as described above; 150,000 parasites were used to inoculate a HFF monolayer in a
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6-well plate and after 4 hours the medium was changed to remove any uninvaded parasites.

Plates were fixed at 24 and 30 (or 48 for ME49) hours post inoculation using ice-cold metha-

nol. The number of parasites in 100 random vacuoles were counted for each parasite strain

and the average number of parasites per vacuole was calculated; this assay was repeated three

times. The average number of parasites per vacuole for each parasite line was analyzed using

two-way ANOVA using GraphPad Prism version 7.03 for Windows, GraphPad Software, La

Jolla California USA, http://www.graphpad.com.

Polyribosome analysis

For polyribosome analysis, one T-175 cm2 flasks of freshly egressed parasites were treated with

50 μg/mL of cycloheximide for 10 min [57,58]. Parasites were pelleted by centrifugation at

1,500 x g for 10 min at 4˚C. Pelleted parasites were resuspended in 1 mL of ice-cold PBS con-

taining 50 μg/mL cyclohexamide and passed through a 25-guage needle to remove any residual

host cell debris. Parasites were then washed three times with 10 mL of ice-cold PBS containing

50 μg/mL of cycloheximide. Parasites were pelleted by centrifugation at 1000 x g for 10 min at

4˚C and re-suspended in 500 μL of lysis buffer (20 mM Tris-HCL (pH 7.9), 100 mM NaCl, 10

mM MgCl2, 0.4% NP-40, 50 μg/mL cycloheximide). Parasites were passed through a 25-guage

needle several times to facilitate parasite lysis followed by a 10 min incubation on ice. Insoluble

proteins were cleared by centrifugation at 21,000 x g for 10 min at 4˚C and 400 μL of lysate

was layered onto 10 to 50% sucrose gradients prepared in lysis buffer without detergent. Poly-

ribosome complexes were resolved by centrifugation using a Beckman Coulter SW41Ti rotor

at 40,000 rpm at 4˚C for 2 hr. Gradients were fractionated by a BioComp Instruments gradient

station and the absorbance was measured at 254nm.

Puromycin incorporation

To determine if the puromycin incorporation could be used to assess protein synthesis in

Toxoplasma, we assessed the incorporation of puromycin in freshly egressed parasites.

Approximately 2.5x106 parasites were incubated with 10 μg/mL puromycin (SIGMA #P8833)

for 5, 10 and 15 min at 37˚C. The control sample was treated with 100 μg/mL of cycloheximide

for 10 min at 37˚C prior to the addition of puromycin. Cells were pelleted and washed once in

ice-cold PBS followed by Western blot analysis as described above. Protein was quantified by

densitometry using Image J [59]. Puromycin incorporation was normalized to the Ponceau S

staining and the rate of translation was calculated over time. Slopes from three independent

experiments were calculated and analyzed by linear regression using GraphPad Prism version

7.03 for Windows, GraphPad Software, La Jolla California USA, http://www.graphpad.com.

γ-toxin assay

Total RNA was extracted from both extracellular and intracellular parasites. For intracellular

parasites two T-175 cm2 flasks were scraped, syringe lysed using a 25-guage needle and passed

through a 3.0 μm polycarbonate filter (Whatman) to remove host cell debris and washed three

times in PBS. After the final wash, parasites were resuspended in 250 μL of PBS and 750 μL of

TRIzolTM LS Reagent (Invitrogen) and RNA was isolated according to the manufacturer’s pro-

tocol. For the extracellular parasite sample, two T-175 cm2 flasks of freshly egressed parasites

were filtered and further processed the same as the intracellular samples. For a control, RNA

was also isolated from human foreskin fibroblast cells (parasite host cell). The final RNA pellet

was suspended in 30 μL of DEPC treated water and the RNA concentration was quantified

using a Nanodrop. To check the quality of the total RNA and amount of host cell contamina-

tion, 3 μg of RNA was run on a 0.8% agarose gel.
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For each sample, 5 μg of total RNA was mixed with purified γ-toxin protein in 10 mM Tris-

HCl (pH 7.5), 10 mM MgCl2, 50 mM NaCl and 1mM dithiothreitol (pH 7.5) and incubated

for 10 min at 30˚C. The samples were separated on a 10% polyacrylamide, 7 M urea gel, and

transferred to an Amersham Hybond-XL membrane (GE Healthcare). Oligonucleotides used

to detect tRNAs were 5’- GTATCCTAACCACCTAGACTACATGGGA-3’ (Tg-tRNAGlu), 5’-
TCTCCTTAACCACTCGGACACA-3’ (Tg-tRNASer), 5’-CCAGGAATCCTAACCGCTAGACCAT
ATGGGA-3’ (Hs-tRNAGlu) and 5’- GCCTTAACCACTCGGCCATCACAGC-3’ (Hs-tRNASer).

Oligonucleotides were labeled by using adenosine [γ32P]-triphosphate (6000 Ci/mmol, Amer-

sham Biosciences) and polynucleotide kinase (NEB). Northern blots were visualized by a Phos-

phor-Imager and quantified using ImageJ [59].

Supporting information

S1 Fig. Overexpression of TgElp3 at the outer mitochondrial membrane in a Toxoplasma
type II strain causes a significant replication defect. Replication rate was assessed in the

parental ME49 and two independent TgElp3 overexpressing ME49 parasite strains (TgElp3OE

C1 and C2). Doubling assays were performed at 24 and 48 hours; the number of parasites in

100 random vacuoles was quantified and the percentage of vacuoles containing the designated

number of parasites ± s.d. is shown, �P<0.05 (two-way ANOVA).

(TIF)

S1 Table. List of primers used in this study.

(TIF)
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11. Benı́tez-Páez A, Villarroya M, Armengod M-E. The Escherichia coli RlmN methyltransferase is a dual-

specificity enzyme that modifies both rRNA and tRNA and controls translational accuracy. RNA. 2012;

18: 1783–1795. https://doi.org/10.1261/rna.033266.112 PMID: 22891362
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