

β-Thalassemia Mutation At Codon 37 (TGG>>TGA) Detected In A Turkish Family

Bir Türk Ailesinde Gözlenen Kodon 37 β Talasemi Mutasyonu

Derya Güleç, Sibel Bilgili, Nuriye Uzuncan, Bozkaya, Giray, Nur Soyer, Baysal Karaca

İzmir Bozyaka Eductaion Research and Hospital, Biochemitry Department, İzmir

To the Editor,

The β -globin gene mutation at codon 37 [TGG (Trp) \rightarrow TGA (stop codon)] gives rise to a β^0 -thalassemia that was described first by Boehm et al. in 1986 in a Saudi Arabian family [1]. Thereafter, other nonsense codon 37 mutations have been reported [1,2,3,4]. Another mutation at codon 37 (TGG/TAG; tryptophan \rightarrow stop codon) has also been reported previously [5,6].

Premature stop of translation results in a truncated protein and usually the phenotype of β -thalassemia major in homozygous individuals.

We have found an example of the nonsense codon (TGG \rightarrow TGA; Trp \rightarrow Stop) in a Turkish family. We report 3 cases with 1 homozygous and 2 heterozygous mutations at codon 37 causing a premature stop codon.

Human fetal hemoglobin is present in vivo as both an acetylated F_1 ($\alpha\alpha\gamma\gamma^{acetyl}$) form by the presence of acetyl groups at the NH₂ termini of the γ chains and a nonacetylated F_0 ($\alpha\alpha\gamma\gamma$) form. The fraction of the total fetal hemoglobin in acetylated form (F_1) is about 10%, a value similar to that reported previously for cord erythrocytes and mostly in newborns [7,8].

A 37-year-old female patient (case 1) was admitted to our hospital with symptoms of anemia and repeated blood transfusion dependence once a year. Her red blood cell count (RBC) was 4.34x10¹²/L, hemoglobin (Hb) was 97 g/L 9 g/L, mean corpuscular volume (MCV) was 69.1 fL (<80 fL), and mean corpuscular hemoglobin (MCH) was 22.4 pg (<27 pg). Her hemoglobin subtypes were quantified by high-performance liquid chromatography and HbA was 0%

Table 1: Hemato	logical and	l genetic data	of the present	study.
-----------------	-------------	----------------	----------------	--------

Parameters	Patient	Son	Sister
RBC (10 ¹² /L)	4.34	5.43	5.32
MCV(fL)	69.1	55	62.3
MCH (pg)	22.4	17.6	19.3
MCHC (g/L)	32.5	320	310
Hb (g/L)	97	96	103
HbA (%)	0.0	78.4	81.4
HbA ₂ (%)	1.0	4.8	5.2
$HbF_{0}+F_{1}$ (%)	99.0	11.6	6.2
β Genotype	β Codon 37 (TGG/TGA) homozygous	β Codon 37 (TGG/TGA) heterozygous	β Codon 37 (TGG/ TGA) heterozygous

Address for Correspondence: Derya GÜLEÇ, M.D.,

Biyokimya İzmir Bozyaka Eğitim Araştırma Hastanesi İzmir, Turkey GSM: +90 505 525 16 42 E-mail: deryaglc@yahoo.com.tr

Received/*Geliş tarihi* : February 26, 2013 Accepted/Kabul tarihi : May 02, 2013 (70.0%-95%), HbF0 was 89.0% (<1.5.0%), HbF1 was 10.0%, and HbA2 was 1.0% (<3.5%). The blood smear showed microcytosis, hypochromia, teardrop cells, and target cells. The patient's family was originally from the eastern region of Turkey and we were not able to take her parents' blood samples. Consanguinity is not known to be the case in this family. Her 1-year-old son's (case 2) and her sister's (case 3) hematological parameters are given with the patient's in Table 1.

The β -globin genomic DNA was analyzed after receiving informed consent. The β -globin regions of interest were amplified from isolated DNA in a single multiplex polymerase chain reaction and DNA sequencing analyses were done using an ABI 310 sequencer (Applied Biosystems, Foster City, CA, USA). Direct forward and reverse sequencing of the genes revealed that case 1 was homozygous and the other cases were heterozygous for the codon 37 (TGG \rightarrow TGA) mutation. This mutation results in the production of a premature termination codon (tryptophan \rightarrow stop codon) and gives rise to β^0 -thalassemia. Informed consent was obtained.

Prevention of β -thalassemia requires knowledge of the molecular spectrum occurring in the population at risk. This knowledge is particularly necessary when prevention control is applied to a multiethnic population. The frequency of this nonsense codon 37 mutation in the Turkish population is not known.

Conflict of Interest Statement

The authors of this paper have no conflicts of interest, including specific financial interests, relationships, and/ or affiliations relevant to the subject matter or materials included.

References

- 1. Boehm CD, Dowling CE, Waber PG, Giardina PJ, Kazazian HH Jr. Use of oligonucleotide hybridization in the characterization of a beta zero-thalassemia gene (beta 37 TGG----TGA) in a Saudi Arabian family. Blood 1986;67:1185-1188.
- Bozdogan ST, Unsal C, Erkman H, Genc A, Yuregir OO, Muslumanoglu MH, Aslan H. Nonsense β-thalassemia mutation at codon 37 (TGG>TGA), detected for the first time in three Turkish cases. Hemoglobin 2012;36:283-288.
- 3. Gallano P, Girodon E, Ghanem N, Font LL, del Rio E, Martin J, Goossens M, Baiget M. High prevalence of the beta-thalassaemia nonsense 37 mutation in Catalonians from the Ebro delta. Br J Haematol 1992;81:126-127.
- Sadiq MF, Huisman TH. Molecular characterization of betathalassemia in north Jordan. Hemoglobin 1994;18:325-332.
- 5. Kornblit B, Taaning P, Birgens H. Beta-thalassemia due to a novel nonsense mutation at codon 37 (TGG-->TAG) found in an Afghanistani family. Hemoglobin 2005;29:209-213.
- 6. Li D, Liao C, Li J, Tang X. The codon 37 (TGG-->TAG) beta(0)-thalassemia mutation found in a Chinese family. Hemoglobin 2006;30:171-173.
- Abraham EC, Cope ND, Braziel NN, Huisman TH. On the chromatographic heterogeneity of human fetal hemoglobin. Biochim Biophys Acta 1979;577:159-169.
- 8. Joutovsky A, Hadzi-Nesic J, Nardi MA. HPLC retention time as a diagnostic tool for hemoglobin variants and hemoglobinopathies: a study of 60000 samples in a clinical diagnostic laboratory. Clin Chem 2004;50:1736-1747.