d

INTERNATIONAL JOURNAL OF SURGERY

[ OPEN |

A computed tomography-based multitask deep
learning model for predicting tumour stroma ratio
and treatment outcomes in patients with colorectal

cancer: a multicentre cohort study

Yanfen Cui, PhD**°¢, Ke Zhao, MD**, Xiaochun Meng, PhD?, Yun Mao, PhD', Chu Han, PhD*"<,
Zhenwei Shi, PhD*"°, Xiaotang Yang, PhD®", Tong Tong, PhD®*, Lei Wu, PhD****, Zalyi Liu, PhD*>**

I Retrospective Cohort Study

Background: Tumour-stroma interactions, as indicated by tumour-stroma ratio (TSR), offer valuable prognostic stratifioation\
information. Current histological assessment of TSR is limited by tissue accessibility and spatial heterogeneity. The authors aimed to
develop a multitask deep learning (MDL) model to noninvasively predict TSR and prognosis in colorectal cancer (CRC).
Materials and methods: In this retrospective study including 2268 patients with resected CRC recruited from four centres, the
authors developed an MDL model using preoperative computed tomography (CT) images for the simultaneous prediction of TSR
and overall survival. Patients in the training cohort (n = 956) and internal validation cohort (IVC, n = 240) were randomly selected from
centre |. Patients in the external validation cohort 1 (EVC1, n=509), EVC2 (n =203), and EVC3 (n = 360) were recruited from other
three centres. Model performance was evaluated with respect to discrimination and calibration. Furthermore, the authors evaluated
whether the model could predict the benefit from adjuvant chemotherapy.

Results: The MDL model demonstrated strong TSR discrimination, yielding areas under the receiver operating curves (AUCs) of
0.855 (95% Cl, 0.800-0.910), 0.838 (95% Cl, 0.802-0.874), and 0.857 (95% CI, 0.804-0.909) in the three validation cohorts,
respectively. The MDL model was also able to predict overall survival and disease-free survival across all cohorts. In multivariable Cox
analysis, the MDL score (MDLS) remained an independent prognostic factor after adjusting for clinicopathological variables (all

P <0.05). For stage Il and stage Il disease, patients with a high MDLS benefited from adjuvant chemotherapy [hazard ratio (HR)
0.391 (95% Cl, 0.230-0.666), P=0.0003; HR =0.467 (95% Cl, 0.331-0.659), P < 0.0001, respectively], whereas those with a low
MDLS did not.

Conclusion: The multitask DL model based on preoperative CT images effectively predicted TSR status and survival in CRC
patients, offering valuable guidance for personalized treatment. Prospective studies are needed to confirm its potential to select
patients who might benefit from chemotherapy.
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Introduction

Colorectal cancer (CRC) ranks as the third most frequently
diagnosed cancer and stands as the second leading cause of
cancer-related deaths worldwide!". The established TNM sta-
ging system serve as the cornerstone for decision-making
regarding treatment and forecasting outcomes in CRC?.
However, due to the tumour heterogeneity, divergent prognosis
was observed among patients even with same TNM stage™!.
Innovative biomarkers are urgently needed to enhance prognostic
stratification and inform personalized treatment decisions.

Evolving evidence underscores the significance of the
tumour microenvironment (TME), particularly the tumour-
associated stroma, in driving aggressive behaviours, such as
local and metastatic spread, and potentially influencing resis-
tance to chemotherapy'™*. Amongst the stroma-related TME
biomarkers, the tumour-stroma ratio (TSR), reflecting the
interplay between tumour and stromal elements, has emerged
as a stage-independent indicator for survival prognosis in
patients with CRC®7]. Yet, existing histological evaluation of
TSR relies on post-surgery tissue samples, which introduces
sampling bias due to intratumor spatial heterogeneity and
limits accessibility’®!. Moreover, visual estimation is prone to
inconsistencies among pathologists, leading to discrepancies!®!.
Consequently, a noninvasive approach for assessing TSR sta-
tus becomes imperative, enabling impartial and longitudinal
TME evaluations.

Radiographical imaging is routinely used clinically for staging
and evaluating treatment response in CRC, encompassing a
wealth of information about tumour phenotypes. Radiomics, an
innovative strategy, converting medical images into high-
throughput quantitative features, proposing an innovative path
for noninvasive tumour and TME evaluation!'®~'?!, Several stu-
dies have sought to explore the association between specific
radiomics features and the TME, such as tumour-infiltrating
lymphocytes, immunoscore, and neutrophil-to-lymphocyte ratio
(NLR), with moderate performance%!, However, these classic
radiomics approaches rely heavily on handcrafted feature engi-
neering, and requires time-consuming meticulous tumour label-
ling, hindering practical clinical application™®!.

Deep learning (DL), which automatically learn representation
information directly from raw images, obviating manual feature
engineering by domain experts, has garnered increasing
attention!*”*®!, Numerous investigations have substantiated the
performance of DL in clinical diagnosis, prognosis prediction,
and treatment options in many types of cancers, including
CRC!"?2%, Early results have demonstrated the ability of DL to
predict TME and treatment outcomes in gastric cancer
patients*!?2], Nevertheless, the relationship between DL and the
TSR in TME of CRC remains uncertain. Notably, DL models are
tailored to specific tasks, while multitask learning can share fea-
ture representations among related tasks, possibly mitigating
overfitting and enhancing model generalization!?3!.

Thus, our goal is to develop a multitask deep learning model,
harnessing preoperative computed tomography (CT) images, to
simultaneously predict TSR status and overall survival in a large-
scale multicenter CRC patient cohort. We also explored the
model’s ability to predict the benefit from adjuvant chemother-
apy, as the secondary goal of this study.
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HIGHLIGHTS

e We developed and validated a multitask deep learning
model from pretreatment computed tomography images to
noninvasively predict tumour-stroma ratio and prognosis
in patients with colorectal cancer.

e The proposed multitask deep learning signature has pro-
mising performance in predicting adjuvant chemotherapy
in stage II and stage III disease.

Materials and methods

Study design

An overview of the study is presented in Fig. 1. A total of 2268
consecutive patients with histologically confirmed CRC from
four independent hospitals in China were included. For TSR and
survival prediction, the training cohort (TC, 7= 956) and internal
validation cohort (IVC, 7 =240) were retrospectively recruited at
Center I from January 2014 to December 2016. Additionally,
509 patients from Center Il and 203 patients from Center III in
South China, were designated as external validation cohort 1
(EVC1) and EVC2, respectively. For prognostic prediction only,
external validation cohort 3 (EVC3) comprising 360 patients
from Center IV, was collected between June 2013 and December
2015. The detailed inclusion and exclusion criteria are outlined in
Appendix E1, Supplemental Digital Content 1, http:/links.lww.
com/JS9/B923 and Figure S1, Supplemental Digital Content 1,
http://links.lww.com/JS9/B923.

Baseline clinicopathological features, such as age, gender,
tumour location, carcinoembryonic antigen (CEA) level, as well
as pathological tumour and lymph node stages, according to the
8th AJCC TNM staging system®¥, were gathered from medical
records. The primary outcome measured was overall survival
(OS), defined as the time from surgery to death from any cause.
The secondary outcome, disease-free survival (DFS), was defined
as the interval to either disease progression or death from any
cause. Patients alive and disease-free at the last follow-up were
censored. All patients were postoperatively followed every
3-6 months for the first 2 years, then every 6 months during the
next 3 years, and then annually thereafter.

This study was approved by the institutional review boards
of all participating hospitals, and informed consent was
waived owing to the observational and retrospective nature of
the study. This study was also approved by Chinese Clinical
Trial (ChiCTR20000635734), and was reported in line with
the STROCSS, Supplemental Digital Content 2, http:/links.
lww.com/JS9/B924 (Strengthening The Reporting of Cohort
Studies in Surgery) criterial®’!,

Automatic computation of the TSR

Different from traditional visual microscopic assessment, we
developed a deep learning (DL) model for quantifying TSR based
on histological whole-slide images (WSI)!*°!. The TSR was com-
puted as the area of stroma divided by the total area of stroma
and tumour taken together, yielding the final TSR score (Figure
S2, Supplemental Digital Content 1, http:/links.lww.com/JS9/
B923). The TSR status was then categorized into two groups:
stroma-high group (>50%) and stroma-low group (< 50%),
based on a pre-established threshold?”!. More information is
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Figure 1. Study design for the training and validation of the multitask deep learning model based on computed tomography images to predict tumour-stroma ratio
status and overall survival in patients with colorectal cancer. EVC1, external validation cohort 1; EVC2, external validation cohort 2; EVC3, external validation cohort

3; MDL, multitask deep learning; TSR, tumour-stroma ratio.

available in Appendix E2, Supplemental Digital Content 1, http://
links.lww.com/JS9/B923.

Acquisition and analysis of CT images

CT image acquisition and preprocessing are detailed in Appendix
E3, Supplemental Digital Content 1, http:/links.lww.com/JS9/
B923 and Table S2, Supplemental Digital Content 1, http:/links.
lww.com/JS9/B923. Two experienced radiologists, with 12 and
10 years of abdominal CT interpretation, respectively, delineated
the tumour contours manually on the largest tumour section of
the portal-venous phase CT images using the ITK-SNAP (version
3.8.0; http://www.itksnap.org). Notably, large vessels, adjacent
organs, pericolonic fat, and air cavities were excluded.

Deep learning model development and model accuracy for
TSR prediction

For the prediction of TSR status and survival in CRC patients
based on CT images, we established a multitask deep learning
(MDL) model (Fig. 1). Detail regarding model development and
training process are in Appendix E4-5, Supplemental Digital
Content 1, http:/links.lww.com/JS9/B923. Gradient-weighted
class activation mapping was utilized to visualize the MDL out-
put and relevant regions of the CT images.

The diagnostic accuracy of the MDL model for TSR prediction
was quantified by using the area under the receiver operating
characteristic curve (AUC). Additionally, the corresponding
metrics, including accuracy, sensitivity, specificity, positive pre-
dictive value (PPV), and negative predictive value (NPV) were

calculated. This evaluation encompassed patients from the TC,
IVC, EVC1, and EVC2, where TSR data were available.

Association with prognosis and benefit of chemotherapy

We evaluated the prognostic efficacy of the MDL model for
predicting OS and DFS across all five independent cohorts. The
optimal threshold for the predicted survival-score to categorize
patients into high-risk or low-risk groups, was identified by using
the maximally selected rank statistics method in the TC, and then
applied to other validation cohorts. Stratified analyses were
performed in subgroups defined by clinicopathological risk fac-
tors. Model performance was measured by Harrell’s concordance
index (C-index).

Furthermore, we developed an integrated model by combing
the MDL signature with clinicopathological factors, for indi-
vidualized assessment of OS and DFS. The net reclassification
index (NRI) was calculated to quantify the relative improve-
ment in prediction accuracy. The overall performance of these
models was assessed with the prediction error curves and
integrated Brier scores (IBS). Calibration curves were gener-
ated to compare the predicted survival probabilities with the
actual probabilities for the outcome of interest. Furthermore,
the ability of the MDL model to predict the benefit of adjuvant
chemotherapy was evaluated among patients with stage I and
I CRC.

Ablation analysis for multitask deep learning

To validate the efficacy of the proposed approach for simulta-
neous prediction of TSR status and OS, a comparative analysis is
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conducted against both single-task TSR status prediction net-
work and survival prediction network. Furthermore, to under-
score the significance of incorporating multiscale features, a
comparative evaluation is performed against a single-scale model.

Moreover, in an effort to validate the effectiveness of each
individual module within the model, specific modules, including
receptive field attention (RFA) and maximum mean discrepancy-
based autoencoder (MMD-AE) modules, are intentionally
removed. Finally, to further verify the effectiveness of our model,
we compared it with other commonly employed models including
fine-tuned multitask VGG16 and DenseNet121.

Statistical analysis

Continuous variables were analyzed with the student #-test or
Mann—Whitney U test, while categorical data with the Pearsony?
test or Fisher’s exact test, as appropriate. Survival probabilities
were evaluated by Kaplan—-Meier survival analysis and log-rank
test. Univariate and multivariate Cox regression analyses were

International Journal of Surgery

conducted to select candidate predictors of survival. Interaction
between the MDL signature and adjuvant chemotherapy was
evaluated by the Cox model. All statistical analyses were carried
out using R (version 3.6.2, https://www.r-project.org, Appendix
E6, Supplemental Digital Content 1, http:/links.lww.com/JS9/
B923). P values less than 0.05 were regarded as statistically sig-
nificant difference.

Results

Patient’s characteristics

The baseline clinicopathological characteristics of all 2268 CRC
patients from four centres are comprehensively presented in
Table 1 and Table S1, Supplemental Digital Content 1, http://
links.lww.com/JS9/B923. Among them, 1258 (55.5%) were
male, and the median age (interquartile range) was 62.0 (52.0-
69.0) years. The majority of patients (n=1846, 81.4%) were
diagnosed with stage II or Il CRC.

Clinicopathological characteristics of patients with CRC in the training and validation cohorts.

Training cohort

Internal validation cohort  External validation cohort 1  External validation cohort 2  External validation cohort 3

Characteristics (n=956) (n=240) (n="509) (n=203) (n=360)
Age (year), median 61 (52-68) 61 (51-68) 64 (56-71) 60 (52-69) 60 (52-68)

(1QR)
Sex, N (%)

Female 444 (46.4) 110 (45.8) 208 (40.9) 92 (45.3) 156 (43.3)

Male 512 (53.6) 130 (54.2) 301 (59.1) 111 (54.7) 204 (56.7)
Locations, N (%)

Right colon 332 (34.7) 85 (35.4) 141 (27.7) 52 (25.6) 203 (56.4)

Left colon 283 (29.6) 70 (29.2) 143 (28.1) 60 (29.6) 156 (43.3)

Rectum 341 (35.7) 85 (35.4) 225 (44.2) 91 (44.8) 1(0.3)
CEA level, N (%)

<5 (normal) 598 (62.6) 149 (62.1) 332 (65.2) 145 (71.4) 215 (59.7)

> 5 (abnormal) 358 (37.4) 91 (37.9) 177 (34.8) 58 (28.6) 145 (40.3)
Differentiation, N (%)

High 7(0.7) 1(0.4) 4(0.8) 69 (34.0) 11 3.1)

Middle 776 (81.2) 195 (81.3) 425 (83.5) 109 (53.7) 246 (67.8)

Low 173 (18.1) 44 (18.3) 80 (15.7) 25 (12.3) 103 (26.7)
pT stage, N (%)

T1 6(1.7) 5(2.1) 16 (3.1) 8 (3.9 17 4.7)

T2 125 (13.1) 32 (13.3) 75 (14.7) 38 (18.7) 36 (10.0)

T3 273 (28.6) 66 (27.5) 371 (72.9) 140 (69.0) 245 (68.1)

T4 542 (56.7) 137 (57.1) 47 9.2) 17 (8.4) 62 (17.2)
pN stage, N (%)

NO 534 (55.9) 122 (50.8) 274 (53.8) 121 (59.6) 212 (58.9)

N1 246 (25.7) 61 (25.4) 147 (28.9) 67 (33.0) 93 (25.8)

N2 176 (18.4) 57 (23.8) 88 (17.3) 15 (7.4) 55 (15.3)
Stage, N (%)

| 120 (12.6) 27 (11.3) 72 (14.1) 41 (20.2) 43 (11.9)

II 404 (42.3) 93 (38.9) 201 (39.5) 80 (39.4) 154 (42.8)

{l 380 (39.7) 105 (43.8) 228 (44.8) 82 (40.4) 9( )

v 52 (5.4) 15 (6.3) 8(1.6) 0 44 (12.2)
LVI, N (%)

Absent 757 (719.2) 182 (75.8) 390 (76.6) 187 (92.1) 284 (78.6)

Present 199 (20.8) 58 (24.2) 119 (23.4) 16 (7.9) 76 (78.6)
PNI, N (%)

Absent 852 (89.1) 211 (87.9) 338 (66.4) 191 (94.1) 280 (78.6)

Present 104 (10.9) 29 (12.1) 171 (33.6) 12 (5.9) 80 (78.6)

¥ or Fisher's exact tests, were used to compare the differences in categorical variables, whereas student t-test or Mann-Whitney U test was used to compare the differences in continuous variables, as

appropriate.

CEA, carcinoembryonic antigen; CRC, colorectal cancer; IQR, interquartile range; LVI, lymphovascular invasion; PNI, perineural invasion.
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Figure 2. Diagnostic accuracy of the multitask deep learning model in the training and validation cohorts. (A) The receiver operating characteristic (ROC) curves of
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under the receiver operating characteristic curve; DL, Deep learning; EVC1, external validation cohort 1; EVC2, external validation cohort 2; IVC, internal validation

cohort; TC, training cohort; TSR, tumour-stroma ratio.

Development and validation of the deep learning model for
TSR prediction

To simultaneously predict TSR status and OS, we trained an
MDL model based on preoperative portal-venous CT images.
Figure S3, Supplemental Digital Content 1, http:/links.lww.com/
JS9/B923 illustrates two representative cases, displaying CT
images alongside visualization of network-predicted TSR and OS
visualizations.

The ability of MDL model for classifying high versus low TSR
was shown to have an AUC of 0.848 (95% CI, 0.820-0.875) in
the TC (Fig. 2A). This model demonstrated consistent dis-
crimination for predicting TSR status in the IVC, EVC1 and

EVC2, with AUCs 0f 0.855 (95% CI, 0.800-0.910), 0.838 (95%
CI, 0.802-0.874), and 0.857 (95% CI, 0.804-0.909), respec-
tively (Fig. 2A and Table S3, Supplemental Digital Content 1,
http://links.lww.com/JS9/B923). We further confirmed that the
MDL score was significantly higher in the high-TSR group that
those in the low-TSR group within each cohort (all P <0.001)
(Fig. 2B).

Prognostic value of the multitask deep learning model

We first confirmed that the TSR status, as determined by histo-
pathological assessment, significantly correlated with both OS
and DFS in the training and three validation cohorts (all P <0.05)
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colorectal cancer.
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Multivariable cox regression analysis of overall survival and disease-free survival in patients with colorectal cancer.

Overall survival

Disease-free survival

Variables HR (95% Cl) P HR (95% CI) P
Training cohort
DLS? 1.154 (1.132-1.175) <0.0001 1.132 (1.111-1.153) < 0.0001
Age (>60 vs. <60 years) 2.088 (1.609-2.708) <0.0001 1.639 (1.283-2.094) <0.0001
CEA (elevated vs. normal) 1.353 (1.061-1.725) 0.015 1.342 (1.069-1.686) 0.011
N stage (N + vs. NO) 2.715 (2.014-3.661) <0.0001 2.441 (1.848-3.223) <0.0001
Stage (Il +1V vs. [+1)) 3.205 (2.191-4.689) <0.0001 2.716 (1.876-3.93) <0.0001
LVI (positive vs. negative) 1.553 (1.162-2.076) 0.003 1.524 (1.159-2.005) 0.002
Internal validation cohort
DLS? 1.264 (1.195-1.338) <0.0001 1.194 (1.134-1.257) <0.0001
CEA (elevated vs. normal) 2.606 (1.569-4.329) 0.0002 1.821 (1.127-2.942) 0.014
N stage (N + vs. NO) 2.069 (1.144-3.743) 0.016 2.125 (1.198-3.768) 0.009
Stage (Il +1V vs. [+1)) 3.098 (1.572-6.104) 0.001 2.554 (1.298-5.025) 0.006
LVI (positive vs. negative) 2.072 (1.192-3.602) 0.009 — —
External validation cohort 1
DLS? 1.183 (1.15-1.216) <0.0001 1.171 (1.139-1.204) <0.0001
Age (>60 vs. <60 years) 1.554 (1.078-2.24) 0.018 1.629 (1.132-2.345) 0.009
CEA (elevated vs. normal) 1.419 (1.002-2.009) 0.049 1.460 (1.037-2.055) 0.030
External validation cohort 2
DLS? 1.209 (1.132-1.293) <0.0001 1.160 (1.093-1.232) < 0.0001
Age (>60 vs. <60 years) 3.323 (1.560-7.080) 0.002 3.074 (1.520-6.214) 0.002
CEA (elevated vs. normal) 1.944 (1.039-3.636) 0.037 1.943 (1.068-3.536) 0.029
LVI (positive vs. negative) 2.897 (1.333-6.295) 0.007 2.869 (1.375-5.987) 0.005
External validation cohort 3
DLS? 1.013 (1.000-1.025) 0.044 1.011 (1.015-1.223) 0.048
CEA (elevated vs. normal) 1.536 (1.022-2.309) 0.039 1.523 (1.030-2.251) 0.035
Stage (Il +1V vs. [+1)) 4.174 (1.894-9.200) 0.0004 3.968 (1.882-8.367) 0.0003

#Continuous variable.

CEA, carcinoembryonic antigen; DLS, deep learning-based imaging signature; HR, hazard ratio; LVI, lymphovascular invasion.

(Figure S4, Supplemental Digital Content 1, http:/links.lww.
com/JS9/B923). Subsequently, we evaluated the prognostic
capacity of the MDL model. Remarkably, the model exhibited

C-index values of 0.775 (95% CI, 0.745-0.804), 0.758 (95 % ClI,
0.693-0.823), 0.779 (95% CI, 0.739-0.819), and 0.757 (95%
CL, 0.739-0.819) in the TC, IVC, EVC1 and EVC2, respectively.

100
T 075
2
5
2 050
] == Chemotherapy
& 025 — NoChemotherapy

p < 0-0001

Overall survival

025
p=0062

000 |_HR: 0-405 (0-254-0646)
T T T T T T T

012 3 4 5 6 7
Time (years)

Number at risk:

124118114100 94 88 66 40 14

T
8

90 81 70 62 52 48 35 17 6
100
3 075
=
3
2 os0
8
2
8 025
p <0:0001

0-00 {_HR: 0-446 (0-320-0:621)
T T T T T

0 1 2 3 4

Time (years)

Number at risk:

T
5

T
6

T
7

176 159 126 96 82 72 47 27

62 42 26 17 14

9

6

2
0

Overall survival

0-00 {_HR: 0-561 (0-303-1-039)
T T T T T T T T

T
0123 456 7 8 910
Time (years)
Number at risk:
277274267 264260256200116 23 3 0
240233225219213208152102 9 1 O

1:00
075 \m
050
025

p=04
0-00 4_HR: 0-828 (0-536-1:281)
T T T T T T

T
0o 1 2 3 4 5 6 7 8

Time (years)
Number at risk:
327 317 295 277 263 253 196 108 17
121 117 107 102 95 87 67 32 3

1:00 1:00
- = \M‘.—_
z z
e 075 e 075
5 5
o w
o o
2 o0s0 2 o050
] ¢
g 025 g 025
a P = 000048 a p=085
0-00 H_HR: 0-453 (0-287-0-715) 0-00 H_HR: 1:048 (0-636-1-729)
T T T T T T T T T T T T T T T T T T T T
01 2 3 45 6 7 8 9 10 01 2 3 4 5 6 7 9 10
Time (years)
Number at risk: Number at risk:
124112106 94 90 84 62 40 14 1 0 277268259251245237196108 22 3 0
90 79 69 62 51 47 35 17 6 0 0 240232222 218 212 207 151 101 10
1-00 1:00
3 2
g 075 g 075
5 5
? @
8 3
£ 050 2 050
@ @
@ @
g 025 3 025
a p=0:00055 a p=057
0-00 HR: 0-565 (0-407-0-785) 0-00 HR: 1:127 (0-749-1-695)
T T T T T T T T T T T T T T T L
0 2 3 4 5 6 7 0 7 8
Time (years)
Number at risk: Number at risk:

176 128 100 74 65 59 40 21 2
62 40 23 14 12 8 5 4 0

327 294 265 246 242 231 179 102 17

121 117 106 100 95 66 31 3

Figure 4. Relationship between the multitask deep learning score (MDLS) and overall survival (OS) and disease-free survival (DFS) in stage Il (A for OS, B for DFS)
and lIl (C for OS, D for DFS) patients who received or did not receive adjuvant chemotherapy. HR, hazard ratio.
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By contrast, the model showed inferior performance for OS
prediction in EVC3, with the C-index of 0.672 (0.622-0.721),
where TSR data were unavailable. Kaplan—Meier survival curves
underscored significant associations between MDL scores
(MDLS) and distinct survival outcomes within each cohort(all
P <0.001)(Fig. 3 and Table S4, Supplemental Digital Content 1,
http://links.lww.com/JS9/B923). Similar trends were obtained for
the DFS in each cohort (Fig. 3 and Table S4, Supplemental Digital
Content 1, http://links.lww.com/JS9/B923).

We performed multivariate Cox regression analysis, with adjust-
ments for clinicopathological variables, and found that the MDLS
imaging biomarker remained a robust and independent prognostic
factor for both OS and DFS across all cohorts (Table S5-6,
Supplemental Digital Content 1, http:/links.lww.com/JS9/B923 and
Table 2). Stratified analyses further demonstrated that the perfor-
mance of MDL model was not affected by diverse clin-
icopathological variables (Figure S5-6, Supplemental Digital Content
1, http:/links.lww.com/JS9/B923). Similar results were observed for
IBS (Table S7, Supplemental Digital Content 1, http:/links.lww.com/
JS9/B923). Moreover, an integrated model combining MDL model
and clinicopathological features, including age, CEA level, N stage,
LVI status, was built for individualized prediction of OS and DFS in
the TC (Figure S7-8, Supplemental Digital Content 1, http:/links.
Iww.com/JS9/B923 and Table 2). Notably, the nomogram exhibited
significantly enhanced prognostic accuracy across all cohorts (Table
S8, Supplemental Digital Content 1, http:/links.lww.com/JS9/B923).
Correspondingly, prediction error curves consistently depicted lower
prediction errors for the integrated nomogram in contrast to the DL
model and clinicopathological model (Figure S9, Supplemental
Digital Content 1, http:/links.lww.com/JS9/B923).

Additionally, the NRI analysis revealed that the integration of
MDLS into the nomogram performed satisfactorily in all cohorts,
indicating improved classification accuracy for survival predic-
tion (Table S9, Supplemental Digital Content 1, http:/links.lww.
com/]JS9/B923). Calibration curves at 1-year, 3-year, or 5-year
intervals exhibited favourable agreement between model esti-
mations and actual observations across all cohorts (Figure S10,
Supplemental Digital Content 1, http://links.lww.com/JS9/B923).

Predictive value of MDLS for chemotherapy response

To explore the predictive significance of the MDLS, we examined
the correlation between MDLS and survival outcomes among
stage II and III patients who either receive or did not receive
adjuvant chemotherapy. Among the total 1846 patients with
stage I and III CRC, 1417 (76.8%) have available post-surgery
treatment information.

We found that for patients in the high-MDLS group, adjuvant
chemotherapy was associated with an improved survival in both
stage II [for OS, hazard ratio (HR) 0.405 (95% CI, 0.254-0.646),
P<0.0001] and stage II disease [HRO0.446 (95% CI
0.320-0.621), P <0.001](Fig. 4). Conversely, for patients in the
low-MDLS groups, adjuvant chemotherapy did not affect survi-
val in either stage II [for OS, HR0.561 (95% CI, 0.303-1.039),
P=0.062] or stage IIl disease [HR0.828 (95% CI, 0.536-1.281),
P=0.40]. Accordingly, an interaction test was conducted
between the MDLS-defined risk groups and chemotherapy,
confirming a significant interaction regarding the impact on OS
and DFS in both stage Il and III disease (all P values < 0.001). All
these results suggest that the MDLS has predictive potential for
chemotherapy benefits.

Superiority verification of proposed method

As show in Table S10, Supplemental Digital Content 1,
http://links.lww.com/JS9/B923, multitask learning significantly
improved TSR prediction in the training and three validation
cohorts, which substantially increased AUCs to 0.838-0.857
from 0.799-0.827 with single-task learning. Additionally, mul-
titask learning achieved better OS prediction than single-task
learning, with C-index increased from 0.680-0.705 to
0.757-0.779 across all four cohorts.

We also compared the proposed multiscale learning approach
with single-scale learning for TSR status and survival prediction.
In all four cohorts, multiscale learning significantly improved
prediction of TSR status, which substantially increased AUCs to
0.838-0.857 from 0.700-0.761 with single-scale learning.
Moreover, multiscale learning achieved better prediction of OS
with C-indexes of 0.757-0.779 versus 0.602-0.641 for single-
scale learning in three validation cohorts.

Furthermore, attributable to integrated advantages of the RFA
and MMD-AE modules over multiscale features, the network
architecture we proposed efficaciously enhances model perfor-
mance, and surpassing that of currently prevalent networks
models (AUCs for TSR status: from 0.650-0.809 to
0.838-0.857, and C-indexes for survival: from 0.564-0.695 to
0.757-0.779 in all validation cohorts).

Discussion

The tumour-stroma microenvironment is crucial to disease pro-
gression, and its composition can influence treatment response
and outcomes. TSR, an assessment of tumour-stroma amount
within the tumour based on HE-staining of surgical specimens,
has emerged as a robust prognostic and predictive biomarker,
particularly in CRC. In this retrospective multicohort study, we
developed and validated a noninvasive CT image-based multitask
deep learning model that enabled simultaneous prediction of TSR
status and prognosis post radical surgery for CRC patients. We
further confirmed that the prognostic value of the deep learning
signature was independent of various clinicopathological factors.
Intriguingly, the tumour-stroma imaging signature demonstrated
the ability to predict response to adjuvant chemotherapy in stage
II and III CRC, indicating its potential to aid treatment decisions
and follow-up management for CRC patients.

The present histological evaluation of tumour stroma
encounters limitations in tissue accessibility, spatial hetero-
geneity, and temporal dynamics. In contrast, radiological ima-
ging, boasts the advantage of being noninvasive and can be
repeatedly obtained during the treatment course. The association
between radiomics features and tumour immune microenviron-
ment has been extensively investigated> 1. For instance,
Sun et al. correlated both intratumor and peritumor radiomics
features with CD8 T cells expression, and found that the
CD8 radiomics signature could predict clinical response and
outcomes in immunotherapy-treated patients!*>]. Similar radio-
mics approaches from tumour and its periphery have been
employed to evaluate the immune cells within TIME, such as
immunoscore!'?!, neutrophil-to-lymphocyte ratio (NLR)"#!, and
tumour-infiltrating lymphocytes!?8!, exhibiting moderate perfor-
mance with AUCs ranging from 0.74 to 0.86. In terms of TSR,
only a few studies have explored radiomics features as TSR pre-
diction biomarkers?*>. However, the clinical relevance of these
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findings was constrained by the relatively small sample size,
limited extensive external validation, and lack of survival or
chemotherapy benefit data. Furthermore, the requirement for
domain knowledge in handcrafted feature engineering and the
time-intensive nature of classic radiomics analysis manual label-
ling have hindered clinical application™”!. Here, we developed
DL model to noninvasively predict and validate TSR in the TME
across multiple centres with 2268 patients. In the validation
cohorts, the model exhibited TSR prediction promising perfor-
mance, with AUCs exceeding 0.83, indicating that DL holds
potential to capture diverse information encompassing tumour
spatial heterogeneity and TME aspects related to tumour
chemosensitivity.

Beyond predicting TSR, our multitask DL model was found to
be significantly associated with prognosis in CRC, achieving
C-index higher than 0.75 for OS in the four cohorts with TSR
data. The rationale for integrating the TSR and survival predic-
tion tasks into a unifying model, rather than predicting outcomes
directly™™?!] is that while distinct, these tasks are intricately
interconnected. This connection is particularly evident in the
context of CRC, where the HE-derived TSR status, as demon-
strated in our study, exhibited a robust correlation with OS and
DFS. Of note, the survival patterns for the MDL model were
similar to those based on histological TSR status evaluation. The
prognostic strength of the MDL model was independent of clin-
icopathological variables, indicating its potential to categorize
patients into distinct risk groups beyond the current staging
system. Additionally, the prognostic efficacy was improved by
combining the MDL model with clinicopathological factors. All
these results indicate that, by linking CT images with TSR status
and survival, the MDL model might capture underlying biology
behind the survival predictions, unaffected by various con-
founding factors for outcomes.

From a technical standpoint, we developed and trained a
multiscale and multitask deep learning network, and found that
this approach outperforms a traditional single-task or single-scale
DL for predicting TSR and survival. This fact was further vali-
dated by the inferior C-index of the single-task DL model for
predicting OS in the EVC3, where TSR data unavailable. Our
primary motivation for employing the multitask learning
approach stems from the substantial correlation between the TSR
status and prognosis. This strategy enables the multitask model to
grasp the interplay between these tasks by acquiring general
feature representations and facilitating information sharing,
thereby enhancing the cohesiveness and robustness of predic-
tions. Additionally, the multitask model promotes information
exchange and sharing among various tasks to reduce the amount
of model parameters for each task, and mitigate the risk of
overfitting. However, these multiscale and multi-mask DL mod-
els present additional complexity when compared to a simple
convolutional neural network. This complexity arises due to the
need for optimizing a significantly larger number of parameters,
resulting in a high computational cost and slower convergence of
the model. Moreover, the generalization capabilities of neural
decision forests may be uncertain when trained on small datasets
commonly found in medical applications. Therefore, it is crucial
to address these challenges, appropriately adapt sophisticated
deep learning techniques, and develop robust models that can
reliably predict clinical outcomes in medical settings.

Adjuvant chemotherapy is considered a standard treatment for
patients with stage Il CRC, while controversial for stage II
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patients. Currently, the optimal selection criteria for suitable
candidates for chemotherapy remains uncertain, and only a small
subset of patients could benefit from adjuvant chemotherapy!®!l.
Given the demonstrated ability of the MDL model to risk-stratify
patients in our study, there is a potential for the MDL signature to
enhance adjuvant treatment decision-making. Specifically,
patients with high-MDLS could significantly benefit from adju-
vant chemotherapy, while low-MDLS patients gained no benefit.
Employing this MDL model, low-risk patients could avoid
unnecessary chemotherapy, while high-risk patients could receive
chemotherapy or more aggressive regimens to improve outcomes.
Prospective studies to assess the impact of MDLS-informed
treatment decisions on patient outcomes are warranted, particu-
larly when integrated with established clinicopathologic criteria
and molecular biomarkers that may provide additional prognostic
information.

Notably, the present study has several limitations. Firstly,
inherent bias was inevitable due to the retrospective nature and
distribution differences, although multiple external validations
were performed to improve reliability. Secondly, utilizing only
the largest slice from pretreatment venous phase CT may not
represent the entire tumour, introducing potential analysis bias.
Thirdly, the use of adjuvant chemotherapy was not randomized,
making it susceptible to selection biases. Finally, the biological
significance of DL features warrants further investigation.
Ultimately, prospective randomized clinical trials are necessary to
validate the generalizability and clinical utility of our DL model.

Conclusion

In conclusion, we successfully developed and validated a multitask
DL model utilizing preoperative CT images, that allows non-
invasive evaluation of tumour-stroma microenvironment, particu-
larly the TSR, as well as the clinical outcomes in patients with CRC.
Moreover, the proposed DL model could be used to identify indi-
viduals who might benefit from adjuvant chemotherapy in stage Il
and III CRC. Further prospective randomized trials will be war-
ranted to confirm its clinical applicability in refining prognosis and
inform treatment decision in patients with CRC.
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