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Abstract

Motivation: There is recent interest in using gene expression data to contextualize findings from

traditional genome-wide association studies (GWAS). Conditioned on a tissue, expression quanti-

tative trait loci (eQTLs) are genetic variants associated with gene expression, and eGenes are genes

whose expression levels are associated with genetic variants. eQTLs and eGenes provide great

supporting evidence for GWAS hits and important insights into the regulatory pathways involved

in many diseases. When a significant variant or a candidate gene identified by GWAS is also an

eQTL or eGene, there is strong evidence to further study this variant or gene. Multi-tissue gene ex-

pression datasets like the Gene Tissue Expression (GTEx) data are used to find eQTLs and eGenes.

Unfortunately, these datasets often have small sample sizes in some tissues. For this reason, there

have been many meta-analysis methods designed to combine gene expression data across many

tissues to increase power for finding eQTLs and eGenes. However, these existing techniques are

not scalable to datasets containing many tissues, like the GTEx data. Furthermore, these methods

ignore a biological insight that the same variant may be associated with the same gene across

similar tissues.

Results: We introduce a meta-analysis model that addresses these problems in existing methods.

We focus on the problem of finding eGenes in gene expression data from many tissues, and show

that our model is better than other types of meta-analyses.

Availability and Implementation: Source code is at https://github.com/datduong/RECOV.

Contact: eeskin@cs.ucla.edu or datdb@cs.ucla.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Expression quantitative trait loci (eQTLs) studies find eQTLs, which

are genetic variants associated with gene expression, and eGenes,

which are genes whose expression levels are associated with at least

one genetic variant. eQTL studies are related to traditional genome-

wide association studies (GWAS) which find variants associated

with disease.

Both eQTL studies and GWAS focus on single nucleotide poly-

morphisms (SNPs). Many SNPs found by GWAS are located in

intergenic regions, and their relationship to the disease phenotype is

often not obvious. Gene expression is an intermediate phenotype be-

tween a causal SNP and a disease (Huang et al., 2014). Thus, eQTL

studies may provide biological insights into the mechanism through

which disease occurs. If a significant SNP identified by GWAS is

found to be an eQTL, there is a strong evidence to further study the
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variant. For this reason, top hits in GWAS that are also eQTLs are

of special interest. In fact, recent GWAS have confirmed that many

disease-causing variants are eQTLs (Albert, 2016; Liu et al., 2016;

Nieuwenhuis et al., 2016). Similarly, genes near GWAS-significant

SNPs that are identified as eGenes may warrant further study as can-

didate causal genes. Thus, eQTL studies provide great supporting

evidence for GWAS results and important insights into the regula-

tory pathways involved in many diseases.

The underlying approach behind eQTL studies and GWAS is the

same. In an eQTL study, one performs association tests between the

genotype data and the gene expression (instead of disease statuses) to

identify variants that are associated with the gene expression. eQTLs

and eGenes may be specific to only one or a group of tissues, as a gene

is not always uniformly expressed in every tissue. For example, SNPs

associated with schizophrenia have been found to be eQTLs in only the

brain tissues, indicating that schizophrenia affects how the brain func-

tions (Fromer et al., 2016). For this reason, there have been recent

large-scale studies to collect gene expression data in many tissues, such

the Genotype-Tissue Expression (GTEx) project (The GTEx

Consortium, 2015). This GTEx dataset contains gene expression data

in 44 tissues and genotypes of 5 million SNPs for over 300 individuals.

To find eQTLs from the GTEx data and other multi-tissue data-

sets, one can apply the traditional tissue-by-tissue (TBT) approach,

in which a separate eQTL study is done for each tissue. However,

many tissues do not have enough samples to detect SNPs that are

weakly associated with the gene expressions. To address this issue,

there have been many efforts in developing different types of meta-

analysis, which gather data from many tissues to increase the total

sample size and power to detect eQTLs. Two notable methods are

Meta-Tissue and eQTLBma. Both have been shown to outperform

the traditional TBT method (Flutre et al., 2013; Sul et al., 2013).

Meta-Tissue and eQTLBma have an important limitation that

reduces their applicability to large gene expression datasets such as

the GTEx data. Both methods are computationally intensive and

should used for datasets containing at most 10 or 20 tissues, respect-

ively (Flutre et al., 2013; Sul et al., 2013). Meta-Tissue uses both lin-

ear mixed models (LMMs) and fixed (or random) effects meta-

analysis to combine data from many tissues. Meta-Tissue must esti-

mate the variance components in its LMM setup for every pair of

variant and gene expression; thus, its runtime is impractical when

there are thousands of genes or too many tissues (Sul et al., 2013).

eQTLBma uses a Bayesian approach that considers all possible com-

binations of tissues in which a SNP is an eQTL. This setup corresponds to

2T configurations where T is the number of tissues, making the method

infeasible when T is 44 like in the GTEx data (Flutre et al., 2013).

As an alternative to Meta-Tissue and eQTLBma, the GTEx con-

sortium used a meta-analysis software called Metasoft, introduced

by Han and Eskin (2011). Metasoft is equivalent to Meta-Tissue

without the LMM setup (Han and Eskin, 2011, 2012). Metasoft ex-

tends the random effects (REs) meta-analysis model; this extended

model is named RE2 (Han and Eskin, 2011).

However, Meta-Tissue, eQTLBma and RE2 assume that a SNP

has independent effect on a given gene’s expression in each tissue.

This ignores the fact that the same SNP tends to have similar effects

in related tissues (The GTEx Consortium, 2015).

Recently, Acharya et al. (2016) introduced a method that

amends this shortcoming in Meta-Tissue, eQTLBma and RE2. The

model developed by Acharya et al. (2016) requires genotype and

gene expression data for each individual in each tissue. Their imple-

mentation in R, using the JARGUAR library, requires loading all

these data into memory. When there are many genes and tissues, this

approach can be memory intensive.

In this article, we present a novel meta-analysis method named

RECOV. Unlike Meta-Tissue and eQTLBma, RECOV is applicable

to large gene expression datasets and can analyze all 44 tissues in

the GTEx data. Like JARGUAR, RECOV considers the biological

insight that a variant may have similar effects on a gene across tis-

sues. However, unlike JARGUAR, RECOV needs only the summary

statistic (i.e. SNP effect and its variance) at each SNP in each tissue

and not the complete genotype and gene expression data for each in-

dividual. RECOV is based on the RE2 meta-analysis framework and

uses a covariance (COV) matrix to explicitly model the correlation

of a SNP effect on the same gene’s expression in similar tissues.

In the Section 2, we describe RECOV in detail and demonstrate

how it can be used to identify eGenes from eQTL studies in more

than one tissue. In the Results section, we use simulated datasets to

show that RECOV has correct false positive rate (FPR). We then

apply RECOV to real multi-tissue expression data from the GTEx

dataset. Our results show that RECOV detects more eGenes than

previous RE2 and TBT methods.

2 Materials and methods

We begin by introducing the notations in this article. We use x 2 Rn

to specify a vector x with dimension n, and Z 2 Rn�m to specify a

matrix Z with dimension n � m. We use xi to denote the ith element

in x, and likewise, Zij to specify entry ij in Z. We denote an item k in

the set K by k 2 K, and a set fa1 . . . aKg indexed by k by using

fakgk2K, where the subscript k 2 K is omitted whenever the context

is clear. The size of the set K is denoted as jKj.

2.1 Detecting one eGene via an eQTL study
2.1.1 eQTL study in one tissue

We begin with an eQTL study in one tissue t. An eQTL study finds

every eQTL associated with the expression level of a specific gene g.

To do this, the study tests each variant v in the set V against the ex-

pression of g in a sequential fashion. To set up the problem, suppose

we represent the gene expression for m individuals in tissue t as a

vector q 2 Rm, and we want to find the effect of variant v on g. Let s

2 Rm be the standardized genotypes of this v. The eQTL study as-

sumes the following model

q ¼ bvgtsþ �vgt (1)

where � 2 Rm is the vector of sampling errors � � N 0; r2
� I

� �
, and bvgt

2 R is the true effect size of the variant v on g in tissue t (Eskin,

2015). The estimate bvgt of the true value bvgt can be computed

using the basic least squares equation bvgt ¼ argminbvgt
jjq� bvgtsjj22

(Abraham and Ledolter, 2006). This solution is

bvgt ¼ s>s
� ��1

s>q where bvgt � N bvgt; s>s
� ��1

r2
�

� �
(2)

By using Equation (2) and writing the null hypothesis H0: bvgt ¼ 0,

one can do a hypothesis test to assert if v has an effect on g. To do

this test, compute the estimate br2
�vgt

of r2
�vgt

by

br2
�vgt
¼ 1

m� 1

Xm

i¼1
qi � bvgtsi

� �2
(3)

and estimate the variance dvgt of bvgt by

dvgt ¼ s>s
� ��1br2

�vgt
(4)

then compute the p-value pvgt ¼ p� value bvgt

� �
(Abraham and

Ledolter, 2006; Eskin, 2015). If pvgt is less than some significance

level, then we reject H0: bvgt ¼ 0, and conclude that v is an eQTL of
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g in tissue t. When many variants are tested, we must apply a mul-

tiple testing correction; for example, one can apply Bonferroni cor-

rection by using the threshold a=jVj where a is the significance level

for the whole family of tests. The Bonferroni correction is conserva-

tive when there is linkage disequilibrium (LD) in set V. There exist

other methods that can handle LD better than the Bonferroni correc-

tion (Darnell et al., 2012; Joo et al., 2014, 2016; Hormozdiari et al.,

2015).

2.1.2 Using an eQTL study in one tissue to discover one eGene

Because an eQTL study tests each variant v 2 V against gene g in a

tissue t, from a single eQTL study we have a set of p-values

fpvgtgv2V . The minimum pgt ¼ minv2Vfpvgtg is defined to be the

observed eGene statistic at gene g in tissue t (The GTEx

Consortium, 2015). Define apgt
¼ p� value pgt

� �
to be the eGene

p-value (The GTEx Consortium, 2015). The eGene p-value

depends on two important factors: the number of variants jVj,
and the LD of the variants. In practice, apgt

is computed by doing a

permutation test (Sul et al., 2015; Duong et al., 2016). In brief, in

the kth permutation, one would permute the gene expressions

among the individuals, and compute a new p
kð Þ

gt ¼ minv2Vfp kð Þ
vgtg. apgt

is the ranking of the observed pgt with respect to the density

created from many p
kð Þ

gt . If its eGene p-value apgt
is less than

some desired threshold, one can then conclude that g is an eGene

in tissue t.

2.2 TBT analysis to find one or many eGenes
When there are genotype-tissue expression data from many tissues,

TBT analysis is the standard method to find eGenes (Sul et al., 2013;

The GTEx Consortium, 2015). TBT tests whether or not the gene

has at least one eQTL in each tissue by examining each tissue indi-

vidually. Suppose the gene is expressed in T tissues. Then TBT per-

forms T eQTL studies (one test in each tissue). The null hypothesis

is that the gene is not an eGene in any tissue. This hypothesis is

equivalent to saying that no eQTL is found for this gene in any

tissue.

Three layers of multiple testing correction are required since

TBT performs one test per gene in each tissue. The first layer of

multiple testing correction is applied within a tissue and corrects

for LD of the variants tested against the gene. This correction can

be done by using the permutation test to compute the eGene

p-value for the gene in the tissue (Duong et al., 2016; Sul et al.,

2013, 2015).

The second layer of multiple testing correction adjusts for the

fact that we may test more than one gene within a tissue. For ex-

ample, the GTEx pilot study tested thousands of genes within one

tissue, and then transformed eGene p-values into eGene q-values to

control for this multiple testing (Dabney et al., 2010; The GTEx

Consortium, 2015). This second layer of multiple testing correction

is not needed if only one gene is tested in each tissue.

The third layer of multiple testing correction takes into account

the fact that one gene is tested T number of times (once per tissue)

(Sul et al., 2013). In this article, we apply Bonferroni correction so

that the false-positive threshold for any eGene q-value in each tissue

is a=T, where a is 5% for example. In this layer, other multiple test-

ing correction methods such as the Benjamini-Hochberg correction

can be used instead of the Bonferroni correction. However, this

paper focuses on the meta-analysis model, and measuring the per-

formances of various multiple testing correction methods is beyond

its scope.

2.3 Meta-analysis models for combining eQTL studies

across tissues
We motivate the application of meta-analysis for combining eQTL

studies across tissues. An eQTL is defined not only with respect to a

gene, but also with respect to the tissue in which the gene expression

is measured. eQTL studies of the same gene have been analyzed sep-

arately at the tissues level (The GTEx Consortium, 2015). We can

better detect the effect of a variant on the gene by combining eQTL

results across many tissues and modeling the relatedness of the effect

sizes of one variant among the tissues.

When using meta-analysis to find many eGenes, it is important

to emphasize that one would need only two layers of multiple testing

correction. The first layer is applied within a gene to correct for LD

because one tests many variants against the gene. The second layer

is applied at the gene level because there is usually more than one

gene being tested.

We define the notations to be used later. Suppose we have T

eQTL studies (one study per tissue) that test the association of a

variant v at a gene g. As before, denote the effect of this variant in

the study (i.e. tissue) t as bvgt, where bvgt is computed using

Equation (2). Denote the variance of bvgt in the study t as dvgt where

dvgt is computed using Equation (4). Let bvg 2 RT contain the ef-

fects in these T studies, so that bvg ¼ bvg1 bvg2 � � � bvgT

� �>
. Let

Dvg ¼ diag dvg1 . . . dvgT

� �
.

2.3.1 REs and the RE2 model

The maximum likelihood procedure in the RE model assumes that bvg

has the form (Han and Eskin, 2011; Thompson and Sharp, 1997)

bvg ¼ kvg þ �vg (5)

The random sampling errors �vg are estimated from the data and

assumed to be �vg � N 0;Dvg

� �
. kvg 2 RT in the RE model is a ran-

dom variable, i.e. kvg � N lvg1; s2
vgI

� �
with lvg 2 R and s2

vg 2 Rþ.

Here the number 1 denotes a vector with all entries equal to 1. The

effect kvg is thus known as the random effect. lvg is the common

true underlying effect that all the studies inherit. The term s2
vg is the

heterogeneity among the effects of the variant in T tissues.

Clearly, bvg comes from the distribution

bvg � N lvg1; s2
vgIþDvg

� �
(6)

The traditional RE model assumes that if the effect of the variant

does not exist in any tissue, then lvg ¼ 0. However, it has been

shown that this traditional null hypothesis does not yield optimal

statistical power in detecting eQTLs (Han and Eskin, 2011, 2012).

For this reason, the RE2 model assumes a different null hypothesis,

that if the effect of the variant does not exist in any tissue, then lvg

¼ 0 and s2
vg ¼ 0. The fact that s2

vg ¼ 0 is a result of lvg ¼ 0 because

when the effect does not exist, its variance must not exist (Han and

Eskin, 2011, 2012; Kang et al., 2014). We will compare our method

against the RE2 model.

The null hypothesis H0 in RE2 is

H0 : lvg ¼ 0 s2
vg ¼ 0 (7)

The log likelihood ratio for testing this hypothesis becomes

llrvg ¼ 2 log
suplvg ;s2

vg
L bvgjlvg; s

2
vg

� �

L bvgjlvg ¼ 0; s2
vg ¼ 0

� � (8)

The function L denotes the likelihood function of the random vari-

able bvg. The numerator suplvg ;s2
vg

L bvgjlvg; s
2
vg

� �
may be estimated
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using numerical methods or other heuristic methods. Here, we apply

the Nelder-Mead method, which is a heuristic derivative-free search

method.

In finding the supremum, one implicitly enforces s2
vg � 0. Due to

this restricted parameter space, the asymptotic density of the likeli-

hood ratio is an average of a v2
1 and v2

2 (Self and Liang, 1987; Han

and Eskin, 2011). To find the p-value of this likelihood ratio when

T is large, one can use this asymptotic density.

Otherwise, one may compute the likelihood ratio p-value by creat-

ing a density of likelihood ratios under the null hypothesis and rank-

ing the observed likelihood ratio with respect to this density. This null

density is made by sampling many instances of bvg using Equation (6)

with lvg ¼ s2
vg ¼ 0, and computing their corresponding llrvg. If the

p-value of llrvg is significant, then v is an eQTL with respect to g in at

least one tissue. Because we have 44 tissues in the GTEx data, we will

use the asymptotic distribution of the likelihood ratio.

2.3.2 RECOV: REs model with a COV term

Here we present an extension to the RE model. We first

discuss the COV term. Equation (5) of the RE model assumes kvg

� N lvg1; s2
vgI

� �
so that the effects of variant v toward gene g are in-

dependent across the tissues. However, tissues from the same body

part are similar; in fact, many eQTLs are found to be consistent

among many tissues (Flutre et al., 2013). From this observation, we

must acknowledge that kvg � Nðlvg1;RvgÞ where Rvg is not diag-

onal. The term Rvg 2 RT�T models the COV of effect sizes of

v among tissues conditioned on the gene g. The matrix Rvg contains

T � T unknown parameters which are to be estimated. In practice,

one has to assume a simpler form for Rvg. Here, we assume

Rvg � cvgUvg. The matrix Uvg is estimated from the data. The term

cvg � 0 is an unknown scaling constant and is optimized jointly with

the mean of regression coefficient lvg.

In this article, we compute the Uvg at each variant-gene pair as

follows. Denote Bg ¼ b1g b2g � � � bjVjg
� �

so that Bg 2 RT�jVj. A

column in Bg contains the effects of a variant in 44 tissues. To avoid

reusing the data when testing a single SNP, we remove its effects in

the 44 tissues when estimating its COV term. To do this, we divide

all cis-variants of g into 10 separate segments according to their

physical locations on the chromosome, and use the 9 segments that

do not contain v to compute Uvg. In particular, denote B�vg as the

matrix Bg without the effect sizes of the variants that belong to the

same segment as v. Uvg can be estimated as Uvg ¼ B�vgB>�vg (after

proper scaling is applied to B�vg). This computation is similar to

how one would compute a kinship matrix using the genotype matrix

(Eskin, 2015). In this scheme, we observe that the variants in strong

LD with v are also removed, so that there are fewer vectors in B�vg

that resemble bvg when computing Uvg. This further helps reducing

the problem of data reusing. Supplementary Table S2 shows that by

removing SNPs in the same segment as v, we retain fewer SNPs that

are in strong LD with v.

Now, we are ready to introduce this COV term Uvg to the RE

model. We extend the RE model so that when testing a variant v

against gene g, we have

bvg ¼ kvg þ �vg (9)

where

kvg � N lvg1; cvgUvg

� �
�vg � N 0;Dvg

� �
(10)

Like before, the matrix Dvg is known because it contains the

observed variances of the SNP effects estimated by Equation (4).

This form for Dvg is standard in meta-analysis (Thompson and

Sharp, 1997). We now have

cov bvg

� �
¼ cvgUvg þDvg (11)

bvg � N lvg1; cov bvg

� �� �
(12)

The null hypothesis that v does not affect g in all T tissues is

H0 : lvg ¼ 0 cvg ¼ 0 (13)

The alternative hypothesis implies that v has an effect in at least one

of the T tissues.

Under this setting, the log likelihood ratio to test the hypothesis

becomes

llrvg ¼ 2 log
suplvg ; cvg

L bvgjlvg; cvg

� �

L bvgjlvg ¼ 0; cvg ¼ 0
� � (14)

Like in the RE model, in finding the supremum in the alternative,

one enforces cvg � 0. Due to this restricted parameter space, the

asymptotic density of the likelihood ratio is an average of a v2
1 and

v2
2. Alternatively, one can compute the empirical p-value of this like-

lihood ratio with a permutation test. In any case, if the p-value of

the likelihood ratio is significant, then v is an eQTL with respect to

g in at least one tissue.

2.4 Using meta-analysis of eQTL in many tissues to

identify eGenes
In practice, a set of variants V is tested against g. Here we describe

how one can combine the meta-analysis result at each variant v 2 V

to determine if g is an eGene.

Define pvg ¼ p� value llrvg

� �
so that from many variants, we

have the set of p-values fpvggv2V . The observed statistic at gene g is

pg ¼ minv2Vfpvgg. To determine if pg is significant, one needs to

compute its eGene p-value apg
(The GTEx Consortium, 2015). To

control for multiple testing when LD exists between the variants,

one can compute apg
using a permutation test (Duong et al., 2016;

Sul et al., 2015; The GTEx Consortium, 2015). The permutation

test creates a distribution of the observed pg under the null hypoth-

esis, which can then be used to compute the eGene p-value apg
of pg.

This permutation test can be done as follows. Let K be the num-

ber of permutations. In the kth permutation, permute the gene ex-

pression of g among the individuals in each of the T tissues so that

there are T permuted datasets. This permutation reflects the hypoth-

esis that the gene is not an eGene in any tissue. Next, redo the meta-

analysis at each variant v 2 V so that a new p
kð Þ

g ¼ minv2Vfp kð Þ
vg g is

computed. apg
is the fraction of times the observed pg is less than

p
kð Þ

g . The gene g is an eGene in at least one tissue if its eGene p-value

apg
is below some threshold a.

In the pilot GTEx analysis, a set of genes G is being tested at

once, so that one has a set aG ¼ fapg
gg2G. To control for the family

wise error rate, one can apply Bonferroni correction to get the

threshold a=jGj. Any gene g 2 G with apg
< a=jGj is an eGene in at

least one of the T tissues.

2.4.1 Estimating eGene p-value

The permutation test above must be performed at every pair of vari-

ant v 2 V and gene g 2 G in a tissue t. The entire permutation test

requires KjVjjGjT permuted datasets, which is time consuming.

Here, we introduce an alternate method to estimate the eGene p-

value. In essence, the permutation test estimates a function f that
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maps a test statistic to its p-value. There is evidence that the correl-

ation of test statistics at two variants is equal to their LD (Han

et al., 2009). This holds true when the test statistics are effect sizes

(Han et al., 2009).

In our meta-analysis, to properly estimate the eGene p-value apg
,

we must consider the effect of LD in the set of variants V on the

observed statistic at each variant v. At each variant, it does not mat-

ter whether we treat its llrvg or its pvg as the observed statistic, be-

cause the likelihood ratio and its p-value are two equivalent entities

for two reasons. First, the likelihood ratio of each variant v has the

same distribution and degree of freedom. Second, the p-value func-

tion is 1-to-1 and strictly monotone. Thus, having a null density for

the maxv2Vfllrvgg is equivalent to having a null density for the min-

imum pg.

We empirically find that on average the correlation of the likeli-

hood ratios at any two variants is roughly equal to their LD; that is,

on average cor llrug; llrvg

� �
� LD u; vð Þ for any variant u; v 2 V

(Fig. 1). For this reason, any function f that accounts for LD and

maps an observed test statistic of a gene into an eGene p-value

would be applicable in our case. We can use such a function to con-

vert the observed test statistics pg at the gene g to eGene p-value apg

without doing the permutation test. Each gene g has its own LD

structure and requires its own function f, because the cis-variants of

each gene are non-identical.

We apply MVN-EGENE to estimate the function f for each

gene. MVN-EGENE is a software that tests if a gene is an eGene in

one tissue. MVN-EGENE is designed so that one does not need to

do the permutation test when estimating an eGene p-value. MVN-

EGENE is unable to simultaneously consider more than one tissues,

as would a meta-analysis would.

To compute the function f at a gene, we apply MVN-EGENE at

that gene in a tissue (Sul et al., 2015). We assume that the LD does

not change much between tissues, and it does not matter much

which particular tissue is chosen, as long as it has many samples.

In MVN-EGENE, the test statistic for a gene is the most signifi-

cant effect size taken over all cis-variants. The p-value of this test

statistic depends on the LD of the cis-variants. Instead of doing a

permutation test to compute this p-value, MVN-EGENE simulates

data under the null hypothesis using a multivariate normal

distribution. In brief, in one simulation, MVN-EGENE samples the

effect sizes of the cis-variants of a gene in a tissue using zero as the

mean effect and LD as the COV matrix. In this simulation, the most

significant effect among these effect sizes is taken to be the test stat-

istic at the gene. After many simulations, one can create a null distri-

bution for the observed test statistic. One can easily convert an

effect size into a p-value using a normal distribution. By having a

null density of the most significant effect size taken over all the vari-

ants, one also has the null density of the minimum p-value taken

over all the variants. This null density of the minimum p-value in

MVN-EGENE properly handles LD at the gene. Here, we use this

distribution of minimum P-values as our null density to convert the

observed minimum likelihood ratio p-value pg to its eGene P-value

apg
in both RECOV and RE2.

2.4.2 Estimating genomic control

In the GTEx dataset and other multi-tissue gene expression datasets,

the same individual may provide samples for many tissues (Fig. 2).

Sharing of samples from the same individuals among tissues is

known to inflate the FPR in a meta-analysis (Han et al., 2016).

Before testing whether the RECOV outcome is affected by the fact

that tissues share individuals, we test if RECOV inflates the FPR

when the data is absolutely free of any spurious statistical associ-

ation. These signals can be due to LD, shared individuals in tissues,

batch effects, or correlated expressions of the same gene (or between

genes) across tissues. It is important to mention that in the real

GTEx data, batch effects have been dealt with by the GTEx consor-

tium by applying PEER factors on the gene expression in each tissue

(The GTEx Consortium, 2015). Subsection 2.4.1 above describes

how RECOV and RE2 handle LD in the variants. We now describe

how we use a genomic control (GC) factor to remove the effect of

shared individuals in the tissues from the meta-analysis results. This

GC factor is clearly data dependent as different datasets will require

different GC values.

Here, we focus on finding the GC factor for the GTEx data. To

do this, we simulate two types of datasets and compare their behav-

iors. The first type does not contain any spurious statistical signals.

The second type contains only signal due to sharing of samples

among the tissues, and the number of people shared between pairs

of tissues is taken from the GTEx data. Our goal is to apply RECOV

and RE2 to the GTEx data; to avoid data reusing, the SNPs and the

gene expressions in both types of datasets are simulated and thus are

independent of the values in the GTEx data.

When there is not any spurious statistical association in the data,

any alternative hypothesis must be rejected more often than the null

hypothesis. We simulate data to demonstrate that RECOV does not

inflate FPR in this case. In each simulated dataset, the number of in-

dividuals per tissue is taken from the GTEx data, but we do not let

tissues share individuals. We generate 1000 SNPs at various minor

allele frequency (MAF) without LD, and a random gene expression

in each tissue. We generate gene expressions where the expression of

the same gene is not correlated between any two tissues. We com-

pute the p-value of the likelihood ratio at each SNP using both

RECOV and RE2 model. We repeat this simulation 1000 times to

obtain 1 000 000 p-values each for RECOV and RE2. The histo-

grams of these p-values in both RECOV and RE2 indicate that the

null hypothesis is more favored than the alternative hypothesis (Fig.

3A and B).

To measure the effect strictly caused by shared individuals, we

simulate datasets as above, but now allow tissues to share individ-

uals. The number of people shared between pairs of tissues is taken
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Fig. 1. Correlation for the likelihood ratios of a pair of cis-variants versus their

LD. Denote corðllru ; llrv Þ as the correlation for the likelihood ratios of variants

u and v over all genes where both are cis-SNPs. Empirically, corðllru ; llrv Þ is

close to the LD of u and v. To show this, we randomly select many pairs of

cis-SNPs from the gene ENGS00000204219.5 that also appear together in at

least two other genes. These pairs are then grouped into bins by their LD (bin

width 0.05). We compute the likelihood ratio for each SNP in each pair over

all the genes in which they are cis-variants. Using these likelihood ratios, we

estimate corðllru ; llrv Þ for the pair u, v. We average corðllru ; llrv Þ over all pairs

u, v in each LD bin. We then plot the absolute value of this average against

the LD value. The identity line is shown in red. Plots for additional pairs

chosen from other genes are shown in Supplementary Figure S1
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from the GTEx data. In each simulation, we compute the likelihood

ratio p-values at 1000 SNPs, and repeat the simulation 1000 times

to obtain 1 000 000 P-values. We observe that these p-values shift

toward 0 when the tissues share samples that are from the same indi-

viduals (Fig. 3C and D). In this case, we estimate the RECOV and

RE2 GC factor to be 1.2947 and 1.1045, respectively. These GC

factors are used to remove the effect caused by shared individuals in

tissues that may inflate the FPR. To compute a GC factor, one con-

verts the median of the observed p-values into a chi-square statistic,

then finds a multiplying factor to scale this new statistic to a chi-

square random variable that has p-value at 0.50 (Devlin and

Roeder, 1999).

3 Results

3.1 RECOV controls FPR
When using any meta-analysis method to find an eGene, one needs

to apply the method at every cis-variant of the specified gene in

order to determine if that gene has at least one eQTL. Thus, the glo-

bal FPR of RECOV and RE2 depends on the FPR at a single cis-

variant. For this reason, we measure the FPR of RECOV and RE2 at

a single variant.

To obtain the FPR at one variant, we simulate 1000 datasets for

a single variant under the null hypothesis where the variant is not

associated with the gene expression in any of 44 tissues. The MAF

of the SNP is randomly chosen and kept the same in all 1000 data-

sets. Then in each dataset, the genotype for this SNP and the gene

expression are simulated independently of the values in the GTEx

data.

To make the simulated data more realistic, we first let each tissue

have the same number of individuals as in the GTEx data, and each

pair of tissues have the same number of shared samples as in the

GTEx data. Second, we set expression levels of the same gene from

the same individual to be correlated with an average correlation of

0.5 across tissues, using the sampling method described in (Sul et al.,

2013). This correlation of expression can occur when the tissues of

an individual have been exposed to the same environmental factors.

In each of the 1000 datasets, we estimate the effect size and vari-

ance of this single variant on the gene expression in each tissue.

RECOV and RE2 take these effect sizes and variances and produce a

meta-analysis p-value for this variant. The GC factor estimated in

Subsection 2.4.2 is used to transform this p-value in each simulation.

This removes only the effect of shared individuals, which is not ex-

plicitly modeled in RECOV and RE2. The FPR of this single variant

is the fraction of times its transformed p-values are significant.

We repeat this experiment for 1000 independent variants, so

that we have 1000 measures of FPR for RECOV and RE2. We use

the significance level of 0.05 (a ¼ 0.05). We find that RECOV at-

tains correct FPR for the majority of variants tested. In RECOV, the

median FPR among the 1000 variants is 0.05, and the 75 and 95%

quantiles are 0.06 and 0.09. In RE2, the median FPR is 0.05, and

the 75 and 95% quantiles are 0.07 and 0.10. These results demon-

strate that RECOV and RE2 control the FPRs in a realistic setting.

3.2 RECOV discovers more eGenes in GTEx data
We apply RECOV, RE2 and TBT to the real multi-tissue eQTL

dataset from the GTEx consortium. We use GTEx Pilot Dataset V6

released on 12 January 2015. The GTEx consortium has performed

RNA-seq on 44 tissues from hundreds of individuals, and we select

15 336 genes that have expression data in all 44 tissues. The consor-

tium has already applied PEER factors to every gene expression in

each tissue to remove any batch effects (The GTEx Consortium,

2015). For genotype data, we use the GTEx imputed genotype data

that contains 5 million SNPs for each individual. Like in the original

GTEx pilot study, for each gene, we use its cis-SNPs, which are

defined to be located within 1Mb from its transcription start site

(The GTEx Consortium, 2015). Not all variants are genotyped in

every tissue, because the 44 tissues contain samples from different

individuals. We use only cis-variants that are genotyped in all 44 tis-

sues. The median number of cis-variants tested per gene is 3744.

For each of the 15 336 genes, we apply RECOV, RE2, and TBT

to every cis-SNP. For each cis-SNP of a gene, our test statistic is the

log likelihood ratio (for RECOV and RE2) or SNP-effect (for TBT).

These test statistics are converted into p-values by using a chi-square

distribution (for RECOV and RE2) or normal distribution (for

Fig. 2. Shared individuals among the 44 tissues in the GTEx dataset. Degree

of sample sharing between two tissues is measured using the Jacquard

index
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Fig. 3. (A) RECOV and (B) RE2 applied to datasets where the tissues do not

share individuals. (C) RECOV and (D) RE2 applied to datasets where the tis-

sues share individuals
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TBT). These p-values are then transformed using the GC factors to

remove the effect of shared individuals in the tissues. Finally, the

most significant p-value among all cis-variants is converted into an

eGene p-value by method in 2.4.1 (for RECOV and RE2) or by

EGENE-MVN (for TBT).

After computing the eGene p-values for 15 336 genes, we use

Bonferroni correction to control for multiple testing correction at

5% level to identify significant eGene p-values; thus, each gene has a

significance threshold of 0.05/15 336.

Figure 4A shows the Venn diagram of the numbers of eGenes

found by TBT, RE2 and RECOV. The majority of tested genes are

found to be candidate eGenes. This is expected because there are

many tissues tested. It is likely that a gene contains at least one

eQTLs in some tissue, which significantly increases the total number

of eGenes detected. Both RE2 and RECOV find more candidate

eGenes than TBT. This result agrees with previous findings where

applying meta-analysis to multi-tissue datasets yields better outcome

than the simple TBT approach (Flutre et al., 2013; Sul et al., 2013).

RECOV detects the highest number of eGenes among the three

methods. Out of the 15 336 genes tested, RECOV finds that 81.40%

of those genes are eGenes while TBT and RE2 find 61.90 and

78.45% of genes are eGenes, respectively. This shows that our ap-

proach detects 3% more eGenes than RE2 and about 20% more

eGenes than TBT.

Next, we apply each method to a case study in order to under-

stand the circumstances where one method outperforms the other

two. We begin with the simple TBT method. In Figure 4A, there are

252 genes detected only by the TBT method. Previous publications

have reported TBT to be the most powerful option to detect genes

with eQTLs that are found in only one tissue (Sul et al., 2013; The

GTEx Consortium, 2015). In the TBT method, one analyzes each

tissue independently, and is able to determine the number of tissues

in which a gene is an eGene. In our result, out of these 252 genes,

225 are eGenes in only 1 tissue, 25 are in 2 tissues, and only 2 are in

3 tissues. This finding agrees with Figure 2 in Sul et al. (2013).

Of the 452 genes discovered by only RECOV, the average

RECOV eGene p-value is 8:52E�9 61:51E�8
� �

; whereas the

average RE2 eGene p-value is 4:18E�3 62:85E�2
� �

. To understand

why RECOV discovers genes that are not found by TBT and

RE2, consider the protein-coding gene CABLES1 (Ensembl id

ENSG00000134508.8) which is only detected by RECOV. From the

GTEx portal, CABLES1 is expressed mostly in brain tissues, yet it

does not have any brain-specific eQTLs. RECOV is a meta-analysis

method that pools samples across tissues to increase signals of

eQTLs. Thus, when the sample size per tissue is small enough that

eQTL signals may be undetected, RECOV outperforms TBT. Unlike

RE2, the meta-analysis of RECOV considers correlation of the cis-

variants across the tissues; thus RECOV would be better than RE2 if

CABLES1 has a consistent correlation pattern. This is indeed the

case (Fig. 4B). CABLES1’s RECOV and RE2 eGene p-value are 4:94

E�13 and 5E�5, respectively.

Of the 88 genes discovered by only RE2, the average RE2 eGene

p-value is 1:15E�8 61:44E�8
� �

; whereas the average RECOV eGene

p-value is 1:85E�4 62:32E�4
� �

. We suspect that these 88 genes are

genes with eQTLs in multiple tissues. However, due to low sample

size, these eQTLs signals may be undetected or do not produce an

eGene q-value less than the significance threshold in TBT analysis.

As a case study, consider the protein-coding gene GALNT11

(Ensembl id ENSG00000178234.8) which is detected by only RE2.

Like CABLES1, GALNT11 is expressed mostly in the brain tissues

(The GTEx Consortium, 2015). Unlike CABLES1, GALNT11 has

eQTL signals in the frontal cortex brain tissue, but these signals pro-

duce an eGene q-value of 0.0189 which is higher than the TBT sig-

nificance threshold. In this case, a meta-analysis approach is more

suitable because it combines data from many tissues to improve the

eGene p-value. GALNT11’s cis-variants have correlated effect sizes

across the brain tissues, but this pattern does not stand out from the

rest of the tissues when compared with that of CABLES1 (Fig. 4C).

For this reason, GALNT11’s RECOV p-value is higher than its RE2

p-value (3:50E�4 versus 7:08E�8). RE2 may also have better

performance than RECOV in cases where the cis-variants do not

have an obvious correlation pattern across the 44 tissues. As an ex-

ample, consider the pseudogene RP11-34P13.16 (Ensembl id

ENSG00000269981.1), which is not tissue-specific (The GTEx

Consortium, 2015). The effect sizes of its cis-variants appear to be

randomly correlated (Fig. 4D), and its RECOV and RE2 p-values

are 1:50E�4 and 1:37E�8, respectively. Altogether, these attributes

may have caused the different results produced by RECOV and

RE2.

4 Discussion

In this article, we introduce a new REs meta-analysis method named

RECOV. Our approach is motivated by the insight that the same

SNP may have similar effect on the same gene in related tissues. We

explicitly model these phenomena by adding a COV matrix to the

existing RE2 model introduced by Han and Eskin (2011). When

applied to the GTEx data, RECOV controls the FPR at the SNP

level. More importantly, using no additional data, RECOV finds

3% more eGenes than the TBT and RE2 methods.

A B C D

Fig. 4. (A) Venn diagram of the numbers of eGenes found by TBT, RE2 and RECOV. (B) The correlation of SNP-effects for the gene ENSG00000134508.8 in 44

tissues (tissue names are omitted). The correlation is computed by using the matrix Bg in Subsection 2.3.2 where the formula is BgB>g (after proper scaling and re-

moval of nearby SNPs). Black box indicates the brain tissues. ENSG00000134508.8 is found to be an eGene by only the RECOV method. The correlation of SNP-ef-

fects for gene (C) ENSG00000178234.8 and (D) ENSG00000269981.1 in 44 tissues (tissue names are omitted). ENSG00000178234.8 and ENSG00000269981.1 are

found to be eGenes by only the RE2 method
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RECOV scales well to large numbers of tissues compared with

previous meta-analysis methods for gene expression data. For ex-

ample, Meta-Tissue and eQTLBma can only handle up to 10 and 20

tissues, respectively (Flutre et al., 2013; Sul et al., 2013). RECOV

also requires only the summary statistics for the SNP effect on the

gene expression in each tissue. These summary statistics are often

readily available in gene expression data. Thus, unlike the model by

Acharya et al. (2016), RECOV requires minimal data preparation.

RECOV, and the RE2 it extends, require optimizing two param-

eters in the log likelihood ratio. These unknowns are the mean effect

size and the scaling factor for the COV matrix, both of which can be

estimated using efficient heuristic methods. We note that the TBT

method avoids this optimization. This is a speed-performance trade-

off. This study and others show that the meta-analysis approach is

better than TBT when applied to multi-tissue data (Acharya et al.,

2016; Flutre et al., 2013; Sul et al., 2013;). Unlike TBT, RECOV

does not provide information about the specific subset of tissues in

which the gene is an eGene. This problem is inherent to all meta-

analysis methods, which only test whether a gene is an eGene in at

least one tissue.

Next, we address our use of the GC factor for RECOV. The GC

factor is traditionally used to correct for inflation due to population

structure in classic GWAS, but in this paper, we use it to correct for in-

flation from any unmodeled source. We show that this inflation is due

to tissues containing samples from the same individuals. This problem

of sample sharing is not the same as the problem of population struc-

ture in GWAS (Han and Eskin, 2011, 2012). The value of the GC fac-

tor depends on the choice of the COV matrix Uvg in the model. As

shown in this article, when Uvg ¼ I for RE2 the GC factor is 1.1045,

whereas when Uvg ¼ B�vgB>�vg for RECOV the GC factor is 1.2947.

RECOV is a general framework for meta-analysis that can be

used with any COV matrix. The COV matrix used in this article

(described in Subsection 2.3.2) reflects our assumptions about the

behavior of the same SNP in different tissues. Namely, we assume a

SNP has correlated effects on a gene’s expression across tissues.

There are many ways to select this COV matrix, and other options

may better fit different assumptions about the data. For example, if

we instead assume the same SNP has correlated effects on the ex-

pressions of different genes across the tissues, we can estimate Uvg

by combining information from neighboring genes of g, using know-

ledge from a gene–gene interaction network. The problem of select-

ing the most suitable COV matrix for RECOV is a rich topic for

future work.
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