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ABSTRACT The cost-effectiveness of sequencing pools of individuals (Pool-Seq) provides the basis for the
popularity and widespread use of this method for many research questions, ranging from unraveling the
genetic basis of complex traits, to the clonal evolution of cancer cells. Because the accuracy of Pool-Seq
could be affected by many potential sources of error, several studies have determined, for example, the
influence of sequencing technology, the library preparation protocol, and mapping parameters. Neverthe-
less, the impact of the mapping tools has not yet been evaluated. Using simulated and real Pool-Seq data,
we demonstrate a substantial impact of the mapping tools, leading to characteristic false positives in
genome-wide scans. The problem of false positives was particularly pronounced when data with different
read lengths and insert sizes were compared. Out of 14 evaluated algorithms novoalign, bwa mem and
clc4 are most suitable for mapping Pool-Seq data. Nevertheless, no single algorithm is sufficient for
avoiding all false positives. We show that the intersection of the results of two mapping algorithms
provides a simple, yet effective, strategy to eliminate false positives. We propose that the implementation
of a consistent Pool-Seq bioinformatics pipeline, building on the recommendations of this study, can
substantially increase the reliability of Pool-Seq results, in particular when libraries generated with
different protocols are being compared.
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Sequencingpools of individuals (Pool-Seq) is a cost efficient approach to
generating genome-wide polymorphism data, which is enjoying in-
creasing popularity (reviewed in Schlötterer et al. 2014). For example,
Pool-Seq was used to unravel the genetic basis of complex traits
(Bastide et al. 2013; Cheeseman et al. 2015), identify loci contributing
to local adaptation (Lamichhaney et al. 2012; Turner et al. 2010), trace

beneficial loci during experimental evolution (Lang et al. 2013; Orozco-
terWengel et al. 2012; Tobler et al. 2014), identify positively selected
loci in populations (Bergland et al. 2014; Kofler et al. 2012; Nolte et al.
2012), find genes selected during domestication (Axelsson et al. 2013;
Rubin et al. 2010), study the invasion of transposable elements (Kofler
et al. 2015a), investigate clonal evolution in cancer (Ding et al.
2012), and to identify causative mutations in forward genetic screens
(Schneeberger et al. 2009). With this rapid gain in popularity, it is
important to ensure the reliable analysis of Pool-Seq data. Several stud-
ies have investigated various aspects that potentially affect the accuracy
of Pool-Seq, including the sequencing platform (Rellstab et al. 2013),
reference genome (Nevado et al. 2014), parameters used for aligning
reads (Kofler et al. 2011a), sequencing depth (Ferretti et al. 2013; Kofler
and Schlötterer 2014), pool size (Futschik and Schlötterer 2010; Gautier
et al. 2013), and library preparation protocol (Kofler et al. 2015b) used.

However, until now, the impact of the mapping algorithm used for
aligning Pool-Seq data has not been studied in sufficient detail. Here, we
show that themapping algorithm can have a profound effect, leading to
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erroneous signals of allele frequency differences between libraries. We
compared systematically the performance of 14 different alignment
algorithms using both simulated and real Pool-Seq data. Of the algo-
rithms tested, clc4, novoalign, and bwa mem consistently produced the
most reliable results with Pool-Seq data. Nevertheless, no single align-
ment algorithm avoids all artifacts, but, by intersecting the results of two
alignment tools, the vast majority of artifactual outliers can be avoided.

MATERIAL AND METHODS

Alignment algorithms
We tested seven semiglobal alignment algorithms, where the entire read
is required tomatch, and seven local alignment algorithms,where only a
part of the read needs to match (Table 1). For tools that support semi-
global, as well as local, alignments, we evaluated the suitability of both
algorithms (Table 1).We also included gsnap (Wu andNacu 2010) into
our study, despite the fact that this tool was designed for aligning RNA-
Seq data (i.e., alignments with large gaps to allow for spliced introns).
We also aimed to include gem (Marco-Sola et al. 2012), batalign (Lim
et al. 2015), stampy (Lunter and Goodson 2011), and soap2 (Li et al.
2009b) into our study but were not able to run these tools on our
computational infrastructure (Mac Pro; batalign: did not respond,
gem: compilation failed, stampy: compilation failed due tomissing files,
soap2: segmentation fault while indexing the reference genome). If
possible, we used default parameters for all tools, and deviated from
these settings only when deemed necessary to ensure an unbiased
comparison of the alignment algorithms (Table 1). With Bowtie2, we
set themaximum fragment length of paired ends (–X) to 1500. For bwa,
we used version 0.7.4 for the mem and bwasw algorithm, and version
0.6.2 for the aln algorithm. This was necessary as bwa aln 0.7.4 reports a
segmentation fault when aligning some data sets (e.g., the Drosophila
simulans libraries), whereas the mem algorithm was not available for
bwa version 0.6.2. For clc4, we interleaved the sequences of the two
fastq files (-i), activated the paired end mode (-p), set the orientation of
the paired ends to forward followed by backward (fb), and measured
the distance between paired ends from start-to-start (ss). As the per-
formance of clc4 is highly sensitive to the provided minimum distance
(min) and maximum distance (max) between paired ends, we pro-
vided the most suitable setting for each alignment (simulated data,
read length 50 and inner distance 100: min ¼ 160 max ¼ 240; read
length 100 and inner distance 100: min ¼ 260 max ¼ 340; read
length 100 and inner distance 300: min ¼ 380 max ¼ 620; D. sim-
ulans libraries, read length 76: min ¼ 176 max ¼ 280; read length
120: min ¼ 270 max ¼ 390). For mrfast, we used paired end map-
ping (-pe), provided a minimum fragment size of 10 (2min), a
maximum fragment size of 400 (2max; for the simulated data with
an inner distance of 300,2max 700 was used), a maximum number
of mismatches of 6 (-e), and required that only the best position
of a read should be reported (–best). We specified bam as output
format (-b) for ngm, and performed a sensitive search (–sensitive;
the default is unclear). For novoalign, we provided sam as output
(-o SAM), set the quality encoding of fastq files to Sanger (-o STDFQ),
required that a random position is reported for ambiguously mapped
reads (-r Random), and provided suitable estimates for the insert size
(mean) and the SD of the insert size (-i mean SD; simulated data:
mean ¼ 350 SD ¼ 50; D. simulans libraries, read length 76:
mean ¼ 228 sd ¼ 52; read length 120: mean ¼ 396 SD ¼ 110). For
segemehl, we set the maximum insert size to 1500 (-I). For gsnap, we
used sam as output format (-A sam). Only for the D. simulans libraries
was the maximum number of allowed mismatches set to 1 (-m 1), as
gsnap encountered an error using these data and default settings.

(Problem sequence; we iteratively removed five problem sequences
but still encountered the error). Alignments with bwa aln were done
on a Hadoop cluster (Pandey and Schlötterer, 2013) http://journals.
plos.org/plosone/article?id=10.1371%2Fjournal.pone.0072614.

Data sets
We tested the performance of the different alignment algorithms using
both simulated and real data.

Simulated paired end data were generated for populations having
SNPs with known positions and allele frequencies. This was accom-
plished in four steps. We first obtained the Drosophila melanogaster
reference chromosome 2R (r6.03; http://flybase.org/), removed all
characters other than A, T, C, or G, and extracted the first 2 Mbp.
This small subsequence (the chassis) acted as a basis for introducing
variants. Second, we generated two modified versions of the chassis:
(i) we introduced a SNP with a random, not-reference, allele every
100 bp into the chassis (⇒chassis with SNPs), and (ii) we intro-
duced an indel at a random position with a random Poisson dis-
tributed length (l ¼ 1; zero length indels were discarded and
Poisson sampling was repeated; insertions had a random sequence),
between all pairs of adjacent SNPs into the chassis with SNPs
(⇒chassis with SNPs and indels). Third, we generated two sequences
serving as templates for simulating paired ends: one consisting of
the chassis and the chassis with SNPs (Figure 2A), and another
consisting of the chassis and the chassis with SNPs and indels (Fig-
ure 2B). Finally, uniformly distributed paired end reads (equal 59
distance between consecutive paired ends; uniform base quality of
40) were simulated from these template sequences (Figure 2C). Note
that SNPs identified from these data have known positions (each
100 bp) and known allele frequencies (f ¼ 0:5). Paired end reads
were simulated with SimulaTE (https://sourceforge.net/projects/
simulates/; R. V. Pandey et al. personal communications), and the
number of reads was selected such that a genomic coverage of
200 resulted (generate-reads_paired-end-uniformdistribution.py;
�2 million paired ends for a read length of 100, and 4 million
for a read length of 50).

We tested the performance of the different alignment algorithms
for real data using paired end reads from a D. simulans population
that was collected in 2008 in Northern Portugal (Póvoa de Varzim;
provided by P. Orozco-terWengel). We established 250 isofemale
lines from the population, used one female from each isofemale line,
and extracted genomic DNA from the pooled flies as described
(Orozco-terWengel et al. 2012). From this DNA, we generated
two Illumina sequencing libraries. The first was prepared using
the Paired-End DNA Sample Preparation Kit (Illumina, San Diego,
CA) following fragmentation of the DNA using a nebulizer, and size
selection using an agarose gel. The library was sequenced on two
lanes of an Illumina GAIIx, resulting in 14.3 and 24.7 million
2 · 76 bp paired end reads after trimming [median insert size
232 bp; SD of the insert size 25 bp; estimated with Picard v1.128
(http://picard.sourceforge.net) after mapping the reads with bwa aln
(0.6.2) (Li and Durbin 2009)].

The second library was prepared with barcoded adapters using a
protocol based on the NEBNextDNA Library Prep Master Mix Set
reagents (E6040L) following shearing pooled genomic DNA with a
Covaris S2 device (Covaris, Woburn, MA), and size selection with
AMPureXP beads (Beckman Coulter, Brea, CA). The library was
sequenced on one lane of an Illumina HiSeq 2500 using 2 · 120 bp
reads (median insert size 396 bp; SD of the insert size 110 bp;
84.5 million paired end reads after trimming).
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Thequalityencodingofall readswasconverted toSanger (offset= 33),
and low quality regions of reads were trimmed with ReadTools
(https://github.com/magicDGS/ReadTools–disable-zipped-output–
minimum-length50–no-5p-trim–quality-threshold18; per default
the quality is converted to Sanger encoding). ReadTools provides a
fast implementation of the trimming algorithm described in Kofler
et al. (2011a).

We tested whether intersecting of mappers preserves the targets of
selection using the data published byMartins et al. (2014).We obtained
Illumina paired end data (2 · 100 bp) for four populations in-
fected with C-virus for 20 generations (VirSys; accession numbers
ERS409784-ERS409787), and for four control populations (ContSys;
accession numbers ERS409780-ERS409783).

Data analysis
The simulated reads were mapped to the chassis (see above), the D.
simulans libraries were mapped to the reference genome of strain
M252 (Palmieri et al. 2015) (v1.1; we included the sequences of
Lactobacillus brevis, Acetobacter pasteurianus, and two Wolbachia
strains; GenBank accession numbers CP000416.1, AP011170.1,
AE017196.1, and CP001391.1), and the data from Martins et al.
(2014) were mapped to the reference genome of D. melanogaster
(v6.03; we again included the sequences of L. brevis, A. pasteurianus,
and two Wolbachia strains). If not mentioned otherwise, mapped
reads were filtered for mapping quality (-q 20), and proper pairs (-f
0x002 -F 0x004 -F 0x008; except for the analysis of single end reads),
with samtools (v1.2) (Li et al. 2009a). Mapped reads were converted
to mpileup files with samtools (v1.2), and the parameters -B -Q 0.
SNPs were called using a minimum allele count of 2. The number of
true SNPs (every 100th position), the number of false SNPs (not at
every 100th position), the frequency of the reference allele (only for
true positive SNPs), and the number of extreme outlier SNPs (where
the estimated allele frequency deviates by . 0.4 from the true fre-
quency 0.5), were computed using custom Python scripts (snp-
caller.py, stat-snp.py). For computing allele frequency differences
between samples, mpileup files were created with samtools (v1.2;
-B -Q 0), the mpileup files were converted to sync files with
PoPoolation2 [revision 196; mpileup2sync.jar –fastq-type sanger;
the minimum quality (–min-qual) was set to 0 for simulated reads,
and to 20 for D. simulans libraries; (Kofler et al. 2011b)], and FST or
Fisher exact test P-values (2log10 transformed) were computed

with PoPoolation2 (revision 196; fst-sliding.pl –min-count 2 –
min-coverage 10 –max-coverage 500 –window-size 1 –step-size
1 –suppress-noninformative –pool-size 400 –min-covered-fraction
1.0; fisher-test.pl –min-count 2 –min-coverage 10 –max-coverage
500 –window-size 1 –step-size 1 –min-covered-fraction 1.0). The out-
lier quantiles of FST and P-values (Fisher exact test;2log10(P-values)]
were calculated with Python scripts (fst-fractionwise.py). Results
of two mapping algorithm were intersected with a custom script
(merge-teststat.py).

We evaluated the performance of the following quality filtering
methods: (i) a minimum mapping quality of 40 (using samtools v1.2;
parameters -B -Q 0 -q 40), (ii) a minimum allele count of 10 (using
PoPoolation2; revision 196; fisher-test.pl –min-count 10 –min-coverage
10 –max-coverage 500 –window-size 1 –step-size 1 –min-covered-
fraction 1.0), (iii) a minimum base quality of 30 (using PoPoolation2;
mpileup2sync.jar –min-qual 30), (iv) the 10% of the SNPs with the
most pronounced strand bias were removed (strand-bias was com-
puted as SB ¼

�
�
�ffwd 2 0:5

�
�
�; where ffwd is the frequency of reads map-

ping to the forward strand at a given site, irrespective of the allele),
and (v) sites not called by FreeBayes were removed [FreeBayes v1.0.2-6-
g3ce827d (Garrison and Marth 2012); parameters -X -K -C 1 -F 0.01
(input data are pooled, ignore multi-allele SNPs, minimum allele count
of 1, minimum allele frequency of 0.01)].

Differentiation between evolved and control populations for the
data from Martins et al. (2014) was assessed with the Cochran-
Mantel-Haenszel test (CMH) implemented in PoPoolation2
(Kofler et al. 2011b) (parameters: –min-count 2 –min-coverage
10 –max-coverage 500).

Aligned reads were inspected visually using IGV (Thorvaldsdóttir
et al. 2013), and statistical analyses was performed using the R pro-
gramming language (R Core Team 2012).

Data availability
The short reads have been made available at the European Nucleotide
Archive (ENA; http://www.ebi.ac.uk/ena; PRJEB13602), and the scripts
used in this work, as well as the simulated reads, are available at Dryad
(http://datadryad.org/doi:10.5061/dryad.2g3s4).

RESULTS
Genome-wide polymorphism scans with Pool-Seq data are becoming
increasingly used in population genomic research. Typically, these

n Table 1 Overview of the mapping algorithms used in this work

Mapper Version Parameter Reference

Global bowtie2(g) 2.2.6 –end-to-enda –X 1500 Langmead and Salzberg 2012
bwa aln 0.6.2 Li and Durbin 2009
clc4(g) 4.4.2.133896 -a globala -i -p fb ss minb, maxb CLC bio 2015
mrfast 2.6.1.0 –pe –min 10 –max 400b –best -e 6 Alkan et al. 2010
ngm(g) 0.4.13 –end-to-enda -b –sensitive Sedlazeck et al. 2013
novoalign(g) 3.03.2 -o FullNWa -i meanb, SDb -F STDFQ -o SAM -r Random Novocraft 2014
segemehl 0.2.0-418 -I 1500 Hoffmann et al. 2009

Local bowtie2(l) 2.2.6 –locala –X 1500 Langmead and Salzberg 2012
bwa sw 0.7.4 Li and Durbin 2010
bwa mem 0.7.4 Li and Durbin 2009
clc4(l) 4.4.2.133896 -a locala -i -p fb ss minb, maxb CLC bio 2015
gsnap 2015-11-20 -A sam (-m 1)b Wu and Nacu 2010
ngm(l) 0.4.13 –locala -b –sensitive Sedlazeck et al. 2013
novoalign(l) 3.03.2 -i meanb, SDb -F STDFQ -o SAM -r Random Novocraft 2014

a
Parameters used for selecting semiglobal (g) or local (l) alignments.

b
See text for more details.

Volume 6 November 2016 | Mapping Algorithm for Pool-Seq | 3509

https://github.com/magicDGS/ReadTools%13disable-zipped-output%13minimum-length50%13no-5p-trim%13quality-threshold18
https://github.com/magicDGS/ReadTools%13disable-zipped-output%13minimum-length50%13no-5p-trim%13quality-threshold18
http://www.ebi.ac.uk/ena
http://datadryad.org/doi:10.5061/dryad.2g3s4


studies use genome-wide Pool-Seq data to identify marked outlier
loci in pairwise comparisons between population samples. For
example, loci contributing to local adaptation are identified
by significantly different allele frequencies between populations
(Lamichhaney et al. 2012; Turner et al. 2010). This focus on outlier
loci makes genome-wide scans susceptible to technical problems that
could generate outlier artifacts. We found that the mapping algo-
rithms for aligning Pool-Seq data may be an important source of
outlier artifacts (Figure 1). Comparing allele frequencies between
two Pool-Seq libraries prepared from identical genomic DNA, but
with different insert size and read length, we found a substantial
number of outlier loci, despite the fact that no differences between
the libraries were expected (Figure 1, A and B).

To overcome this problem, we set out to identify alignment
algorithms that are most suitable for genome-wide outlier scans
using Pool-Seq data. We tested seven semiglobal alignment algo-
rithms, where the entire read is required to match [bowtie2(g), bwa
aln, clc4(g), mrfast, ngm(g), novoalign(g), and segemehl], and seven
local alignment algorithms, where only a part of the read needs to
match [bwa sw, bwa mem, clc4(l), gsnap, ngm(l), and novoalign(l);
for an overview see Table 1] (Alkan et al. 2010; CLC bio 2015;
Hoffmann et al. 2009; Langmead and Salzberg 2012; Li and Durbin,
2009, 2010; Novocraft 2014; Sedlazeck et al. 2013; Wu and Nacu
2010). With several tools, like ngm or bowtie2, supporting both
semiglobal and local alignments, we indicate the pertinent algo-
rithm in brackets [e.g.: ngm(g): semiglobal alignment, ngm(l): local
alignment].

We first tested the overall performance of the alignment algorithm
using simulated data sets. We generated template sequences with SNPs

and indels (random position and length) at known positions, and then
simulated uniformly distributed paired ends from these templates such
that true SNPs are spaced exactly 100 bp apart, and have a population
frequency of 0.5 (Figure 2). Note that indels are in linkage disequilib-
rium with SNPs to identify biased allele frequency estimates resulting
from mapping of reads with indels.

We evaluated the mapping algorithms with three different
paired end data sets: (i) a data set representing optimal conditions
(2 · 100 bp paired ends; insert size 10060 bp; error rate of 0%;
no indels; Figure 2A), (ii) a data set with indels and variation of the
distance between paired ends (2 · 100 bp paired ends; insert size
100640 bp; error rate of 0%; indels; Figure 2B), and a dataset with
indels and a high error rate (polymorphism) of 5% (2 · 100 bp
paired ends with an insert size of 10060 bp; error rate of 5%; indels;
Figure 2B). For all data sets, a coverage of 200 per site was targeted
(�2 million paired ends per data set). We evaluated the perfor-
mance of the mapping algorithms based on two criteria: the number
of true positive SNPs, and the number of extreme outlier loci with
highly inaccurate allele frequency estimates (f $ 0:9 or f # 0:1; fre-
quency should be f ¼ 0:5).

We compared the performance of the mapping algorithms with
andwithout filtering for quality criteria, such as paired end reads and
mapping quality [$ 20; a low mapping quality suggest that the read
is ambiguously mapped (Li et al. 2008)], and found that filtering
consistently leads to reduced numbers of false positive SNPs and
more accurate allele frequency estimates (Supplemental Material,
Table S1; note that, in the absence of sequencing errors, false pos-
itive SNPs are an artifact of the alignment). This observation is in
agreement with previous work showing that quality filtering can

Figure 1 Manhattan plots indicating the signif-
icance of allele frequency differences between
Pool-Seq libraries when the same genomic DNA
is sequenced. Two Illumina paired-end sequenc-
ing libraries with different read length and insert
sizes were prepared from a pool of 250 D. sim-
ulans individuals. Reads were mapped to the
reference genome, and the significance of differ-
ences in allele frequencies between the two li-
braries were computed (Fisher’s exact test).
Although no significant allele frequency differ-
ences were expected, we found pronounced
outlier peaks using bwa aln (A) or novoalign(g)
(B) for mapping the reads. Importantly, outlier
peaks found with these two alignment algo-
rithms are at different genomic sites. Hence,
intersecting the results of these two algorithms
by plotting the lowest P-value obtained at each
site removes the vast majority of outlier peaks
(C).
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reduce the number of false positive SNPs (Li et al. 2008). We note,
however, that quality filtering also leads to fewer true positive SNPs
(Table S1).

Quality filtering also affected the coverage distribution. Fewer sites
had a higher coverage than simulated in filtered data (Figure S1), which
is likely due to smaller numbers of ambiguously mapped reads that
stochastically accumulate in some genomic regions. For mrfast, quality
filtering resulted in a severe shift of the coverage distribution, halving
the average coverage (Figure S1). The distribution of mapping qual-
ities differed between mapping algorithms (Figure S2), which is
likely due to distinct algorithms for computing mapping qualities.
Since the accuracy of allele frequency estimates was substantially
better for filtered data sets, we rely on quality filtered reads for
the remaining manuscript. Summarizing the results for all three
simulated data sets, we found that gsnap, novoalign(l), clc4(l), and
clc4(g) showed the best performance, while mrfast, bowtie2(g), and
bwa mem showed the worst (Figure 3 and Table S2; for results with
unfiltered data, see Table S3). The average reference allele frequency
of most alignment algorithms was above 0.5 indicating a bias toward
the reference allele [Table S2; see also Degner et al. 2009; Kofler et al.
2011a]. After quality filtering, mrfast had a substantial bias against
the reference allele (Table S3).

Next, we compared allele frequency estimates between samples—
an approach that is typically used to identify loci responsible for
local adaption. We investigated the sensitivity of the alignment
algorithm to (i) differences of the inner distance between paired
ends (inner distances 100620 bp vs. 300660 bp), (ii) differences
in read length (read length 100 vs. 50 bp) and (iii) differences in the
error rates (error rates 1 vs. 5%). Uniformly distributed paired ends
were simulated from the template sequences having SNPs and indels
(Figure 2B). Allele frequency differences between samples were
measured using FST: Values of FST range from 0 to 1, where 0 indi-
cates no differentiation between samples (populations), and 1 indi-
cates complete differentiation (fixation for alternative alleles) (Hartl
and Clark 1997). As all paired ends have a uniform genomic distri-
bution, and were derived from the same template sequences, only
small allele frequency differences are expected between samples.
A perfect alignment algorithm would detect all positive SNPs

(TP ¼ 19:999), and yield a low FST for all SNPs (FST ¼ 0). Based on
the simulated data bwa sw mem, novoalign(g), and novoalign(l)
showed the best performance, whereas mrfast, bowtie2(l), and ngm(g)
performed worst (Figure 4 and Table S4; for allele frequency differ-
ences with false positive SNPs, see Table S5). We noted substantial
allele frequency differences when the same data were mapped as
paired end and as single end reads, and then compared against each
other (Table S7). ngm(g) and ngm(l) were most suitable for such
comparisons between paired and single end reads.

Simulated datamaynot capture all the properties of real data, such as
reads having different lengths (after trimming), variable base qualities
alongreads, andbiases in sequencingerrors.Therefore,wealsoevaluated
the performance of different alignment algorithms based on FST be-
tween samples using real data.We used two libraries with different read
length and insert size prepared from the same genomic DNA (library 1:
2 · 76 bp paired ends, median insert size = 232 bp; library 2:
2 · 120 bp paired ends, median insert size = 396; both prepared
from pooled D. simulans flies; see Materials and Methods), trimmed
low quality regions from the 39-ends of reads, and compared allele
frequency differences between the samples using FST: As both libraries
were prepared from the same genomic DNA, only small allele fre-
quency differences were expected between the samples (FST ¼ 0).

Figure 3 Suitability of mapping algorithms for performing genome
wide polymorphism scans with Pool-Seq data. Ideally, a mapping
algorithm should enable the identification of all truly positive SNPs
(green; 19.999 were simulated), while avoiding the identification of
extreme outlier SNPs, with highly inaccurate allele frequency estimates
(red; f .0:9 or f ,0:1). Algorithms are sorted according to perfor-
mance, with the best performing algorithm shown at the top (maxi-
mizing the true positives, and minimizing the number of outliers).
We tested the algorithm with three different data sets. Best case:
2 · 100 bp paired ends with an insert size of 10060 bp, indel - insert
size: 2 · 100 bp paired ends with an insert size of 100640 bp, and
indels between the SNPs, indel - error rate: 2 · 100 bp paired ends
with an insert size of 10060 bp, indels between the SNPs and an error
rate of 5%.

Figure 2 Overview of simulated Pool-Seq data sets. Based on a
2 Mbp region of D. melanogaster chromosome 2R, we simulated a
pair of sequences, with one sequence having a SNP (red) every
100 bp (A), and a pair of sequences with one sequence having, in
addition to the SNPs, an indel (blue) with random position and length
between adjacent SNPs (B). Using these sequences as templates, we
simulated uniformly distributed paired ends (gray; C) resulting in SNPs
with known positions and frequency (f ¼ 0.5).
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Novoalign(l), novoalign(g), and bwa sw showed the best performance ,
while mrfast, segemehl, and ngm(l) performed worst (Figure 5).

In summary,whencomparing the results of theprevious evaluations,
we conclude that novoalign(l), novoalign(g), clc4(l), and bwa mem are
themostsuitablealignmentalgorithmforPool-Seqdata,whereasmrfast,
ngm(l), ngm(g), and bowtie2(g) did not perform as well (Table 2).

Despite novoalign(g) being one of the most suitable algorithms
for Pool-Seq data, a substantial number of artifactual outlier peaks
can still be found when comparing the allele frequency between the
D. simulans libraries (Figure 1). The comparison of different map-
pers indicated that outlier artifacts are frequently specific to the
alignment algorithm (Figure 1, Figure S3, and Figure S4). We rea-
soned therefore that an intersection of two mappers, recording for
every SNP only the least significant result found by any mapper,
could overcome this problem. Intersecting the results of bwa and
novoalign (Figure 1, A and B), the number of outlier peaks could be
substantially reduced (Figure 1C). We tested whether intersecting

the results of two mappers results in a more efficient removal of
outlier peaks than quality filtering approaches. We evaluated the
impact of filtering for (i) mapping quality, (ii) minor allele count,
(iii) base quality, (iv) strand-bias, and (v) SNPs called by FreeBayes,
a SNP caller well-suited for Pool-Seq data (Garrison and Marth
2012). We found that, of the approaches tested, intersecting the
results of two mappers led to the most pronounced reduction of
outlier peaks, while the vast majority of the SNPs were retained
(Figure S10).

We also tested whether intersecting the results of different mappers
preserves the targets of selection using data from an experimental
evolution study for C-virus resistance in D. melanogaster (Martins
et al. 2014), and found that the most differentiated loci identified by
Martins et al. (2014) were retained (Figure S5). Hence, intersecting the
results of different mappers is an efficient strategy for minimizing the
number of artifacts, while preserving the targets of selection.

To identify themost suitablecombinationofmappingalgorithms,we
used the data from the pooled D. simulans flies, computed all pairwise
intersections of the algorithms, and benchmarked them using the num-
ber of SNPs and the 0.001% quantile of most differentiated SNPs (Table
S8). ngm(l) combined with bowtie2(g) yielded the least pronounced
outlier peaks, with�4.15 million shared SNPs [Table S8; for Manhat-
tan plots see Figure S6].We note, however, that the best combination of
alignment algorithms depends on the threshold—with the 0.01% quan-
tile, novoalign(l) and bowtie2(g) are the best combination (Table S9
and Figure S7).

Figure 4 Comparison of allele frequency differences between simu-
lated Pool-Seq data sets with different mapping algorithms. We
simulated different paired end Pool-Seq libraries, mapped the reads,
and compared the allele frequencies between the libraries using FST:
With this procedure, we evaluated the sensitivity of the alignment
algorithm to differences in the distance between paired ends (id), dif-
ferences in the read length (rl), and differences in the error rates (e). As
all libraries were derived from identical template sequences (templates
with SNPs and indels), no significant allele frequency differences were
expected (FST ¼ 0). We estimated the number of truly positive SNPs
for which allele frequencies could be compared (TP), and the lowest
FST-values in the 0.1% quantile with the most differentiated SNPs.
Algorithms are sorted according to performance, with the best per-
forming algorithm shown at the top (maximizing the true posi-
tives, and minimizing the FST in the outlier quantile). id100, rl100,
e1%: 2 · 100 bp paired ends, insert size 100620 bp, error rate 1%;
id300: 2 · 100 bp paired ends, insert size 300660 bp, error rate 1%;
rl50: 2 · 50 bp paired ends, insert size 100620 bp, error rate 1%; e5%:
2 · 100 bp paired ends, insert size 100620 bp, error rate 5%.

Figure 5 Comparison of allele frequency differences between real
Pool-Seq data sets with different mapping algorithms. We compared
allele frequencies between two paired end libraries with different read
length and insert size that were prepared from the same genomic
DNA (pooled D. simulans flies). We determined the lowest FST-values
in different quantiles with the most differentiated SNPs. Algorithms
are sorted according to performance, with best the performing algo-
rithm shown at the top (minimizing the FST in the 0.001% outlier quan-
tile). mrfast generated an invalid output file with these data (an uniform
read length was reported despite these reads having varying read
lengths).

3512 | R. Kofler et al.

http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.116.034488/-/DC1/FigureS3.pdf
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.116.034488/-/DC1/FigureS4.pdf
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.116.034488/-/DC1/FigureS10.pdf
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.116.034488/-/DC1/FigureS5.pdf
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.116.034488/-/DC1/TableS8.pdf
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.116.034488/-/DC1/TableS8.pdf
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.116.034488/-/DC1/TableS8.pdf
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.116.034488/-/DC1/FigureS6.pdf
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.116.034488/-/DC1/TableS9.pdf
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.116.034488/-/DC1/FigureS7.pdf


Conclusions
Here, we performed a comprehensive analysis of different alignment
algorithms for Pool-Seq data. The evaluation of alignment algorithms is
complicated by several issues. First, mapping quality is computed
differently between algorithms (Figure S2). Thus, the fraction of reads
filtered by requiring a certain minimum quality (we used 20) varies
among the alignment tools. The fraction of filtered reads will affect
both the number of identified true positive SNPs, and the accuracy
of the allele frequency estimates; more mapped reads result in a
higher number of true SNPs, but the number of ambiguously
mapped reads is also increased, which distorts allele frequency es-
timates. The tradeoff between optimizing the recovery of true SNPs
and accuracy of the allele frequency estimates is particularly pro-
nounced for segemehl: no reads could be quality filtered since all
reads have a mapping quality of 255, resulting in the highest number
of true positive SNPs but poor allele frequency estimates (Table S2).
Despite this complication, we considered quality filtering of reads
essential, as this substantially improves allele frequency estimates
from Pool-Seq data (for unfiltered results, see Table S3). Interest-
ingly, the best performing algorithms (e.g., novoalign and clc) iden-
tified the highest number of true positive SNPs, and yielded the most
accurate allele frequency estimates (Table S2), which suggests that
the superior performance of these tools is robust with respect to the
tradeoff introduced by quality filtering. Furthermore, we found that
the top performing algorithm consistently had the highest ratio of
true positive SNPs to false positive SNPs, irrespective of the map-
ping quality threshold used (Figure S11).

Thechoiceof alignmentparameters isa challenge for the comparison
of different mapping algorithms. Whenever feasible, we used default
parameters, andmodified themonlywhenwe considered it necessary to
ensure an unbiased comparison (e.g., when the error rate exceeded the
number of allowed mismatches, or when the insert size was larger than
the maximum insert size; see Materials and Methods). We note, how-
ever, that the performance of each of these algorithmsmay be improved
by fine-tuning the parameters. For example, the performance of bwa
aln was substantially improved by using parameters optimized for
Pool-Seq data (Kofler et al. 2011a) (Table S10). While the optimization
of mapping parameters for all 14 algorithms is clearly beyond the scope

of this manuscript, we made all data, including the simulated ones,
publicly available to allow testing of the performance of different map-
pers and parameters with these data sets.

We did not consider low frequency alleles for the simulated data for
three reasons: (1) mapping errors will have the strongest effect with
balanced allele frequencies; (2) the identification of low frequency
variants in real Pool-seq data are challenging, as sequencing errors
can not be reliably distinguished from base substitutions (Schlötterer
et al., 2014); and (3) low frequency variants will not significantly con-
tribute to any measure of sample differentiation.

Out of the 14 algorithms tested, clc4(g), novoalign(g), bwa mem,
clc4(l), and novoalign(l) are the most suitable for Pool-Seq data. The
superior performance of novoalign is in agreement with previous work,
which found that novoalign yields highly accurate alignments and SNP
calls (Bao et al. 2014; Li and Homer 2010; Nielsen et al. 2011).

Themost striking influence of different alignment algorithmswas
noted for experimental data differing in insert size and read length.
Comparing different libraries from the same genomic DNA, we
identified substantial outliers, some of them clustering in peaks,
which indicate allele frequency differences at multiple neighboring
sites. Since such peaks are a typical signal in genome-wide outlier
scans, such as Pool-genome-wide association (GWAS) or evolve and
resequence (E&R) studies, these artifacts may lead to false conclu-
sions. Similar artifacts were also seen when the data were mapped as
single reads (Figure S8), suggesting that this is not an artifact of
paired end mapping. Assuming that true allele frequency differences
between samples should be identified with most alignment tools,
whereas artifacts should be found with only a few algorithms, we
propose intersecting multiple alignment algorithms. We noticed a
clear improvement when intersecting two alignment algorithms,
but, depending on the evaluation criteria, different pairs of algo-
rithms perform best. These results are consistent with other studies,
which also found that the combination of mapping algorithms
and/or variant calling pipelines may yield superior results (Bao
et al. 2014; Field et al. 2015; O’Rawe et al. 2013).

Our approach to intersect algorithms is based on the least significant
allele frequencydifferences between two samples. It is straightforward to
extend this approach to studies that rely on multiple samples, such as
replicated Pool-GWAS experiments or E&R studies (for example, see
Figure S5), provided that it is feasible to collapse allele frequency dif-
ferences between multiple samples into a single representative measure
[e.g. P-value from a cmh-test (Orozco-terWengel et al. 2012)]. In this
case, again the least significant value found by anymappermay be used.
However, this strategy cannot be applied to Pool-Seq data from single
populations (e.g., Asgharian et al. 2015; Boitard et al. 2013; Nolte et al.
2012). One possibility to avoid mapping artifacts for single population
Pool-Seq data may be to filter SNPs with incongruent allele frequency
estimates among multiple mappers. Given that most artifacts were
observed when libraries with different insert sizes and read lengths were
compared (cf. Figure 1 and Figure S9), we recommend using a single
consistent sequencing strategy for all Pool-Seq libraries, whenever pos-
sible. We additionally propose to use a single consistent mapping pipe-
line for all Pool-Seq data, asmixing samples alignedwith different tools,
algorithms, parameters, or even versions, of the same tool, leads to
elevated levels of outlier peaks (Table S10).
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n Table 2 Comparison of alignment algorithms for Pool-Seq data:
summary across data sets

Algorithm Poly. FST-sim. FST-real Rank-sum

novoalign(l) 2 3 1 6
novoalign(g) 5 2 2 9
clc4(l) 3 5 8 16
bwa mema 12 1 4 17
bwa bwaswa 7 9 3 19
gsnapa 1 7 11 19
clc4(g) 4 6 10 20
bwa alna 6 8 7 21
segemehla 11 4 13 28
bowtie2(l)a 10 13 5 28
bowtie2(g)a 13 11 6 30
ngm(g)a 9 12 9 30
ngm(l)a 8 10 12 30
mrfasta 14 14 14 42

Ranks of the algorithm in the previous evaluations are shown: overall suitability
(poly: Figure 2), allele frequency differences using simulated data (FST-sim.:
Figure 2), and allele frequency differences using real data (FST-real: Figure 2).
Algorithms are sorted according to performance with best the performing algo-
rithm shown at the top (minimizing the rank-sum).
a
Freely available algorithm.
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