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Background: This study aimed to identify a series of prognostically relevant immune features by im- 

munophenoscore. Immune features were explored using MRI radiomics features to prediction the overall survival 

(OS) of lower-grade glioma (LGG) patients and their response to immune checkpoints. 

Method: LGG data were retrieved from TCGA and categorized into training and internal validation datasets. Pa- 

tients attending the First Affiliated Hospital of Harbin Medical University were included in an external validation 

cohort. An immunophenoscore-based signature was built to predict malignant potential and response to immune 

checkpoint inhibitors in LGG patients. In addition, a deep learning neural network prediction model was built 

for validation of the immunophenoscore-based signature. 

Results: Immunophenotype-associated mRNA signatures (IMriskScore) for outcome prediction and ICB thera- 

peutic effects in LGG patients were constructed. Deep learning of neural networks based on radiomics showed 

that MRI radiomic features determined IMriskScore. Enrichment analysis and ssGSEA correlation analysis were 

performed. Mutations in CIC significantly improved the prognosis of patients in the high IMriskScore group. 

Therefore, CIC is a potential therapeutic target for patients in the high IMriskScore group. Moreover, IMriskScore 

is an independent risk factor that can be used clinically to predict LGG patient outcomes. 

Conclusions: The IMriskScore model consisting of a sets of biomarkers, can independently predict the prognosis 

of LGG patients and provides a basis for the development of personalized immunotherapy strategies. In addition, 

IMriskScore features were predicted by MRI radiomics using a deep learning approach using neural networks. 

Therefore, they can be used for the prognosis of LGG patients. 
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Lower grade glioma (LGG) is a common malignant tumor originating
rom the central nervous system, with significant tumor heterogeneity
 1 , 2 ]. Despite recent research efforts to improve prognosis of patients
ith LGG, half of LGG patients present with highly aggressive, drug-

esistant glioma [3] . Therefore, further studies should be carried out to
rovide personalized therapies to improve the prognosis and treatment
f LGG patients. 

Tumor microenvironment is biologically important in tumors [4] .
everal promising immunotherapeutic options including active or pas-
ive immunotherapy, immune checkpoint inhibitors and gene therapy
Abbreviations: CIC, Capicua; CS, Conditional Survival; GO, Gene Ontology; GSEA, G  

nd RNA-Seq data; ICB, Immune checkpoint blockade; ICI, Immune checkpoint inhi  

GG, lower grade glioma; MHC, Major histocompatibility complex; OS, Overall Survi  

uantitative Real-time PCR; ROC, Receiver Operating Characteristic Curve; SMC, Sig
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ave been explored for tumor treatment. These approaches significantly
mprove LGG treatment and show that immunotherapy plays a signif-
cant role in the treatment of LGG [5] . Recent studies report that im-
une genes can be used as prognostic markers to help in risk strati-
cation and to predict of clinical outcomes in breast, gastric, thyroid
nd ovarian cancers [6–9] . Therefore, characteristics of genes in the
umor microenvironment play a key role in assessing patient progno-
is and immunotherapy efficacy. In addition, the discovery of poten-
ial biomarkers is becoming increasingly important for the diagnosis
nd treatment of neurological disorders, as shown in a series of recent
tudies [10–14] . However, previous risk models are mainly based on a
ew defined gene sets. They can assess patient prognosis but are weak
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n predicting efficacy of immunotherapy efficacy in patients [15] . Im-
unophenoscore, an excellent molecular marker of immune response,

s used to explore the immune landscape and assess immunotherapy ef-
cacy [16] . The scoring scheme for Immunophenoscore was based on

our clusters of immune-related gene sets as previous research. These
ncluded major histocompatibility complex (MHC)-related molecules,
heckpoints or immunomodulators, effector cells, and suppressor cells.
 sample-wise z score from gene expression data was calculated for each
ene set. Weighted average Z score was then calculated by averaging Z
cores within the respective category resulting in four values. Further,
he sum of weighted averaged Z scores of the four categories was com-
uted. This protocol has been used in several studies to evaluate efficacy
f immunotherapy in LGG patients, effectively predicting their response
 16 , 17 ]. 

Magnetic resonance imaging (MRI) is widely used in the preopera-
ive examination of LGG due to its non-invasive nature, and to explore
ts differentiation, providing important information for clinical diagno-
is [ 18 , 19 ]. Several studies have explored radiomics in recent years as
t provides information on the underlying pathophysiology of diseases
 20 , 21 ]. Radiomics is widely used for tumor diagnosis, prognosis pre-
iction, and selection of diagnostic and treatment approaches [22–24] .
urrently, several studies on mechanistic learning approach show that
adiomics is effective in the differentiation of tumors [25] . Therefore,
he new MRI-based radiomics will accurately classify biomarkers identi-
ed as relevant to LGG immunotherapy and prognosis and provide infor-
ation for clinical decision making. This study aimed to identify a series

f prognostic immune features of LGG based on MRI radiomics features.
he findings of the study provide information of response of LGG pa-
ients to immune checkpoint inhibitors and predict clinical prognosis of
GG patients. Our study hypothesizes that this approach will achieve a
ore intuitive and precise assessment of gliomas to aid in developing
ersonalized therapies for LGG patients. 

ethods 

ata collection and patients 

Data on clinical features, somatic mutation characteristics, and RNA-
eq expression of low-grade glioma were retrieved from the TCGA
atabase ( https://portal.gdc.cancer.gov/ ). A total of 704 female patients
ith RNA-seq expression profiles, survival information, somatic mu-

ation information, and common clinicopathological features were in-
luded in this study. All patients enrolled in this study were grouped
nto two datasets (test set and the training set) based on a 7:3 ratio. In
ddition, radiomics database expression data from 72 LGG patients were
etrieved from TCIA database and used as a training set for radiomics-
ased deep learning prediction model. Furthermore, clinicopathologic
nd MRI imaging information of 53 patients who visited The First Af-
liated Hospital of Harbin Medical University between June 2017 and
une 2020 were obtained. Further, survival data and disease charac-
eristics from clinical follow-up and medical history of these patients
ere obtained. Informed consent was signed by all patients included in

he study signed informed consent following the Declaration of Helsinki
rinciples. The Ethics Committee of Harbin Medical University provided
thical approval for this study. Patient inclusion criteria were: (1) pa-
ients preparing for surgery for LGG; (2) patients who underwent MRI
nhancement scans within 15 days before surgery; (3) patients diag-
osed with LGG by histology and immunohistochemistry; and (4) pa-
ients whose clinical and pathologic information was available. Exclu-
ion criteria included (1) history of preoperative imatinib use, (2) pa-
ients with unknown diagnosis, and (3) patients without clinical, patho-
ogic, and MRI imaging information. All included clinical patients were
rouped in the test group to construction a deep learning predictive
odel based on radiomics. 
2 
uantification of immunotherapy response predictor: immunophenoscore 

Cancer antigenomes and intratumoral immune landscapes were de-
ermined by Immunophenoscore (a superior immune response molec-
lar marker). The scoring scheme for Immunophenoscore was cre-
ted based on four clusters of immune-related genomes including ma-
or histocompatibility complex (MHC)-related molecules, checkpoints
r immunomodulators, effector cells, and suppressor cells. Sample Z -
cores were retrieved and computed from gene expression data for
ach category. Weighted average Z-score was calculated by averag-
ng Z -scores within each category to four values, and then weighting
he Z -scores within the four categories together to obtain the final Im-
unophenoscore. 

dentification of Immunophenoscore-associated mRNAs 

Immunophenoscore of each LGG patients from TCGA were calculated
or identification of immunophenoscore-associated mRNAs in LGG. Pa-
ients were then ranked in increasing order based on the level of im-
unophenoscore. The top 25% of patients were grouped in high im-
unophenoscore group, whereas the last 25% of patients were grouped

n low immunophenoscore group. Expression profiles of mRNAs were
ompared between low and high immunophenoscore groups using mi-
roarray significance analysis. Differentially expressed mRNAs were de-
ned as immunophenoscore-associated mRNAs (fold change > 1.0 and
djusted p Value < 0.05). 

alidation of immunotherapy response 

Tumour Immune Dysfunction and Exclusion (TIDE) algorithm was
sed to assess the clinical efficacy of immune checkpoint inhibitors
 26 , 27 ]. Immunophenoscore was used to predict immune response,
nd validation of the result by TIDE confirmed the reliability of the
mmunophenoscore. Fold changes of all immune checkpoint blockade
ICB) response features in this study were log2 transformed and z trans-
ormation was applied for all features. 

onstruction of immune cell signatures with ssGSEA 

Single-sample gene set enrichment analysis (ssGSEA) was used to
valuate relative infiltration of immune cells in LGG tumour microen-
ironment and the immune subpopulation gene panel [ 16 , 28 , 29 ]. The
elative abundance of each immune cell type was expressed as enrich-
ent score in ssGSEA analysis. ssGSEA scores for each immune cell type
ere normalized, and immune cell biosimilarity was assessed. 

dentification of significantly mutated genes 

MutSigCV algorithm was used to identify significantly mutant genes
SMGs). MutSigCV measured the enrichment of non-silent mutations in
 gene by resolving mutation-specific background mutation rates. Sta-
istical significance was set at P < 0.05. 

SEA analysis 

RMA of the affy R package was used to correct and normalize TCGA-
GG expression data [30] . Limma R package was then used to assess
ifferential expression of genes in high and low riskScore samples. Gene
et enrichment analysis (GSEA) was performed using MSigDB database
v7.1) with the algorithm in bioconductor R package fgsea according to
he logFC generated as input of limma package [31] . 

https://portal.gdc.cancer.gov/
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eal-time PCR 

Mini-BEST Universal RNA Extraction Kit (TaKaRa, Kyoto, Japan) was
sed to extract total RNA according to the manufacturer’s instructions
s described in a previous study [32] . qPCR (PCR LightCycler480, Roche
iagnostics Ltd., Basel, Switzerland) assay was performed using SYBR
reen Master Mix (TaKaRa). 𝛽-actin was used as internal control, and
ach sample was run five times. 

linical MRI imaging acquisition 

Clinical MRI images were acquired from First Affiliated Hospital
f Harbin Medical University. Patients were instructed not to move
heir head during the scan to limit the potential effects of head move-
ent. Imaging protocols include unenhanced fast T1-weighted spin-

cho (T1W), fast T2-weighted spin-echo with fat suppression, and
2-weighted axial FLAIR sequences. Contrast-enhanced T1-weighted
ast-filled echo sequences (or Philips) or 3DT1W-weighted magnetic
reparations of fast-acquisition gradient echo sequences (on Siemens)
ere performed after administration of gadolinium-based contrast agent

0.1 mmol/kg body weight). Two authors manually segmented all tu-
or ROls on FLAIR images based on the double-blind principle [33–
5] . The entire tumor was plotted on FLAIR images based on multimodal
rain tumor image segmentation benchmark, the skull was dissected us-
ng FSL library, and segmentation was performed using ITKSNAP soft-
are ( http://www.itksnap.org) .PyRadiomics was then used to extract

adiomics features from MRI images [36] . A total of 17,722 radiomics
eatures were extracted for each column of the radiomics imaging. 

eural network construction 

PyTorch module in Python (version 3.6) was used to construct
eural network models. Immunotherapy response (immunophenoscore-
ssociated riskScore described in this study) was characteristically pre-
icted using Linux based on radiomics features [37] . The model was
et up using a random gradient descent method with the optimizer set-
ing the learning rate at 0.001. The discard rate was set at 0.2 for each
ayer during training, and ReLU was set as the activation function. The
eural network model was trained based on radiomics features in the
CGA-LGG cohort and tested based on radiomics features in the clinical
ohort. 

tatistical analysis 

Euclidean distances and Ward’s linkage method were used to per-
orm Hierarchical cluster analyses. The relationship between expression
evels of Immunophenophenoscore-associated mRNAs and overall sur-
ival was evaluated by univariate and multivariate Cox proportional
azard regression analysis. An Immunophenoscore-derived mRNA risk
core (IMriskScore) was then constructed for prognostic prediction as
ollows: 

 𝑀 𝑟𝑖𝑠𝑘𝑆𝑐𝑜𝑟𝑒 = log 

[ 

𝑛 ∑
𝑖 =1 

𝑐𝑜𝑒𝑓 ( 𝑚𝑅𝑁 𝐴 𝑖 ) ∗ exp 𝑟 ( 𝑚𝑅𝑁 𝐴 𝑖 ) 

] 

, 

Patients were categorized into high GILncSig risk and low-risk
roups based on the IMriskScore in the training set. 

Survival curves were calculated by the Kaplan-Meier method, and
urvival differences were assessed by log-rank test when considered sta-
istical significance was observed ( p < 0.05). Multivariate Cox regression
nd stratified analysis were used to assess the correlation between IM-
iskScore and other key clinical factors. In addition, receiver operating
haracteristic (ROC) curves were used to assess model performance. 
3 
esults 

dentification of immunophenotype-associated mRNAs in LGG patients 

Immunophenoscore was calculated for each patient and sorted in de-
reasing order to identify immunophenotype-associated mRNAs in LGG
atients. The first 25% and the last 25% of patients were grouped in
he high and low immune phenotype groups, respectively ( Fig. 1 A).
he average immunophenoscore for immune cells has been calculated
mean 9.65, standard deviation 0.63). mRNA expression profiles of
 total of 388 patients in the high immunophenoscore and low im-
unophenoscore groups were then compared, and 419 mRNAs with sig-
ificant differences were obtained from 13,084 mRNAs (|logFC| > 1 and
 < 0.05). Out of the 419, 247 mRNAs were upregulated whereas 172
RNAs were downregulated in the high immunophenoscore group (sup-
lementary Figure 1). The 419 differentially expressed mRNA sets were
sed for unsupervised hierarchical clustering analysis of the 692 sam-
les from TCGA set ( Fig. 1 B). The samples were the clustered into two
roups. Previous studies report that lncRNAs function as an integrated
art of the immune phenotype [38] . A lncRNA-mRNA co-expression net-
ork was constructed with nodes for both lncRNAs and mRNAs to de-

ermine whether 419 mRNAs have potential functions with lncRNAs
 Fig. 1 C). LncRNAs and mRNAs are linked if they are interconnected.
hese results indicate that lncRNAs are extensively linked to mRNAs. 

In recent years, numerous in vivo and in vitro pieces of evidence
ave shown that lncRNAs play important roles in a variety of biological
rocesses [39–41] . LncRNAs aberrant expression may affect cell prolifer-
tion, tumor progression, or metastasis [42] , therefore we have hypoth-
sized that the expression of lncRNAs may be potentially associated with
RI radiomics. Also, our final findings show that the expression profile

f mRNAs might be revealed by MRI radiomics, so we constructed an
RNA-lncRNA network to reveal the potential association of lncRNAs
ith immunophenoscore-related mRNAs. However, we did not find that

he characteristics of lncRNAs were clearly revealed by MRI radiomics,
ut this does not negate the lack of correlation between lncRNAs expres-
ion and MRI radiomics. Although we did not perform further in-depth
tudies on lncRNAs, demonstrating the potential association of lncRNAs
ith immunophenoscore-related mRNAs may be potentially relevant for

uture studies. 

evelopment of immunophenotype-associated mRNA signatures for 

utcome prediction 

A total of 665 LGG patients from TCGA database were grouped
nto training set ( n = 333) and test set ( n = 332) by batch to fur-
her investigate the relationship between immunophenotype-associated
RNAs and prognosis. The main clinical and pathologic features are

hown in Table 1 . Further, the relationship between expression levels
f immune phenotype-related mRNAs in the training set and OS were
nalyzed using univariate and multivariate Cox regression, and then
creened for mRNAs associated with prognosis. Significant correlations
ere observed between seven genomic mutation-associated mRNAs and

he prognosis of LGG patients ( P < 0.05; Fig. 1 E). Principal Component
nalysis (PCA) classified the 665 into two groups based on these seven
enes ( Fig. 1 D). An immune phenotype-related risk score (IMriskScore)
or LGG was constructed based on results of multivariate COX regression
nalysis results using the seven risk prognosis-related genes. In the IM-
iskScore, METTL7B and TAFA3 had coefficients greater than 1, indicat-
ng that high expression of these genes is associated with poor prognosis.
n the other hand, high expression of other mRNAs (HCN1, GABRA1,
ULT4A1, RGS7BP, SLG12A5) was associated with good patient out-
omes. In addition, low expression levels of HCN1, GABRA1, SULT4A1
nd SLG12A5 mRNAs were observed in LGG relative to normal brain
issue, whereas METTL7B was significantly highly expressed in LGG
atients ( p < 0.05) (Supplementary Figure 2). IMriskScore was com-
ined with various clinical characteristics (age, gender, grade, radiation,

http://www.itksnap.org\051
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Fig. 1. Identification of immunophenoscore- 

associated mRNAs from LGG patients and de- 

velopment of IMriskScore system for outcome 

prediction 

A. Flowchart of immunophenotype- 

associated mRNA identification in LGG 

patients. Patients were obtained from TCGA 

database, and mRNA expression profiles 

of high immunophenoscore and low im- 

munophenoscore groups were compared by 

calculating the Immunophenoscore to identify 

immunephenotype-associated mRNAs. 

B. Unsupervised clustering of 692 LGG pa- 

tients based on immunephenotype-associated 

mRNAs. The red cluster represents low im- 

munophenoscore, whereas the blue cluster rep- 

resents high immunophenoscore group. 

C. Co-expression networks of immune 

phenotype-associated lncRNAs and mRNAs 

were constructed using Pearson’s correlation 

coefficient analysis. The red color represents 

lncRNAs and the blue color represents mRNAs. 

D. PCA shows that TCGA LGG set can be di- 

vided into two parts based on IMriskScore- 

related genes. Blue dots represent higher IM- 

riskScore ones, whereas red dots indicate the 

lower ones. 

E. Forest chart showing mRNAs (HCN1, 

METTL7B, TAFA3, GABRA1, SULT4A1, 

RGS7BP and SLC12A5) selected from multi- 

variate COX regression model ( p < 0.05). 
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eizure, response, histological, neoadjuvant, pharmaceutical, cancer his-
ory). Multivariate COX regression analysis of IMriskScore and clinical
haracteristics further confirmed the clinical value of the IMriskScore.
hese findings show that IMriskScore is an independent prognostic fac-
or for LGG patients ( Table 2 ). 

alidating the risk assessment capabilities of IMriskScore in LGG patients 

Patients are assigned to groups with different prognostic risks based
n median IMriskScore. Patients with scores below the threshold formed
he low-risk group whereas patients with scores above the threshold
ormed the high-risk group. Survival analysis based on TCGA dataset
howed than patients in the high-risk group had worse survival out-
omes compared with patients in the low-risk group, both in the training
nd testing groups ( Fig. 2 A, B and Supplementary Figure 2A). The re-
eiver operating characteristic curve (ROC) showed that IMriskScore is a
ood predictor of prognosis. AUC of the TCGA cohort was 0.765 whereas
he test group had an AUC of 0.699 ( Fig. 2 C and Supplementary Fig. 2B).
he predictive power of the IMriskScore for RT-PCR samples (normal-

zed by z-score) of 56 LGG patients from the First Affiliated Hospital of
arbin Medical University was 0.705 ( Fig. 2 D). Clinical and pathologi-
al statistical characteristics of patients from the First Affiliated Hospital
4 
f Harbin Medical University are shown in Table 3 . These finding imply
hat IMriskScore has potential clinical applications. Heat maps, scatter
lots of overall survival (OS), and risk score distributions for the seven
enes from the training and test groups are shown in Fig. 2 E & F. 

orrelation analysis of IMriskScore-related mRNAs 

Survival analysis revealed that the expression of IMriskScore-related
RNAs (GABRA1, HCN1, METTL7B, RGS7BP, SLC12A5, SULT4A1 and
AFA3) was associated with the prognosis of LGG patients ( Fig. 3 A). It

s these mRNAs that are positively or negatively correlated with prog-
osis that together form the prognostic model (IMriskScore) for LGG pa-
ients. This implies that these IMriskScore-related mRNAs can be used as
rognostic markers for LGG. In addition, these IMriskScore-related mR-
As genes were significantly correlated ( p < 0.05) with at least three

mmune checkpoints ( Fig. 3 B). Immunophenoscore, an excellent molec-
lar marker of immune response, is used to explore the immune land-
cape and assess immunotherapy efficacy [16] . Immunophenoscore has
een used in several studies to evaluate the efficacy of immunother-
py in LGG patients, effectively predicting their response [ 16 , 17 ]. IM-
iskScore is based on assigning immunophenoscores from bulk RNAseq
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Table 1 

Clinical information and pathologic features for TCGA LGG patient sets in this study. 

Variables 

TGGA set Training set Testing set p -value 

( n = 665) ( n = 333) ( n = 332) 

Age, n (%) 

≤ 65 578(86.92%) 287(86.19%) 291(87.65%) 0.6564 

> 65 87(13.08%) 46(13.81%) 41(12.35%) 

Gender, n (%) 

FEMALE 282(42.41%) 137(41.14%) 145(43.67%) 0.5602 

MALE 383(57.59%) 196(58.86%) 187(56.33%) 

Grade, n (%) 

G2 245(36.84%) 117(35.14%) 128(38.55%) 0.8084 

G3 260(39.1%) 128(38.44%) 132(39.76%) 

unknow 160(24.06%) 88(26.43%) 72(21.69%) 

Radiation, n (%) 

NO 118(17.74%) 64(19.22%) 54(16.27%) 0.5395 

YES 143(21.5%) 71(21.32%) 72(21.69%) 

unknow 404(60.75%) 198(59.46%) 206(62.05%) 

Seizure, n (%) 

NO 175(26.32%) 91(27.33%) 84(25.3%) 0.2711 

YES 298(44.81%) 138(41.44%) 160(48.19%) 

unknow 192(28.87%) 104(31.23%) 88(26.51%) 

Response, n (%) 

Complete Remission 84(12.63%) 45(13.51%) 39(11.75%) 0.7907 

Partial Remission 50(7.52%) 27(8.11%) 23(6.93%) 

Progressive Disease 39(5.86%) 20(6.01%) 19(5.72%) 

Stable Disease 59(8.87%) 27(8.11%) 32(9.64%) 

unknow 433(65.11%) 214(64.26%) 219(65.96%) 

Histological, n (%) 

Astrocytoma 191(28.72%) 98(29.43%) 93(28.01%) 0.2592 

Glioblastoma Multiforme (GBM) 1(0.15%) 0(0%) 1(0.3%) 

Oligoastrocytoma 128(19.25%) 66(19.82%) 62(18.67%) 

Oligodendroglioma 187(28.12%) 82(24.62%) 105(31.63%) 

Treated primary GBM 1(0.15%) 1(0.3%) 0(0%) 

Untreated primary GBM 157(23.61%) 86(25.83%) 71(21.39%) 

Neoadjuvant, n (%) 

No 662(99.55%) 332(99.7%) 330(99.4%) 0.9979 

YES 3(0.45%) 1(0.3%) 2(0.6%) 

History with LGG, n (%) 

NO 154(23.16%) 83(24.92%) 71(21.39%) 0.4854 

YES 5(0.75%) 4(1.2%) 1(0.3%) 

unknow 506(76.09%) 246(73.87%) 260(78.31%) 

Table 2 

Univariate and multivariate Cox regression analyses of IMriskScore with Clinical information and pathologic features. 

Univariate Cox regression analyses Multivariate Cox regression analyses 

Variable HR lower 95%Cl upper 95%Cl p value HR lower 95%Cl upper 95%Cl p value 

Training set 

age 1.078 1.053 1.104 0.000 1.082 1.054 1.111 0.000 

gender 1.077 0.615 1.886 0.796 

grade 5.334 2.658 10.706 0.000 4.308 2.034 9.124 0.000 

seizure 0.954 0.540 1.685 0.872 

histological 0.604 0.428 0.855 0.004 0.707 0.501 0.998 0.049 

riskScore 1.727 1.437 2.076 0.000 1.432 1.134 1.809 0.003 

Testing set 

age 1.067 1.050 1.084 0.000 1.070 1.051 1.089 0.000 

gender 0.971 0.657 1.434 0.882 

grade 3.004 1.965 4.593 0.000 2.053 1.311 3.217 0.002 

seizure 0.748 0.505 1.106 0.146 

histological 0.725 0.577 0.912 0.006 0.717 0.565 0.910 0.006 

riskScore 1.595 1.327 1.919 0.000 1.377 1.102 1.722 0.005 
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amples. Therefore, we hypothesize that the IMriskScore is related to
mmunotherapy. 

Previous studies report that the normal expression of the IDH1 gene
s closely associated with glioma development and is an important clin-
cal marker for patient prognosis. Recent studies report that the com-
ination of IDH1 inhibitors with chemotherapy improves the clinical
rognosis of patients [43] . In neuro-oncology, the exceptional disease
ontrol demonstrated by IDH1 inhibitors was presented at the ASCO
020 meeting, where a clinical phase II study of the IDH1 inhibitor
5 
T-2102, in combination with azacitidine, in patients with recurrent
r progressive gliomas with IDH1 mutations, achieved a 47% disease
ontrol rate and a median progression-free survival of 8.3 months [43] .
adar plots showed that IMriskScore-related mRNAs (GABRA1, HCN1,
ETTL7B, RGS7BP, SLC12A5, SULT4A1 and TAFA3) are significantly

orrelated with IDH1 ( Fig. 3 C). In addition, high expression of IDH1 was
ignificantly correlated with IMriskScore ( p < 0.05) ( Fig. 3 D), implying
hat IMriskScore may be used to assess the efficacy of IDH1-associated
argeted therapies. In summary, IMriskScore-related mRNAs and IM-
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Fig. 2. Validating risk assessment capabilities of IMriskScore in LGG patients 

A-B. IMriskScore signature was related to OS survival. Kaplan-Meier curves of overall survival based on IMriskScore groups in the training set (A) and TCGA cohort 

(B). 

D. ROC for IMriskScore based on TCGA set (n = 665) (C) and Clinical set (n = 56) (D). 

E-F. Patients were grouped into high-IMriskScore group and low-IMriskScore group. Heatmap of 7 IMriskScore-related genes and IMriskScore curve for training set 

and testing set. 
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iskScore may sever as potential predictors of immunotherapy efficacy
nd chemotherapy efficacy in LGG patients. 

ole of IMriskScore in immune checkpoint inhibitor treatment 

IMriskScore-related mRNAs are derived from Immunophenotype-
ssociated mRNA signatures. Therefore, we speculate that they may reg-
6 
late leukocyte infiltration and immune-related pathways. Our findings
howed that most of the immune checkpoints were associated with IM-
iskscore, and immune checkpoint or immunotherapy related mRNAs
CD23, PD-L1, CTLA4, PD1, IDO1, IFNG, IL2 and LAG3) were signifi-
antly enriched in the high IMriskScore group ( Fig. 4 A) (Supplementary
igure 3). CD23, IL2, LAG3, IDO1 and IFNg were chosen because their
xpression correlates with the immune profile of the tumour microen-
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Fig. 3. Correlation analysis of IMriskScore-related mRNAs with LGG treatment checkpoints 

A. K-M survival analysis of OS based on IMriskScore-related mRNAs (GABRA1, HCN1, METTL7B, RGS7BP, SLC12A5, SULT4A1 and TAFA3) in the TCGA cohort. 

B. Interrelationship Network of IMriskScore-related mRNAs (GABRA1, HCN1, METTL7B, RGS7BP, SLC12A5, SULT4A1 and TAFA3) and immune checkpoints (CD23, 

CTLA4, PD-L1 and PD1). The width of the line represents degree of correlation. 

C. Radar plots reflect interrelationship between IDH1 and mRNA, all of which were statistically significant. 

D. Differential expression of IDH1 in the low- and high-IMriskScore groups (Mann-Whitney U test, P < 0.001). 
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Fig. 4. Role of IMriskScore in immune checkpoint inhibitor treatment 

A. Differential expression of immune checkpoint mRNAs (HCN1, METTL7B, TAFA3, GABRA1, SULT4A1, RGS7BP and SLC12A5) in the low- and high-IMriskScore 

groups (Mann-Whitney U test, P < 0.001). 

Box plots were used to visualize differences in infiltration abundance of 29 immune cell subpopulations and their functions in the low and high IMriskScore groups. 

The high-risk group is represented in orange, whereas green represents the low-risk group. 

C. TIDE score between high- and low- IMriskScore patients. 
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ironment. We need to clarify that CD23, IL2, LAG3, IDO1, and IFNg
ere chosen because their expression correlates with the immune pro-
le of the tumor microenvironment [ 16 , 17 , 44 ]. LGG data from TCGA
atabase was used to construct a set of box plots to visualize the rela-
ive abundance of 29 immune infiltrating cell subpopulations and func-
ions ( Fig. 4 B). Low expression levels of APC co-inhibition, APC co-
timulation, B cells, CCR, CD8 + T cell, checkpoint, cytolytic activity,
Cs HLA, iDSs, inflammation-promoting, macrophages, MHC class I,
eutrophils, NK cells, parainflammation, pDCs, T cell co-inhibition, T
ell co-stimulation, T helper cells, Tfh, Th2 cells, TIL, Treg, Type I IFN
eponse and Type II IFN Reponse, were observed in the low-risk group
 P < 0.05). The TIDE score has been validated by numerous studies as
n innovative prognostic assessment protocol for immune checkpoint
uppression therapy. Furthermore, the TIDE algorithm was used to val-
date the predictive power of IMriskScore for immunotherapy. Interest-
ngly, we found that immunotherapy was more effective in the high IM-
iskScore risk group compared to the low IMriskScore group ( Fig. 4 C).
 U  

8 
herefore, these findings imply that IMriskScore is associated with tu-
or immunotherapy. 

dentification of significantly mutant genes with IMriskScore 

A somatic mutation count (SMC) analysis was performed based on
GG samples from the low IMriskScore and high IMriskScore groups.
 lower proportion of SMCs was found in the low IMriskScore group
ompared with the high IMriskScore group. This finding explains high
evels of immune infiltration in the high IMriskScore group ( Fig. 5 A).
igher SMCs are more likely to attract immune cell infiltration result-

ng in immune enrichment. In addition, this finding implies that the high
MriskScore group is more likely to achieve better outcomes from im-
unotherapeutic [45] . UBQLN4 is a newly discovered gene associated
ith genomic instability. Expression levels of UBQLN4 were compared
etween high IMriskScore and low IMriskScore groups. Expression of
BQLN4 in the high IMriskScore group was significantly lower com-
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Fig. 5. Identification of significantly mutant genes with IMriskScore 

A-B. Differential somatic mutation count in the low- and high-IMriskScore groups (A); Differential expression of genetic instability driver gene UBQLN4 in the low- 

and high-IMriskScore groups (B) (Mann-Whitney U test, P < 0.001). 

C. Waterfall plots of mutation frequency difference genes based on low- and high-risk component strata acquired in the TCGA LGG cohort. 

D. K-M estimates of OS of patients with CIC mutation or CIC wild in low- or high risk predicted by the IMriskScore. 

E. K-M estimates of OS of patients with NOTCH1 mutation or NOTCH1 wild in low- or high risk predicted based on IMriskScore. 
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ared with expression level in the low IMriskScore group ( Fig. 5 B). This
mplies that IMriskScore is correlated with genetic instability. Further,
 waterfall plot was constructed for genes with different mutation fre-
uencies between high and low-risk groups ( Fig. 5 C). A significant lower
utation frequency of Capicua (CIC) and NOTCH1 was observed in the

ow-IMriskScores group compared with the high-risk group. Survival
nalysis show that CIC mutations are associated with a better prognosis,
hereas NOTCH1 mutations do not have a significant effect on progno-

is compared with CIC mutations ( Fig. 5 D-E). In summary, IMriskScores
re significantly associated with LGG gene instability, whereas CIC mu-
9 
ations in high-risk patients are associated with a better prognosis. This
mplies that mutations in the CIC gene correlate with the IMriskScore
nd may be an important risk marker for glioma prognosis. 

unctional characterization of IMriskScore subtypes 

GO function analysis of GSEA showed enrichment of IMriskScore-
elated signaling functions including: negative regulation of hu-
oral immune response, positive regulation of fibroblast prolifera-

ion, and programmed cell death involved in cell development re-
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Table 3 

Clinical information and pathologic features for clinical cohort. 

Variables 

Alive Dead Total p- 

value ( n = 39) ( n = 17) ( n = 56) 

Risk 

high 12 (30.77) 7 (41.18) 19 (33.93) 0.449 

low 27 (69.23) 10 (58.82) 37 (66.07) 

Follow-up time (day) 513 ± 628 1084 ± 1209 687 ± 877 0.08 

Age 

< = 65 38 (97.44) 13 (76.47) 51 (91.07) 0.011 ∗ 

> 65 1 (2.56) 4 (23.53) 5 (8.93) 

Gender 

FEMALE 20 (51.28) 11 (64.71) 31 (55.36) 0.353 

MALE 19 (48.72) 6 (35.29) 25 (44.64) 

Grade 

G2 15 (38.46) 4 (23.53) 19 (33.93) 0.278 

G3 24 (61.54) 13 (76.47) 37 (66.07) 

Histological 

Astrocytoma 12 (30.77) 7 (41.18) 19 (33.93) 0.636 

Oligoastrocytoma 11 (28.21) 3 (17.65) 14 (25.00) 

Oligodendroglioma 16 (41.03) 7 (41.18) 23 (41.07) 

∗ p < 0.05 ∗ ∗ p < 0.01 
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ponse interleukin-2 and Wnt signaling pathway involved in midbrain
opaminergic neuron ( Fig. 6 A). Furthermore, KEGG pathways analysis
f GSEA showed enrichment of IMriskScore-related pathways (including
llograft rejection, apoptosis-multiple species, HIF-1 signaling pathway,
icotine addiction, as well as Synthesis and degradation of ketone bod-

es) ( Fig. 6 B). Enrichment of these biological functions and pathways
mplies that IMriskScore can predict LGG tumor-immune interaction in
he tumor microenvironment. 

ndependence of the IMriskScore from other clinical factors and clinical 

pplication 

Determination of conditional survival (CS) is necessary for cancers
ith poor survival prognosis. In this study, the 6-year postoperative sur-
ival rate in the low IMriskScore group (58%) was more than twice as
igh as that of the high IMriskScore group (26%). Patients in the low IM-
iskScore group showed higher survival rates at 1–3 years after surgery
han those in the high IMriskScore group ( Fig. 7 A & B). Survival rates
f patients who survived for more than 3 years in both groups were
imilar in the following years. This implies that IMriskScore is a good
redictor of patient survival between the first and the third year after
urgery. Therefore, IMriskScore can predict poor prognosis within three
ears after surgery, enabling clinicians to provide targeted care. Sur-
ival analysis showed that IMriskscore was a good predictor across age
nd gender ( Fig. 7 C-F). These results imply that IMriskScore has broad
linical application. 

MriskScore evaluated by preclinical mri-based deep learning model 

A neural network-based deep learning model was constructed to pre-
ict IMriskScore based on MRI radiomics features ( Fig. 8 A). Predictions
ased on radiomics showed that patients in the high-risk group had a
ower survival rate than those in the low-risk group ( Fig. 8 B). Patients
t lower risk were more likely to be predicted in the low IMriskScore
isk group by the imagingomics deep learning model ( Fig. 8 C). A total
f 68 patients from the TCGA LGG cohort with MRI radiomics informa-
ion were included as a training group for neural network-based deep
earning, and 56 patients from the First Affiliated Hospital of Harbin
edical University were used as a test group for neural network-based

eep learning. AUC value of the ROC curve was 0.821 in the test group
 Fig. 8 D) and 0.708 in the test group after carrying out 1000 training
essions ( Fig. 8 E, Table 4 ). All samples were correctly identified using
he confusion matrix as shown in Fig. 8 F-H. This finding implies that
he Preclinical MRI-based Deep Learning Model is better in assessing
10 
MriskScore. Therefore, the IMriskScore has wide clinical application as
 scoring system that can be recognized by MRI radiomics. 

iscussion 

Despite recent significant advances in treatment and diagnosis of
GG, most LGG patients have poor prognosis [46] . Although neoadju-
ant immune checkpoint blockade (ICB) therapy improves overall prog-
osis of patients, immunotherapy for gliomas is now in clinical trials
ith slow progress [47–49] . Advances on studies on molecular mecha-
isms of immunity, have achieved precision cancer treatment for a vari-
ty of cancers [ 50 , 51 ]. However, no effective immune-related molecular
arkers have yet been identified for accurate prognosis and treatment

f LGG [52] . Therefore, more studies should be conducted to identify
iomarkers to prediction the effectiveness of immunotherapy in LGG
atients. 

To address these shortcomings of current therapies, we first devel-
ped an LGG immunotherapy efficacy and OS prognostic risk predic-
ion model that can be recognized by MRI radiomics. The IMriskScore
as shown to be significantly correlated with prognosis, CIC mutations,
nd immunotherapy efficacy in LGG patients and showed that MRI
adiomics-based prediction models can accurately predict IMriskScore
n patients with LGG. IMriskScore based on seven characteristic mRNAs
HCN1, METTL7B, TAFA3, GABRA1, SULT4A1, RGS7BP, SLC12A5) was
ignificantly correlated with OS in LGG patients. Similar results were ob-
ained from the clinical sample, whereby patients in the low IMriskScore
roup showed a better prognosis than those in the high IMriskScore
roup. Stratified analysis showed that the IMriskScore was effective in
redicting overall survival regardless of clinical presentation. A prog-
ostic evaluation of the overall survival of LGG patients using the IM-
iskScore showed that the 5-year survival rate after treatment was ap-
roximately 62% in the low IMriskScore group, compared with 32% in
he high IMriskScore group. However, patients who survived for than 3
ears, showed similar survival rates in both groups. Therefore, the sur-
ival rate of both groups of patients gradually stabilized over time and
S rate increased. In addition, IMriskScore can identify high-risk pa-
ients, help individualize the probability of survival, help patients cope
ith the fear of recurrence or the risk of death, and inform on individ-
alized follow-up time [53–55] . 

The seven mRNAs used to construct IMriskScore (GABRA1, HCN1,
ETTL7B, RGS7BP, SLC12A5, SULT4A1, TAFA3), most of which have

een elucidated in several studies, are potential prognostic-related
arkers for LGG. Previous studies report that GABAAR is associated
ith clinical features correlated with poor prognosis in LGG patients

including seizures, memory impairment, hallucinations and anxiety)
56] . HCN1 and METTL7B are driver-related genes for glioma [57] . A
revious study reports that SLC12A5 and SULT4A1 are associated with
eural-related tumor prognosis [58] . TAFA3 is a novel secreted protein
hat modulates microglial/macrophage polarization dynamics and af-
ects local blood supply [59] . Therefore, TAFA3 may serve as an impor-
ant immune function in the glioma tumor microenvironment. Although
revious studies report that RGS7BP is implicated in pathogenesis of
linical diseases such as epilepsy, more studies should be carried out
o explore the role of RGS7BP in glioma [60] . In summary, the seven
MriskScore-related genes identified in our study are associated with OS
rognosis in LGG patients. 

Tumor microenvironment and immune cells play key roles in tumor
rognosis [61] . Enrichment analysis showed that IMriskScore is associ-
ted with immune-related functions or pathways, such as programmed
ell. This is because IMriskScore system is based on immunophenoscore,
hich has been shown in numerous studies to be a superior predictor
f ICB treatment [16] . Programmed cell death 1 (PD-1) is an immune
heckpoint receptor expressed on activated T and B cells and binds to
rogrammed cell death 1 ligand 1 (PD-L1), which inhibits T cell prolifer-
tion and activation. The binding of PD-1 to PD-L1 allows cancer cells to
ore effectively evade immune attack in the tumor microenvironment
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Fig. 6. Functional characterization of IMriskScore subtypes 

GSEA showing KEGG pathway analysis and GO function analysis of pathways and functions associated with IMriskScore. Significant correlations were observed 

between high and low IMriskScore expression groups. 

A. GO enrichment analysis. 

B. KEGG enrichment analysis 

Table 4 

AUC comparison test for ROC curves. 

Groups AUC SE 95% CI Sensitivity Specificity p value 

Training set 0.821 0.642 0.704–0.938 0.773 0.87 0.2508 

Testing set 0.708 0.078 0.556–0.861 0.579 0.838 
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Fig. 7. Independence of IMriskScore from other clinical factors and clinical application. 

A-B. Estimated survival rates of patients given a 0–5 year-survival period in low/high-BCPRS groups. Each column represents years of survival and each row represents 

the percentage of attaining a certain total survival time from the survived years point; 

C-F. K-M of OS based on the clinical characteristic. 
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62–64] . PD-1 antibodies can be used to effectively treat a variety of
ancers and improve OS [ 65 , 66 ]. Immune checkpoints and T-cells were
nriched on the high IMriskScore group. This implies that in highly ma-
ignant LGGs, immune cells do not fully exert their immune anticancer
ffects despite their high degree of infiltration [44] . In addition, TIDE
rediction shows a more optimistic response to immunotherapy in the
12 
igh IMriskScore group, which is consistent with immunophenoscore
esults. Therefore, the IMriskScore model can be used as a reliable pre-
ictive tool to guide LGG immune-related therapy. 

Luchini et al. report that MSC and immune checkpoint expression are
ssential for immune checkpoint inhibition therapy [67] . Previous stud-
es report that an increase in MSC is positively associated with higher
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Fig. 8. IMriskScore evaluated by preclinical MRI-based deep learning model 

A. TCGA cohort was used as a test group, whereas the clinical cohort was used as a training group. 

B. K-M of OS based on radiomics predicted risk in the TCGA cohort. 

C. Heatmap of 7 IMriskScore-related genes and IMriskScore curve. Patients at lower risk were more likely to be predicted in the low IMriskScore risk group by the 

imagingomics deep learning model. 

D-E. Receiver operating characteristic curve for preclinical MRI-based deep learning model based on the training set (TCGA cohort) (C) and the testing set (clinical 

cohort) (D). 

F-H. Confusion matrix for deep learning models of neural networks. TCGA cohort (F); Clinical cohort (G); total cohort (H). 
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urvival [68] . In this study, MSC was higher in the low IMriskScore
roup, implying a potential correlation between IMriskScore and genetic
nstability. In addition, CIC, a frequently mutated gene in LGG, showed
 considerably higher mutation rate in the low IMriskScore group [69] .
nterestingly, CIC mutations in the high IMriskScore group were asso-
iated with approximately 100% survival rate. Previous studies report
hat capicua (CIC) is an intrinsic negative immune regulator of cells
70] . The absence of CIC promotes helper T cell differentiation and im-
une response [71] . Therefore, a high IMriskScore score may be an

ndicator of good prognosis in patients with CIC mutations. We propose
or the first time that CIC mutations are an important prognostic factor
n LGG and may be associated with efficacy of immunotherapy. A high
MriskScore may suggest a poor prognosis for CIC wild-type patients,
hereas a high IMriskScore may suggest a positive prognosis for CIC
utant patients. This implies that the use of CIC’s targeted agents for
atients with high IMriskScore may significantly improve the prognosis
f patients. 

Radiomics can extract hundreds of quantitative features from med-
cal images and effectively predict tumor-related biological behavior
72–74] . In diffuse low-grade gliomas, MRI radiomics models have been
hown to predict IDH mutations and tumor aggressiveness [75] . Previ-
us studies report that MRI radiomics features of gliomas can be used to
redict the grade of glioma [25] . And CIC mutations also can be accu-
ately identified by MRI radiomics in LGG patients, as seen in previous
tudies [76] . Previous papers have focused on the association of MRI
adiomics with specific genes/prognosis. Although the role of gene sets
as become increasingly appreciated in recent years, especially in on-
ology studies [77] , the association of MRI radiomics with gene sets
emains unexplored. In this study, we found that IMriskScore features
an be predicted using MRI radiomics through neural network-based
eep learning, which shows potential clinical application. IMriskScore
s a series of genetic markers associated with an immune score. This
tudy, therefore, suggests that MRI radiomics may have the potential to
redict specific genetic markers. 

Radiomics characteristics of LGG were retrieved from TCGA
atabase and clinical patients, and used to construct a neural network-
ased deep learning model to predict IMriskScore of patients. This
adiomic-based IMriskScore was used to predict efficacy and prognosis
f tumor immunotherapy from MRI image data. A deep learning ap-
roach was used to assess radiomics features of IMriskScore and tu-
or immune microenvironment features of LGG. The model showed

ood classification accuracy. The model showed good predictive abil-
ty in both TCGA cohort and clinical cohort, with an AUC value of
.821. The confusion matrix indicated that the method has a potential
or clinical application. A series of immunophenotype-associated mR-
As in LGG patients were identified in this study. Further, the study
resents immunophenotype-associated mRNA signatures (IMriskScore)
or outcome prediction and ICB therapeutic effects, and validates abil-
ty of IMriskScore to assess prognostic risk in LGG patients. Radiomics-
ased deep learning in neural networks showed that IMriskScore can
e predicted using MRI radiomic features. Enrichment analysis and ss-
SEA correlation analysis showed that IMriskScore was significantly
orrelated with immunotherapy-related immune checkpoints and im-
une microenvironment. High-frequency mutant CIC, an immunosup-
ressive gene, showed a high mutation frequency in the low IMriskScore
roup. CIC mutation is significantly correlated with a good outcome of
atients in the high IMriskScore group. Therefore, CIC is a potential
herapeutic target for patients in the high IMriskScore group. Finally,
he IMriskScore shows a wide clinical application as an independent
redictor. The findings of this study provide information for predicting
he effects of immunotherapy and the prognosis of LGG patients. How-
ver further studies should be carried out to validate the findings of this
tudy. First, since immunotherapy is not yet widely available in many
eveloping countries, it is difficult to obtain information on the efficacy
f immunotherapy directly from clinical settings. Here, we proposed a
ew method to overcome this difficulty. This approach is to use the
14 
mmunophenoscore to obtain a scoring system for the efficacy of im-
unotherapy and then use TIDE to investigate the predictive power of

his scoring system, which we believe has scientific applications. How-
ver, the model still requires further clinical case validation. In addition,
urther clinical studies are needed to explore the combined effect of IM-
iskScore and CIC mutations on efficacy of immunotherapy and progno-
is of LGG patients. Finally, although a new cohort was used to validate
he radiomics-based neural network deep learning IMriskScore predic-
ion model, the sample size was small and more patients from multiple
enters should be included to confirm the generalizability of the model.

onclusion 

In conclusion, the IMriskScore model an independent feature for as-
essing the prognosis of LGG patients provides basis for development
f personalised immunotherapy development. Mutations in the high-
requency mutant gene CIC are associated with IMriskScore and signif-
cantly affect the prognosis of LGG patients. IMriskScore features can
e predicted using MRI radiomics through neural network-based deep
earning, which shows potential clinical application. 
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