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Abstract: A new polycondensation aromatic rigid-chain polyester macroinitiator was synthesized
and used to graft linear poly-2-ethyl-2-oxazoline as well as poly-2-isopropyl-2-oxazoline by cationic
polymerization. The prepared copolymers and the macroinitiator were characterized by NMR, GPC,
AFM, turbidimetry, static, and dynamic light scattering. The molar masses of the polyester main
chain and the grafted copolymers with poly-2-ethyl-2-oxazoline and poly-2-isopropyl-2-oxazoline
side chains were 26,500, 208,000, and 67,900, respectively. The molar masses of the side chains of
poly-2-ethyl-2-oxazoline and poly-2-isopropyl-2-oxazoline and their grafting densities were 7400 and
3400 and 0.53 and 0.27, respectively. In chloroform, the copolymers conformation can be considered
as a cylinder wormlike chain, the diameter of which depends on the side chain length. In water at
low temperatures, the macromolecules of the poly-2-ethyl-2-oxazoline copolymer assume a wormlike
conformation because their backbones are well shielded by side chains, whereas the copolymer with
short side chains and low grafting density strongly aggregates, which was visualized by AFM. The
phase separation temperatures of the copolymers were lower than those of linear analogs of the
side chains and decreased with the concentration for both samples. The LCST were estimated to
be around 45 ◦C for the poly-2-ethyl-2-oxazoline graft copolymer, and below 20 ◦C for the poly-2-
isopropyl-2-oxazoline graft copolymer.

Keywords: synthesis; molecular brushes; poly-2-alkyl-2-oxazolines; solutions; structural and confor-
mation characteristics; thermoresponsiveness; self-assembly

1. Introduction

The synthesis of rigid-chain polymers in the middle of the 20th century was a break-
through in polymer science and technology, which made it possible to obtain new ultra-
strong materials. Rigid-chain polymers usually include polymers with a Kuhn segment
length A of more than 10 nm. The high rigidity of macromolecules predetermines their
elongated state in the direction of the main chain and often provides lyotropic mesomor-
phism [1–5]. Such features are useful for creating high-strength fibers and films and self-
reinforcing plastics, including those with specific optical and conductive properties [6–9].

The establishment of the correlation of molecular characteristics of such polymers
with their structure has been and is still being actively pursued by many scientific groups.
Analysis of the various molecular structures showed that the high chain equilibrium and
kinetic rigidity is the effect of a specific chemical structure of macromolecules [10,11]. The
main reason for the increase in A of chain molecules is the presence in their repeating units
of structural elements that prevent rotation around the chain direction, such as double
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bonds, cyclic fragments, and a ladder structure [12–15]. An increase in equilibrium rigidity
is facilitated by chain conjugation, such as, for example, in polyisocyanates, and specific
non-covalent interactions, such as in DNA and polysaccharides [16–21]. In macromolecules
with a comb-like structure, increased rigidity is induced by steric obstacles arising between
the side chains, which impede the bending and folding of the main chain as a result of
intramolecular thermal movement of the units [11,22,23].

Research on comb-like polymers, or more precisely, molecular brushes, intensified at
the end of the 20th century, when new synthetic approaches were developed that allowed
the controlled synthesis of high-molecular compounds of various architectures [24–29].
As a result, the main regularities of the behavior of graft copolymers in solutions were
established; in particular, the influence of the size of the main and side chains, as well as
the grafting density of the latter, on the hydrodynamic characteristics and conformation
of comb-like macromolecules was revealed [23,30–39]. In the formation of properties in
solutions of amphiphilic comb-shaped macromolecules, in which the chemical nature of
the main and side chains is very different, the affinity to the solvent of various blocks of
the graft copolymer is of great importance [40–45]. Accordingly, by varying the chemical
structure of the main and side chains, their sizes, and grafting density, it is possible to
control the self-organization of molecular brushes in selective solvents. For example,
molecules of graft copolymers with a flexible main chain of polyimides and side chains
of polymethyl methacrylate in selective solvents are capable of assuming an extended or
compact conformation depending on the grafting density of side chains and their length,
as well as the hydrodynamic quality of the solvent with respect to the components [46–48].
A significant role in the formation of the properties of molecular brushes in solutions is
played by the rigidity of their structural elements: the main and side chains [11,38,49,50].
It has been shown that the presence of rigid-chain fragments in the side chains can lead to
their orientational order in solution. On the other hand, grafting long flexible chains onto a
rigid aromatic backbone prevents aggregation when grafting is sufficiently dense.

Recently, special attention has been attracted by amphiphilic stimuli-sensitive graft
copolymers, solutions of which are characterized by a nonlinear response to a weak external
effect, for example, to a change in the temperature or acidity of the medium, to irradiation
with light at a certain wavelength, etc. [51–57]. Typically, such brushes are built with a
hydrophobic or less commonly hydrophilic backbone and water-soluble stimulus-sensitive
side chains. Thermoresponsive poly-2-alkyl-2-oxazolines (PAlOx) are promising as grafted
blocks [58–62]. Biocompatible linear PAlOx have good prospects for use in medicine and
biotechnology; the conditions of controlled synthesis have been reliably established for
them and the basic correlations of behavior in solutions have been revealed [63–67]. In
particular, it was shown that the dehydration temperature of PAlOx units decreases with
an increase in the size of the side radical in their chains [68]. Accordingly, the lower critical
dissolution temperature (LCST) for poly(2-ethyl-2-oxazoline) (PEtOx) solutions is about
30 ◦C higher than the LCST for poly-2-isopropyl-2-oxazoline (PiPrOx). This pattern is
retained for graft copolymers in which aromatic polyesters served as the main chain and
PEtOx or PiPrOx as side chains [69–71]. In this case, the nature of self-organization, namely,
compaction or aggregation, in solutions of the discussed molecular brushes depended on
the grafting density of side chains.

All the cited works investigated graft copolymers in which flexible-chain polymers
were used as the main chain. It seems interesting to analyze how the behavior of molecular
brushes with PAlOx side chains will change if the backbone is a rigid chain polymer.
In connection with the above, the objectives of this work are: (i) the development of
approaches to the controlled synthesis of copolymers (APEr.ch.-graft-PAlOx), in which
thermosensitive PEtOx or PiPrOx are grafted to a rigid-chain aromatic polyester (APEr.ch.);
(ii) determination of hydrodynamic and conformational characteristics of the synthesized
APEr.ch.-graft-PAlOx; and (iii) the study of the thermal response of aqueous solutions of the
synthesized molecular brushes and its dependence on the chemical structure of the side
PAlOx chains. The structure of APEr.ch.-graft-PAlOx is shown in Figure 1.
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Figure 1. Chemical structure of the APEr.ch.-graft-PEtOx and APEr.ch.-graft-PiPrOx graft copolymers.

2. Results and Discussion
2.1. Synthesis
2.1.1. Synthesis of the Polyester Multifunctional Macroinitiator

2-(4-(2-bromoethyl)phenylsulfonylhydroquinone was chosen as a polycondensation
monomer containing functional groups suitable for initiating cationic polymerization of 2-
alkyl-2-oxazolines. The choice of this compound was determined by the fact that previously
described [72] soluble alkylene-aromatic polyesters based on phenylsulfonylhydroquinone
can be synthesized using the method of non-acceptor polycondensation. It is necessary to
keep in mind that the presence of a 2-bromoethyl group sensitive to tertiary amines and
alkali in the target monomer makes it impossible to apply traditional acceptor methods
for polyester synthesis. On the other hand, it can be assumed that the direct nucleophilic
substitution of bromine in the 2-bromoethyl group as a result of the attack of a phenolic
hydroxyl in the absence of bases is an unlikely process.

Synthesis of 2-(4-(2-bromoethyl)phenylsulfonylhydroquinone was carried out using
the previously published procedure [73], which includes the reaction of 2-phenylethyl
bromide with chlorosulfonic acid, reduction of the corresponding sulfonyl chloride to
sulfinic acid, and addition of the latter, under the conditions of the Michael reaction, to
1,4-benzoquinone (Figure 2).
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Figure 2. Synthesis of the functionalized hydroquinone comonomer.

[1,1’-biphenyl]-2,5-dicarbonyl dichloride was used as a comonomer. The polymer
synthesis was carried out under the conditions of acceptorless high-temperature polycon-
densation (Figure 3), which has proven itself well in the synthesis of aromatic polyesters [74].
1-Chloro-naphthalene was used as a solvent. It was found that the optimal conditions for



Int. J. Mol. Sci. 2021, 22, 12265 4 of 23

polycondensation are as follows: temperature of 200 ◦C, monomer concentration of 25 wt%,
and reaction time of 2 h.
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2.1.2. Synthesis of the APEr.ch.-Graft-PAlOx Copolymers with PEtOx or PiPrOx
Side Chains

It is well known that aromatic polyesters are soluble in a limited number of solvents
(chlorinated hydrocarbons, CF3COOH, m-cresol), which significantly limits the choice of a
medium for cationic polymerization. It is obvious that protonic acids are unsuitable for
this purpose, while chlorinated hydrocarbons are close to theta-solvents for synthesized
macroinitiators at room temperatures [75]. It is well known that carrying out polymer
analogous transformations in poor solvents cannot provide a sufficient degree of grafting
due to the unavailability of a significant part of the functional groups. Usually, the thermo-
dynamic quality of the solvent improves with increasing temperature. In this regard, the
grafting of polyoxazoline chains (Figure 4) was carried out in tetrachloroethane at 150 ◦C.
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A comparison, for example, of the 1H NMR spectra of the macroinitiator and the
grafted copolymer APEr.ch.-graft-PEtOx shows (Figure 5) that both signals of aromatic
protons of the main chain and signals related to the PEtOx side chains are present in the
spectrum of the copolymer. Together with the monomodality of the obtained polymer,
these data allow us to assert that the sample under investigation is a graft copolymer. It
should be noted, however, the asymmetric shape of the GPC trace of the graft copolymer
(Figure 6), which probably indicates some unevenness in the distribution of the side
chains along the main one. In order to determine the molecular weight characteristics
of the grafted chains and their grafting density, the main chains of copolymers were
destroyed by alkaline hydrolysis under conditions that provide quantitative cleavage of
ester groups [76] (Figure 7).
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Figure 7. Selective destruction of synthesized graft-copolymers.

Isolated side chains, after acylation with propionic anhydride (in the analysis of the
APEr.ch.-graft-PEtOx) or isobutyric anhydride (in the analysis of the APEr.ch.-graft-PiPrOx),
according to chromatographic data, had weight-average molar mass Mw = 7400 (poly-
dispersity Mw/Mn = 1.34) for APEr.ch.-graft-PEtOx and Mw = 3400 (Mw/Mn = 1.27) for
APEr.ch.-graft-PiPrOx (Figure 8).
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2.2. Molecular Characteristics and Equilibrium Rigidity of the APEr.ch. Macroinitiator and the
Grafted Copolymers APEr.ch.-graft-PEtOx and APEr.ch.-graft-PiPrOx

The molar masses and hydrodynamic characteristics of the macroinitiator and the
graft copolymers are given in Table 1. First of all, we note that for the APEr.ch. in tetra-
chloroethane, a very low value of the second virial coefficient A2 was obtained. Conse-
quently, tetrachloroethane is close in thermodynamic quality to the θ-solvent. This is also
indicated by the absence of the concentration dependence of the hydrodynamic radius
Rh (Figure S1), which is typical for θ-solvents in which thermodynamic interactions are
absent. This fact makes it possible to roughly estimate the APEr.ch. equilibrium rigidity by
the value of Rh, using the relation valid for Gaussian chains:

f = 61/2η0P Rg, (1)

where f and Rg are the translational friction coefficient and the radius of gyration of
macromolecules, respectively, and the invariant P is P = 5.1 [11]. This relationship is similar
to the Flory–Fox equation for intrinsic viscosity. According to the Stokes equation used to
calculate the hydrodynamic radius:

f = 6πη0Rh, (2)

and therefore:
<h2>1/2 = 6πRh/P, (3)

where <h2>1/2 is the root-mean-square distance between the ends of the polymer chain,
which, according to the Kuhn equation, is related to the contour length of the macro-
molecule L and the Kuhn segment length A:

<h2> = LA. (4)

Table 1. Molecular characteristics of the APEr.ch., the APEr.ch.-graft-PEtOx, and the APEr.ch.-graft-PiPrOx.

Polymer Mw, g·mol−1 A2 × 104, cm3mol/g2 Rh, nm

APEr.ch. 26,500 0.4 12
APEr.ch.-graft-PEtOx 208,000 −0.6 31
APEr.ch.-graft-PiPrOx 68,000 5.9 18

The molar mass M0-APE of the APEr.ch. monomer unit is 563 g·mol−1. Therefore,
the macroinitiator molecule consists of NAPE = (n + m) = Mw/M0-APE = 26,500/563 =
47 monomer units, n and m being unsubstituted and substituted ones, respectively. The
length of the macroinitiator monomer unit λ0-APE can be estimated as the sum of the lengths
of its bonds along the chain direction. Assuming that the length of all valence bonds of
the main chain is close to 0.14 nm, and the valence angles are tetrahedral, in accordance
with the APEr.ch. structural formula (Figure 1), we obtain λ0-APE = 1.51 nm. Accordingly,
the APEr.ch. contour length is LAPE = 71 nm. Substitution of the Rh and LAPE values into
Equations (3) and (4) results in the Kuhn segment length A = 28 nm.

We emphasize once again that the approach used is a rough estimation of the APEr.ch. equi-
librium rigidity. Indeed, the APEr.ch. macromolecule chain consists of only 71/28 = 2.6 Kuhn
segments, and its behavior does not obey Gaussian statistics. However, the result obtained
is important from the point of view, which allows us to reliably state that APEr.ch. is a typical
rigid-chain polymer. Therefore, its conformation should be analyzed within the framework
of the Porod model, that is, a worm-like chain with constant curvature. Several approaches
are used to describe the hydrodynamic behavior of rigid-chain polymers (see [11]), for
example, the model of a worm-shaped spherocylinder proposed by Yamakawa [77–79]. In
any case, in order to quantitatively determine the equilibrium rigidity of a polymer from
hydrodynamic data, it is necessary to study the homologous series.
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The long Kuhn segment for the APEr.ch. was expected, since its chain is built of
alternating planar ester groups and para-phenylene rings. Such structures are characterized
by the so-called “crankshaft” conformation [11], which provides high equilibrium rigidity.
For example, the Kuhn segment length of a para-aromatic polyester (pAPE) (Figure 9) is
26 nm according to hydrodynamic data [80] and 20 nm according to flow birefringence
data [81]. As seen in Figures 1 and 9, the APEr.ch. and the pAPE differ very slightly
(the structure of the main chains is identical); therefore, these polymers should have
similar rigidity.
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Figure 9. Chemical structure of the pAPE [80].

Thus, it can be argued with high probability that the APEr.ch. Kuhn segment length is
within the range from 20 to 26 nm. Accordingly, the macroinitiator molecules have a curved
thin rod conformation (Figure 10a). As a measure of the curving of a chain macromolecule,
the ratio <h2>1/2/L can be considered, which varies from 1 for a straight rod to 0 for
an infinitely long Gaussian chain. The value of <h2> can be estimated using the Porod
equation for persistent chains [82,83]:

< h2 >

AL
= 1 − 1 − e−2L/A

2L/A
. (5)
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Gaussian coil dimensions determination (c).
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To determine the conformation of the molecules of grafted copolymers, it is necessary
to know a number of structural parameters, first of all, the length of the side chains Lsc
(Figure 10b) and the grafting density z of the latter. It is easy to show that the value of z can
be calculated from the relation:

z =
m

n + m
=

m
NAPE

=
Mcop − MAPE

NAPE(Msc − MBr)
, (6)

where Mcop, MAPE, Msc, MBr = 79.9 g·mol−1 are the molar masses of the graft copoly-
mer, the macroinitiator, the side chains, and bromine, respectively. According to NMR
spectroscopy, the degrees of polymerization of the side chains Nsc were 75 and 30 for
the APEr.ch.-graft-PEtOx and APEr.ch.-graft-PiPrOx (Table 2). Taking into account that the
molar masses M0-sc of the monomeric units of the side chains of PEtOx and PiPrOx are
equal to 99 and 113 g·mol−1, it is easy to obtain the values Msc = M0-sc·Nsc for the studied
copolymers (Table 2).

Table 2. Structural parameters of the APEr.ch.-graft-PEtOx and APEr.ch.-graft-PiPrOx.

Polymer Ms, g·mol−1 z Nsc Lsc, nm ∆L, nm f sc

APEr.ch.-graft-PEtOx 7400 0.53 75 28 2.9 24
APEr.ch.-graft-PiPrOx 3400 0.27 30 11 5.6 13

Calculations using Equation (6) show that the grafting density of the APEr.ch.-graft-
PEtOx and the APEr.ch.-graft-PiPrOx side chains differs by a factor of two (Table 2). Note
that the z value for the APEr.ch.-graft-PEtOx is close to the corresponding characteristic
for the previously investigated thermosensitive graft copolymers with PAlOx side chains
and flexible-chain polyester backbones [69–71]. Thus, both copolymers under study are
relatively loose brushes: in the APEr.ch.-graft-PEtOx macromolecules, only about a half
of the backbone units contain side chains, while the APEr.ch.-graft-PiPrOx contains a
quarter ones.

The difference in z determines the differences in the average distance ∆L = λ0-APE/z
along the chain between the adjacent grafted chains (Figure 10b) and in the number
f sc = LAPE/∆L = z·NAPE of the latter for the studied copolymers (Table 2). It is interesting
to compare the ∆L values with the contour length of the side chains Lsc = λ0-sc·Nsc, where
λ0-sc = 0.378 nm [84] is the projection length of the PAlOx monomer unit. As can be seen
from Table 2, for the APEr.ch.-graft-PEtOx, the length Lsc is almost 10 times greater than ∆L.
For the APEr.ch.-graft-PiPrOx, the difference in the compared characteristics is much less,
Lsc/∆L ≈ 2. Consequently, in a selective solvent, the main chain in the APEr.ch.-graft-PEtOx
macromolecules is sufficiently well shielded from the solvent, while in the case of the
APEr.ch.-graft-PiPrOx, the APEr.ch. chain is available to solvent molecules.

As is known, PAlOx are flexible-chain polymers with a Kuhn segment length A = 1.7 nm.
Accordingly, the side chains of the APEr.ch.-graft-PEtOx contain about 16 Kuhn segments,
that is, they are in the Gaussian region in length. The Gaussian coil can be roughly modeled
by an ellipsoid of revolution, the major axis of which is H = 1.4<h2>1/2, and the minor
axis is Q = 0.7<h2>1/2 (Figure 10c) [85]. For the APEr.ch.-graft-PEtOx copolymer, we have
H = 1.4 × (LscA)1/2 = 1.4 × (28 × 1.7)1/2 = 9.7 nm and Q = H/2 = 4.8 nm, that is, both H
and Q is greater than the distance between the adjacent grafted chains ∆L. Consequently,
steric repulsion occurs between the adjacent PEtOx chains, and their curvature decreases.
It can be assumed that the PEtOx coil is “stretched” along the long axis, and the value of H
increases. The interaction of the side chains in molecular brushes leads to the straightening
of the main chain; however, if the main chain is a rigid-chain polymer, this effect is
insignificant [11]. Then, the APEr.ch.-graft-PEtOx macromolecule can be modeled with a
curved thick spherocylinder (Figure 10d). Its radius Rsph is knowingly less than the length
of the PEtOx side chains and greater than H, that is, 10 nm < Rsph < 28 nm. The length of the
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axis of the curved spherocylinder Lsph is the sum of the contour length of the macroinitiator
and the contribution of two side chains, that is, LAPE = 71 nm < Lsph < LAPE + 2H = 90 nm.

In the APEr.ch.-graft-PiPrOx copolymer, the side chains contain only six to seven Kuhn
segments, and their conformation should be described within the framework of the Porod
model. Then, in accordance with the ratio (5), the rms distance <h2>1/2 between the ends
of the PiPrOx chain is about 5 nm. Hence, the side chains of the APEr.ch.-graft-PiPrOx are
markedly curled up. Since <h2>1/2 and ∆L are comparable, steric interactions between
PiPrOx chains are weak, and it can be assumed that the APEr.ch. chain does not change the
conformation when passing from the macroinitiator to the graft copolymer. The APEr.ch.-
graft-PiPrOx macromolecules can also be modeled by a worm-shaped spherocylinder. Its
radius is small, less than 5 nm (that is, <h2>1/2 for the side PiPrOx chains), and the axis
length is close to 80 nm ≈ LAPE + 2<h2>1/2 (Figure 10e). Probably, it is the difference in the
thickness of the graft copolymer molecules that determines the difference in the values of the
hydrodynamic radius for the APEr.ch.-graft-PEtOx and the APEr.ch.-graft-PiPrOx (Table 1).

2.3. Self-Organization in Aqueous Solutions of the APEr.ch.-graft-PEtOx and
APEr.ch.-graft-PiPrOx Grafted Copolymers

In the studied range of concentrations at a temperature T < 30 ◦C, aqueous solutions
of the APEr.ch.-graft-PEtOx were molecularly dispersed. As can be seen in Figure 11, there
is a tendency towards a decrease in the hydrodynamic radius Rh with dilution. However,
this change is small, and it fits within the experimental error.
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in the APEr.ch.-graft-PEtOx solutions at 21 ◦C (1) and the APEr.ch.-graft-PiPrOx at 10 ◦C (2).

Aqueous solutions of the APEr.ch.-graft-PiPrOx at 21 ◦C were slightly cloudy. Even
at the lowest temperatures of the experiment (7 ◦C), they were opalescent. However,
hydrodynamic size distributions obtained for them by DLS were unimodal (Figure 12).
The hydrodynamic size Rh of scattering species was almost an order of magnitude higher
than the Rh value obtained in chloroform (Table 1), which indicates the aggregation of the
APEr.ch.-graft-PiPrOx macromolecules in water. Aggregation is caused by hydrophobic
interactions of the APEr.ch. backbones, which are poorly screened from the solvent, since
the grafting density of water-soluble PiPrOx chains is low (z = 0.26), and these chains them-
selves are short (Lsc/∆L ≈ 2). As demonstrated by the example of molecular brushes with a
flexible polyester backbone with short PiPrOx side chains, the mechanism of hydrophobic
interactions is intramolecular: the backbone collapses, forming a core shielded from the
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solvent by a hydrophilic PiPrOx corona [71]. Unlike a brush with a flexible chain backbone,
the rigid backbones of APEr.ch.-graft-PiPrOx cannot fold, and it can be assumed that in
order to form a solubilizing shell consisting of hydrophilic short side chains, the PiPrOx
chains must be packed tightly to each other, forming bundles or sheaves (Figure 13).
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Figure 13. Aggregation of the APEr.ch.-graft-PiPrOx macromolecules in water.

This aggregation model is supported by the AFM experiment. The AFM measure-
ments for the APEr.ch.-graft-PiPrOx sample have shown approximately uniform ellipsoidal-
shaped particles distributed along the surface of mica (Figure 14a). Cross-sections mea-
sured on the individual nanostructures are given in Figure 14b and Figure S2. This allows
an estimation of the dimensions of ellipsoids as 43–56 nm and 64–76 nm in width and
length, respectively.

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 12 of 24 
 

 

 

Figure 13. Aggregation of the APEr.ch.-graft-PiPrOx macromolecules in water. 

This aggregation model is supported by the AFM experiment. The AFM measure-

ments for the APEr.ch.-graft-PiPrOx sample have shown approximately uniform ellipsoi-

dal-shaped particles distributed along the surface of mica (Figure 14a). Cross-sections 

measured on the individual nanostructures are given in Figure 14b and Figure S2. This 

allows an estimation of the dimensions of ellipsoids as 43–56 nm and 64–76 nm in width 

and length, respectively. 

 

Figure 14. AFM topography image for mica surface with deposited APEr.ch.-graft-PiPrOx (a) and 

the profiles (b) corresponding to the white lines in (a). 

The hydrodynamic radius of the discussed particles Rh increased from 90 to 120 nm 

(Figure 11) as the concentration increased, which is in agreement with the AFM data. 

Augmentation of the hydrodynamic radii of aggregates with the concentration was ob-

served before for molecular brushes with a flexible aromatic polyester backbone and 

PEtOx [70] and PiPrOx [71] side chains. The increase is caused by an enhancement of the 

hydrophobic interactions between the hydrophobic main chains of the grafted copoly-

mers, especially between unsubstituted monomer units of the main chains, where they 

are less screened by hydrophilic side chains.  

The temperature dependences of the scattered light intensity I and optical trans-

mission I* for the APEr.ch.-graft-PEtOx are shown in Figure 15. Similar plots of I/I15(T) and 

I*/I*15(T) and I15 and I*15, being the light scattering intensity and optical transmission at 15 

°C, respectively, were obtained for other concentrations. The temperature of the onset of 

phase separation T1 was determined as the temperature corresponding to the onset of a 

decrease in I*. Note that the termination of phase separation in the range of accessible 

temperatures was not observed at any of the studied concentrations, and for none of the 

studied APEr.ch.-graft-PEtOx solutions was it possible to achieve zero optical transmis-

sion. Unlike I*, the value of which was constant up to T1, the intensity of the scattered 

light began to change at a temperature Ts, that is, long before the start of phase separation 

(Figure 15). The change in I was smooth, its rate increased with temperature, at least up 

Figure 14. AFM topography image for mica surface with deposited APEr.ch.-graft-PiPrOx (a) and the profiles (b) corre-
sponding to the white lines in (a).



Int. J. Mol. Sci. 2021, 22, 12265 12 of 23

The hydrodynamic radius of the discussed particles Rh increased from 90 to 120 nm
(Figure 11) as the concentration increased, which is in agreement with the AFM data. Aug-
mentation of the hydrodynamic radii of aggregates with the concentration was observed
before for molecular brushes with a flexible aromatic polyester backbone and PEtOx [70]
and PiPrOx [71] side chains. The increase is caused by an enhancement of the hydrophobic
interactions between the hydrophobic main chains of the grafted copolymers, especially
between unsubstituted monomer units of the main chains, where they are less screened by
hydrophilic side chains.

The temperature dependences of the scattered light intensity I and optical transmission
I* for the APEr.ch.-graft-PEtOx are shown in Figure 15. Similar plots of I/I15(T) and I*/I*15(T)
and I15 and I*15, being the light scattering intensity and optical transmission at 15 ◦C,
respectively, were obtained for other concentrations. The temperature of the onset of phase
separation T1 was determined as the temperature corresponding to the onset of a decrease
in I*. Note that the termination of phase separation in the range of accessible temperatures
was not observed at any of the studied concentrations, and for none of the studied APEr.ch.-
graft-PEtOx solutions was it possible to achieve zero optical transmission. Unlike I*, the
value of which was constant up to T1, the intensity of the scattered light began to change at
a temperature Ts, that is, long before the start of phase separation (Figure 15). The change
in I was smooth, its rate increased with temperature, at least up to the temperature T1.
Similar I(T) dependences were previously observed for thermosensitive polymer brushes,
in particular, for graft copolymers with flexible-chain polyester backbones and side chains
of poly-2-ethyl-2-oxazoline [69].
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Figure 15. Temperature dependences of I/I15 (circles) and I*/I*15 (triangles) for the APEr.ch.-graft-
PEtOx solutions at c = 0.0063 (open symbols) and 0.0038 g·cm−3 (black symbols). I15 and I*15 are the
light scattering intensity and the optical transmission at 15 ◦C, respectively.

The observed change in the scattered light intensity is due to the aggregation of the
APEr.ch.-graft-PEtOx macromolecules. As can be seen in Figure 16, at about the temperature
Ts, the value of the hydrodynamic radius Rh of the scattering species begins to increase.
This reflects aggregation due to dehydration of PEtOx units and, accordingly, a decrease
in the solubility of graft copolymers with increasing T. Near T1, the rate of change in Rh
increases. The maximum values of the hydrodynamic radii of the aggregates reach 100 nm.
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Figure 16. The temperature dependences of Rh for the APEr.ch.-graft-PEtOx solutions at c = 0.0063
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The temperature dependences of I, I*, and Rh for solutions of the graft copolymer with
PiPrOx side chains (Figures 17 and 18) are qualitatively similar to that observed for the
APEr.ch.-graft-PEtOx. On the other hand, the changes in I, I*, and Rh described above for
the APEr.ch.-graft-PEtOx, in the case of APEr.ch.-graft-PiPrOx, occur at lower temperatures.
This behavior is due to the higher hydrophobicity of the APEr.ch.-graft-PiPrOx. Indeed,
the fractionω of hydrophobic fragments in the APEr.ch.-graft-PiPrOx macromolecules is
about 50 mol%, while for the APEr.ch.-graft-PEtOx,ω = 13 mol% (Table 3). In addition, as
mentioned above, the hydrophobic backbone in the APEr.ch.-graft-PiPrOx is much more
accessible to the solvent due to the low grafting density z of the side chains and the relatively
short length Lsc of the latter. Therefore, aqueous solutions of the APEr.ch.-graft-PiPrOx
are not molecular, resulting in high Rh values at low T. Heating them leads to a further
increase in hydrophobicity due to the dehydration of PiPrOx units and, accordingly, to
an increase in the size of aggregates (Figure 18), which causes an increase in I (Figure 17).
Note that in the studied concentration range, the change in I and Rh begins at a very low
temperature T = 7 ◦C (Figures 17 and 18). In contrast to the APEr.ch.-graft-PEtOx solutions,
the dependences of I and Rh for the APEr.ch.-graft-PiPrOx are more monotonic; they do not
show an increase in the rate of I and Rh change at a temperature around T1.

Figure 19 shows the concentration dependences of the phase separation temperatures
T1. For both studied copolymers, the T1 values decrease with increasing c, which is typical
for dilute solutions of thermosensitive polymers. For the APEr.ch.-graft-PEtOx, the T1(c)
dependence flattens out in the region c > 0.0063 g·cm−3, which makes it possible to reliably
determine the LCST. For the APEr.ch.-graft-PiPrOx solutions, the temperature T1 depends
on the concentration over the entire studied range of c. Accordingly, it can be argued that
for this graft copolymer, LCST is noticeably lower than the value T1 = 20 ◦C for the solution
with the highest concentration.
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optical transmission at 10 ◦C, respectively.
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Table 3. Molar masses, structural parameters, and LCST for the APEr.ch.-graft-PEtOx, APE6-graft-
PEtOx, APEr.ch.-graft-PiPrOx, and APE8-graft-PiPrOx.

Polymer Mw, g·mol−1 Lsc/∆L ω, mol% LCST, ◦C Reference

APEr.ch.-graft-PEtOx 208,000 10 13 45 this work

APE6-graft-PEtOx 1 59,000 1.7 33 50 [70]

APE6-graft-PEtOx 1 75,000 2.3 24 55 [70]

APEr.ch.-graft-PiPrOx 68,000 2.0 50 <20 this work

APE8-graft-PiPrOx 2 74,000 2.0 26 20 [71]
1 APE6-graft-PEtOx is a graft copolymer containing –(CH)6– spacer in the APE6 main chain [70]. 2 APE8-graft-
PEtOx is a graft copolymer containing –(CH)8– spacer in the APE8 main chain [71].
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The LCST = 45 ◦C for the APEr.ch.-graft-PEtOx copolymer with PEtOx chains is slightly
lower than the LCST for linear PEtOx [66,86,87], which may be due to both the influence
of the architecture and hydrophobicity of the APEr.ch.-graft-PEtOx macromolecules, and
the molar mass, since its total value for PEtOx chains in the polymer brush is higher than
the typical molar mass values for linear PEtOx. A similar situation takes place for the
APEr.ch.-graft-PiPrOx, but in this case, the difference in LCST for the graft copolymer and
the linear polymer is slightly larger [87–89], which can be explained by the large fraction of
hydrophobic fragments.

It seems interesting to compare the obtained data with the LCST for graft copolymers
with PEtOx and PiPrOx side chains and flexible polyester main chains (Table 3). For the
copolymers APE6-graft-PEtOx with a spacer –(CH2)6– in the main chain, LCST is 6 and
11 ◦C lower than the LCST for the APEr.ch.-graft-PEtOx [70]. This difference cannot be
explained by the difference in the molar fraction of hydrophobic fragments, since the ω
values are higher for the APE6-graft-PEtOx. The relative length Lsc of the side chains, more
precisely the ratio Lsc/∆L of this length Lsc to the distance between two adjacent side chains
∆L, for copolymers with a flexible main chain is 4–6 times less (Table 3). Therefore, in the
APEr.ch.-graft-PEtOx, the APEr.ch. chain should be better shielded than the main chain in
the APE6-graft-PEtOx. However, in reality, this is not the case, since the flexible backbone
of the APE6-graft-PEtOx collapses, sharply decreasing the distance ∆L and increasing the
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density of the PEtOx corona. In addition, the molar mass can contribute to the decrease
in the LCST upon passing from the APE6-graft-PEtOx to the APEr.ch.-graft-PEtOx, which
differs for the compared graft copolymers by 2.8 and 3.5 times.

For the copolymers with PiPrOx side chains, the MM and Lsc/∆L ratio are practically
the same, and the decrease in the LCST for the APEr.ch.-graft-PiPrOx as compared to
the APE8-graft-PEtOx with a flexible spacer –(CH2)8– in the main chain [71] is probably
primarily due to the greater hydrophobicity of the APEr.ch.-graft-PiPrOx macromolecules.
Poor protection of the APEr.ch. backbones results in their hydrophobic interactions, to
which, upon heating, interactions of dehydrated PiPrOx units are added.

2.4. Kinetics of Aggregation in Aqueous Solutions of the APEr.ch.-graft-PEtOx and the
APEr.ch.-graft-PiPrOx

All the results discussed above refer to the “equilibrium” state of solutions, that is,
conditions when their characteristics are constant over time. The times teq and t*eq for
the APEr.ch.-graft-PEtOx and APEr.ch.-graft-PiPrOx solutions to reach the equilibrium state
after the temperature change were found by flattening of the I(T) or I*(T) dependences,
which are shown in Figure S3.

For all solutions, teq values depended on T. For the APEr.ch.-graft-PEtOx, they were
minimal at low temperatures, increased with heating, taking the maximum value teq

max

near the T1 for a given concentration, and then teq decreased (Figure S4). Note that similar
dependences were previously observed for thermosensitive star-shaped poly-2-alkyl-2-
oxazolines and PAlOx graft copolymers [70,71,90]. As seen in Figure 20, for the APEr.ch.-
graft-PEtOx solutions, teq

max decreases with dilution. The most important thing is that for
both polymers, the obtained values are noticeably lower than teq

max determined earlier for
solutions of the APE6-graft-PEtOx and APE8-graft-PiPrOx graft copolymers. In particular,
for the APE6-graft-PEtOx, teq

max reached 12,000 s [70]. The acceleration of self-organization
processes may be due to the fact that the APEr.ch.-graft-PEtOx sample proceeds mainly by
the aggregation mechanism, while in the APE6-graft-PEtOx solutions, the main chain is
also compacted, which leads to an increase in the density of the hydrophilic corona and
hinders the contacts of hydrophobic nuclei [69,70].
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For the APEr.ch.-graft-PiPrOx solutions, the “settling” times have the smallest values:
at low temperatures, the teq is in the range from 200 to 400 s. Such values are typical for
linear thermoresponsive polymers [91–94]. The maximum times teq

max do not exceed 2000 s,
which is 2.5–6 times less than the teq

max for the APE8-graft-PiPrOx with a flexible main
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chain [71]. The high rate of aggregation in the APEr.ch.-graft-PiPrOx solutions upon heating
can be explained by the fact that its macromolecules were already aggregated before heating,
and the aggregates form faster by combining ready-made supramolecular structures.

3. Materials and Methods
3.1. Synthesis

2-[4-(2-Br-ethyl)]phenylsulfonylhydroquinone (1) [73] and 2-isopropyl-2-oxazoline [95]
were synthesized according to the known procedures. 1-Chloronaphthalene and 1,1,2,2-
tetrachloroethane (Aldrich) as well as oxazolines were dried over calcium hydride
and distilled.

NMR spectra were recorded on a Bruker AC 400 spectrometer (400 MHz) for solutions
in CDCl3. Dialysis was performed with the use of dialysis bags (CellaSep, Orange Scientific
Braine-l’Alleud, Belgium) with an MWCO of 3500 Da.

The chromatographic analysis was performed on a Shimadzu LC-20AD chromato-
graph equipped with a SDA0830055E1 column (PSS SDV 50 Å (5 µm) 300 mm × 8.0 mm,
Mainz, Germany) and a refractometric detector. A solution of LiBr in DMF (0.1 mol/L) at
60 ◦C was used as the mobile phase. Calibration was performed relative to poly(ethylene
glycol) standards (Mw = 6 × 102–4 × 104).

3.1.1. Poly(2-[4-(2-Br-ethyl)phenylsulfonyl]-1,4-phenylene-2’,5’-
biphenyldicarboxylate Synthesis

A flask equipped with a stirrer and a gas-supplying tube was charged with 1 (4.23 g,
0.01 mol), 2,5-dichlorocarbonylbiphenyl (2.79 g, 0.01 mol), and 1-chloronaphthalene (30 mL).
The obtained mixture was purged with dry argon and heated up to 200 ◦C under a flow of
gas. The reaction mixture was kept at 200 ◦C for 2 h. The polymer was precipitated with
hexane, continuously extracted with hexane in Soxlet apparatus for 6 h, and dried. Yield
6.5 g (93%).

1H NMR (CDCl3, δ ppm.): 3.22 (d, ArCH2CH2Br), 3.56 (d, ArCH2CH2Br),
7.11–8.43 (m, Ar–H)

3.1.2. Polymerization of 2-Alkyl-2-Oxazolines on the Polyester Macroinitiator

A solution of initiator and monomer in 1,1,2,2-tetrachloroethane (feed ratio monomer/
functional groups of macroinitiator 30/1 for 2-isopropyl-2-oxazoline and 100/1 for 2-ethyl-
2-oxazoline) was heated under argon for 72 h at 70 ◦C. The solvent was distilled off in
vacuum, the polymer was dissolved in ethanol, dialyzed against water for 48 h, and
freeze-dried.

3.1.3. Hydrolysis of Graft-Copolymers

A solution of 0.1 g of a graft-copolymer in 5 mL of 1 M KOH in 2-methoxyethanol
was heated under reflux for 10 min, after which it was neutralized and evaporated to
dryness in vacuo. The residue was dissolved in 5 mL of ethanol, dialyzed against sodium
bicarbonate (concentration 0.1 mol/L) using CellaSep dialysis bags with MWCO 1000 Da,
and freeze-dried. The product was dissolved in 15 mL of propionic anhydride or isobutyric
anhydride, heated at 50 ◦C for 30 min, and evaporated under reduced pressure.

3.2. Determination of Molar Mass and Hydrodynamic Characteristics of Polymers

Weight-average molar masses Mw of the macroinitiator APEr.ch. and the APEr.ch.-
graft-PAlOx graft copolymers, and the hydrodynamic radii Rh of their macromolecules
were determined in dilute solutions in organic solvents by static (SLS) and dynamic (DLS)
light scattering. Tetrachloroethane (dynamic viscosity η0 = 1.74 × 10−3 Pa·s, density
ρ0 = 1.595 g/cm3 and refractive index n0 = 1.49) was used as a solvent for the APEr.ch., and
it was chloroform for the molecular brushes (η0 = 0.542 × 10−3 Pa·s, ρ0 = 1.483 g/cm3 and
n0 = 1.4467), since associative phenomena were absent in them.
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The measurements were carried out in a Photocor Complex instrument (Photocor
Instrument Inc., Russia), which was equipped with a Photocor-PC2 correlator with 288 chan-
nels, as well as a Photocor-PD detector for measuring the intensity of transmitted light. A
Photocor-DL semiconductor laser with a wavelength λ0 = 659.1 nm was used as a light
source. Calibration was carried out using toluene, the absolute scattering intensity of which
was Rv = 1.38×10−5 cm−1. Before measurements, the solutions were filtered into dust-
free cells using Chromafil polyamide filters (Macherey-Nagel GmbH & Co. KG, Dueren,
Germany) with a pore size of 0.45 µm.

For all solutions, there was no scattered light asymmetry, and Mw values were obtained
by the usual Debye technique by measuring the light scattering intensity at an angle of
90◦. The plots for Mw determination for the macroinitiator and the grafted copolymers are
shown on Figure S5. The values of Mw were calculated using the equation:

cH
I

=
1

Mw
+ 2A2c , (7)

where I90 is the intensity of the light scattering at the 90◦ angle, A2 is the second virial
coefficient, H is the optical constant, and the value of H is:

H =
4π2n2

0
(dn/dc)2

NAλ4
0

, (8)

where NA is the Avogadro’s number.
The scattered light intensity distributions were unimodal. The hydrodynamic radii

of the macromolecules Rh(c) collected at concentrations c did not depend on c (Figure S1),
and the Rh(c) values were averaged over the concentration to obtain the Rh.

The refractive index n was measured on a RA-620 refractometer (KEM, Kyoto, Japan).
The refractive index increment dn/dc, which is a factor in (7), was calculated as a slope of
the dependence (n − n0)/c on c, where n is the refractive index of the solution taken at a
concentration c.

3.3. Study of the Solutions’ Phase Separation upon Heating

The thermal sensitivity of the APEr.ch.-graft-PAlOx copolymers in aqueous solutions
was studied by light scattering and turbidimetry using the Photocor Complex device
described above. The temperature T was controlled with an accuracy of 0.1 ◦C, chang-
ing it discretely with a step from 5.0 ◦C at low temperatures to 1.0 ◦C near the phase
separation interval.

The scattered light intensity I and the transmitted light intensity I* were measured
as a function of T with increasing temperature. The temperatures T1 of the beginning of
phase separation were determined from the dependences I(T) and I*(T), taking as T1 the
temperatures at which a decrease in I* began. The hydrodynamic radii Rh of scattering
species were measured as a function of T The measurements of the particles’ size were
carried out after reaching the equilibrium state of the solutions, that is, after the values of I
and I* reached constant values over time.

3.4. Microscopic Investigation

The surface morphology of the samples was investigated by the AFM method on the
SPM-9700HT scanning probe microscope equipped with the SPM software v.4.76.1 (Shi-
madzu, Kyoto, Japan) using NSG30-SS Silicon probes with the radius of the tip curvature
of 2 nm produced by “TipsNano” (Tallinn, Estonia). To take the sample, the tapping mode
measurements were conducted in air using mica as a support.

4. Conclusions

New diphylic grafted copolymers were synthesized successfully. A polycondensation
aromatic polyester served as a macroinitiator to graft poly(2-ethyl-2-oxazoline) and poly(2-
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isopropyl-2-oxazoline) side chains by cationic polymerization. A fundamentally different
chemical class of the backbone and the side chains ensure diphilicity of the resulting poly-
mer brushes. Analysis of their molecular and architectural characteristics made it possible
to conclude that they can be considered as loose brushes, with a grafting degree of 0.53 and
0.27 for the APEr.ch.-graft-PEtOx and the APEr.ch.-graft-PiPrOx, respectively. In contrast to
the previously studied molecular brushes APE-graft-PAlOx, in this case, the macroinitiator
was a rigid-chain polymer. The Kuhn segment length for the APEr.ch. macroinitiator is
estimated to be of the order of 23 nm, which results in specific properties of the polymer
brushes as in organics as in a selective solvent. In chloroform, the APEr.ch.-graft-PEtOx
and APEr.ch.-graft-PiPrOx macromolecules take a wormlike cylindrical conformation, the
asymmetry of which depends on the PAlOx side chains’ length.

It was shown that architectural parameters are essential for their conformational
properties in selective solvents, self-organization, and thermoresponsiveness. Due to high
equilibrium rigidity of the main chain, the nature of the self-assembly process of the graft
copolymers of the aromatic polyester with PAlOx side chains differs significantly from that
of the flexible-chain polymer brushes with similar side chains. Whereas a flexible APE main
chain with short side chains is sufficiently labile and capable of changing conformation in
various solvents, the rigid hydrophobic APEr.ch. backbone determines either the intra- or
intermolecular organization of macromolecules, depending on the length of the side chains
and the distance between the grafting points. A rigid-chain brush with a low side chain
grafting density takes on a cylindrical wormlike conformation in the case of sufficiently
long PAlOx side chains and aggregate in water in big structures if the side chains are short.

The range of thermosensitivity of the rigid-chain APEr.ch. copolymer, which is condi-
tioned by the thermoresponsiveness of the PAlOx side chains, was studied. The LCST of
the APEr.ch.-graft-PEtOx under consideration, at given molecular and architectural charac-
teristics, is assumed to be around 45 ◦C, whereas for the APEr.ch.-graft-PiPrOx, the LCST is
much lower than 20 ◦C. The phase separation temperatures are determined by both the
structure and the length of the side chains, and the grafting density. Thus, architecture
parameters play a prominent role as in conformational and aggregative properties as in
the thermoresponsive behavior of hybrid graft copolymers with a hydrophobic aromatic
polyester main chain and hydrophilic thermosensitive polyalkyloxazoline side chains.
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