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Abstract

Selective estrogen receptor modulators (SERMs) act as estrogen receptor (ER) agonists 
or antagonists in a tissue-specific manner. ERs exert effects via nuclear actions but 
can also utilize membrane-initiated signaling pathways. To determine if membrane-
initiated ERα (mERα) signaling affects SERM action in a tissue-specific manner, C451A 
mice, lacking mERα signaling due to a mutation at palmitoylation site C451, were 
treated with Lasofoxifene (Las), Bazedoxifene (Bza), or estradiol (E2), and various tissues 
were evaluated. Las and Bza treatment increased uterine weight to a similar extent 
in C451A and control mice, demonstrating mERα-independent uterine SERM effects, 
while the E2 effect on the uterus was predominantly mERα-dependent. Las and Bza 
treatment increased both trabecular and cortical bone mass in controls to a similar 
degree as E2, while both SERM and E2 treatment effects were absent in C451A mice. 
This demonstrates that SERM effects, similar to E2 effects, in the skeleton are mERα-
dependent. Both Las and E2 treatment decreased thymus weight in controls, while 
neither treatment affected the thymus in C451A mice, demonstrating mERα-dependent 
SERM and E2 effects in this tissue. Interestingly, both SERM and E2 treatments decreased 
the total body fat percent in C451A mice, demonstrating the ability of these treatments 
to affect fat tissue in the absence of functional mERα signaling. In conclusion, mERα 
signaling can modulate SERM responses in a tissue-specific manner. This novel 
knowledge increases the understanding of the mechanisms behind SERM effects and 
may thereby facilitate the development of new improved SERMs.

Introduction

Estrogen treatment protects against osteoporosis-related 
fractures, has favorable effects on several metabolic 
parameters, and alleviates postmenopausal symptoms. 
However, due to adverse effects, estrogen treatment is 

avoided. Selective estrogen receptor modulators (SERMs) 
act as estrogen receptor (ER) agonists in some tissues, 
and as antagonists in others, have been developed to 
avoid these adverse effects. SERMs are mainly used to 
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prevent and treat osteoporosis and breast cancer and to 
alleviate postmenopausal symptoms, but also to maintain 
a beneficial lipid profile in postmenopausal women 
(Kung et al. 2009, Lewiecki 2009, Yavropoulou et al. 2019).

Lasofoxifene (Las) and Bazedoxifene (Bza), which are 
third-generation SERMs, have agonistic effects in bone 
and can prevent both vertebral and non-vertebral fractures 
in humans (Cummings et al. 2010, Silverman et al. 2012). 
Animal studies have also shown positive effects of these 
SERMs at both vertebral and non-vertebral (i.e. long bones) 
bone sites (Bernardi  et  al. 2014, Borjesson  et  al. 2016). 
Estrogen treatment increases uterine growth, resulting in 
an increased risk of cancer in this reproductive organ, and 
this effect is shown to be dependent on the expression of 
insulin-like growth factor-1 (Igf1) (Adesanya  et  al. 1999, 
Kashima  et  al. 2009, Hewitt  et  al. 2019). The adverse 
estrogenic effect on uterine growth can be inhibited by 
treatment with the SERMs Las and Bza (Crabtree  et  al. 
2008), demonstrating antagonistic effects of these SERMs 
in the uterus in the presence of estrogen, and Las and 
Bza treatment in postmenopausal women does not result 
in adverse uterine effects (Ronkin  et  al. 2005, Cummings 
et al. 2010, De Villiers et al. 2011). Even though Las and Bza 
have fewer adverse effects than estradiol, increased risk for 
venous thrombosis has been reported (Lewiecki 2009). 
There are today no SERMs available without adverse effects, 
and more knowledge regarding the mechanisms behind 
the effects of SERMs in various tissues is therefore needed 
to be able to develop new improved SERMs.

SERMs exert effects by binding to ERs. ERs can, in 
addition to nuclear actions, also exert membrane-initiated 
effects. ERα is the major mediator of many estrogenic effects 
in the body and palmitoylation of cysteine 451 (C451) in 
the murine ERα is required for association of the receptor 
to the membrane (Acconcia et al. 2005, Adlanmerini et al. 
2014, Pedram et al. 2014). Mice with a mutated ERα C451 site 
(C451A mice) are devoid of membrane-associated ERα and 
can thereby be used as a tool to determine the importance 
of membrane-initiated ERα (mERα) signaling (Adlanmerini 
et al. 2014, Pedram et al. 2014).

Some of the tissue-specificity of SERMs may be 
attributed to the binding of the SERM-ER complex to tissue-
specific co-regulators (Kressler et al. 2002). However, since 
we and others have shown that mERα signaling results in 
tissue-specific estrogenic effects (Adlanmerini et  al. 2014, 
Gustafsson et al. 2016, Farman et al. 2018, Guivarc’h et al. 
2018), mERα signaling might also contribute to the tissue-
specificity of SERMs. The aim of this study was therefore 
to determine if mERα signaling affects the action of the 
SERMs Las and Bza in a tissue-dependent manner in order 

to improve the understanding of the mechanisms behind 
the tissue-specificity of SERMs.

Materials and methods

Animals

All animal experiments were approved by the Gothenburg 
Ethical Committee for Animal Research. Transgenic C451A 
mice with a point mutation at the palmitoylation site C451 
in ERα has been described before (Gustafsson et  al. 2016). 
The primers used for genotyping of C451A mice were 
5ʼ-CTAAACAAGCTTCAGTGGCTCCTAG-3ʼ and 5ʼ-ACCTG
CAGGGAGAAGAGTTTGTGGC-3ʼ. The transgenic mice and 
littermate controls were housed in a standard animal facility 
under controlled temperature (22°C) and photoperiod  
(12 h light:12 h darkness cycle) and fed phytoestrogen free 
pellet diet ad libitum (Harlan Rodent Diet, 2016).

Treatment

Ovariectomy was performed on 12-week-old C451A and 
WT (control) littermate mice. After one-week recovery the 
mice received daily subcutaneous injections for 3 weeks 
with either vehicle (veh; Miglyol 812; OmyaPeralta GmbH), 
17β-estradiol-3-benzoate (estradiol (E2); 0.3 μg/mouse/
day; Sigma-Aldrich), Lasofoxifene (Las; 8 μg/mouse/
day; Sigma-Aldrich), or Bazedoxifene (Bza; 24 μg/mouse/
day; Sigma-Aldrich). The doses were chosen based on the 
substances’ ability to protect against ovariectomy-induced 
bone loss (Andersson et al. 2016, Borjesson et al. 2016) and 
body surface area calculations ensured that the doses of 
Las and Bza were similar to those used in humans (Reagan-
Shaw et al. 2008). Surgery was performed under anesthesia 
with isoflurane (Baxter Medical AB, Kista, Sweden) and 
Rimadyl (Orion Pharma AB, Animal Health, Sollentuna, 
Sweden) was given as an analgesic. At the termination, 
the mice were anesthetized with Ketador/Dexdomitor 
(Richter Pharma/Orion Pharma), bled, and euthanized by 
cervical dislocation. Uterus and thymus were collected and 
weighed. The femur and vertebra L5 were dissected, fixated 
in 4% paraformaldehyde for 2 days, and stored in 70% 
ethanol for further analysis.

Assessment of bone parameters

Dual-energy X-ray absorptiometry 
Analyses of total body areal bone mineral density 
(aBMD) were performed using a Lunar PIXImus mouse  
densitometer (Wipro GE Healthcare).
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High-resolution microcomputed tomography 
High-resolution microcomputed tomography (μCT) 
analysis was performed on the vertebra (L5) and femur using 
an 1172 model μCT (Bruker MicroCT, Aartselaar, Belgium) 
as previously described (Moverare-Skrtic  et  al. 2014). 
Briefly, in the vertebra, the trabecular and cortical bone in 
the vertebral body caudal of the pedicles were selected for 
analysis within a conforming volume of interest (cortical 
bone excluded for trabecular bone and trabecular bone 
excluded for cortical bone) commencing at a distance of  
4.5 µm caudal of the lower end of the pedicles and  
extending a further longitudinal distance of 225 µm in 
the caudal direction. In the femur, the trabecular bone  
proximal to the distal growth plate was selected for 
analyses within a conforming volume of interest (cortical 
bone excluded), commencing at a distance of 650 μm from 
the growth plate and extending a further longitudinal 
distance of 134 μm in the proximal direction. The cortical 
measurements in the femur were performed in the 
diaphyseal region starting at a distance of 5.2 mm from the 
growth plate and extending a further longitudinal distance 
of 134 µm in the proximal direction.

Real-time PCR

RNA was isolated from uterus using the RNeasy 
Mini Kit (Qiagen). The RNA was reversed transcribed 
into cDNA using the High-Capacity cDNA Reverse 
Transcription kit (Applied Biosystems, Thermo Fisher 
Scientific). Amplifications were performed using the 
Applied Biosystem StepOnePlus Real-Time PCR System 
(ThermoFisher Scientific) and Assay-on-Demand primer 
and probe sets (ThermoFisher Scientific), labeled with 
the reporter fluorescent dye FAM. Predesigned primers 
and probes labeled with the reporter fluorescent dye 
VIC, specific for 18S ribosomal RNA, were included 
in the reaction as an internal standard. The assay 
identification numbers were insulin-like growth factor-1 
(Igf1: Mm00439559_m1), progesterone receptor (Pgr: 
Mm00435628_m1), lactotransferrin (Ltf: Mm00434787_
m1), cytokeratin 8 (Krt8: Mm04209403_g1), and 18S: 
(4310893E). The relative gene expression values were 
calculated using the ΔΔCt method.

Statistical analyses

In the figures, all individual values are presented with mean 
(horizontal line) and s.e.m. (vertical lines). In the tables, 
values are given as mean ± s.e.m. The statistical differences 
between veh and E2, Las, and Bza were calculated using 

one-way ANOVA followed by Dunnett’s post hoc test 
separately for each genotype (GraphPad Prism version 
9.2.0). To determine if there was a statistically significant 
difference in the treatment responses between C451A and 
control mice, the interaction P value from two-way ANOVA 
for each treatment was used. Logarithmic transformations 
were used when appropriate to ensure normal distribution 
of data.

Results

Las and Bza affect uterine weight in a  
mERα-independent manner

E2 treatment increased the uterus weight in control mice, 
as expected, and a small increase in uterus weight was also 
found in C451A mice (Fig. 1A). However, the E2 effect in 
C451A mice was significantly decreased compared to the 
effect in control mice (−93%, P  < 0.001, interaction P value 
from two-way ANOVA). In contrast, treatment with the 
SERMs Las and Bza increased the uterus weight to a similar 
extent in controls and C451A mice (Fig. 1A). The mRNA 
expression of Igf1, Pgr, and Ltf, three genes previously 
shown to be regulated by E2 in uterine tissue (Liu & Teng 
1992, Kraus et al. 1994, Hewitt et al. 2003), were increased 
after E2 treatment in control mice, as expected (Table 1). 
E2 treatment increased Ltf and Pgr expression in the uterus 
from C451A mice, while Igf-1 expression was unaffected by 
E2 in C451A mice (Table 1). The E2 effect on Pgr expression 
was similar between controls and C451A mice, while the 
effect on Ltf expression was significantly decreased in 
C451A mice compared to the effect in controls (Table 
1). Las treatment increased Igf1, Pgr, and Ltf expression 
similarly in controls and C451A mice, while Bza treatment 
resulted in increased expression of Pgr and Ltf in controls 
and Igf1 in C451A mice (Table 1). In addition, expression 
of Krt8, an epithelial cell marker (Memarzadeh et al. 2010), 
was significantly increased by E2 in both controls and 
C451A mice, however, the E2 effect in C451A mice was 
significantly decreased compared to the effect in control 
mice (−87%, P  < 0.001, interaction P value from two-way 
ANOVA, Table 1). Las treatment increased Krt8 expression 
in controls and C451A mice to a similar extent, while Bza 
had no effect on Krt8 expression (Table 1).

Las affects thymus weight in a  
mERα-dependent manner

Thymus weight was decreased by E2 treatment in control 
mice, while no effect was detected in C451A mice (Fig. 1B).  
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The same pattern was seen for Las treatment with a 
decreased thymus weight in control mice, and no 
significant effect in C451A mice, while Bza did not affect 
thymus weight in either controls or C451A mice (Fig. 1B).

Las and Bza can affect total body fat percent in mice 
with inactivated mERα signaling

Body weight and lean mass, as measured by dual-energy 
X-ray absorptiometry (DXA), were unchanged in both 
control and C451A mice after treatment with E2 or SERMs 

(Table 2). The percent fat, measured by DXA, was decreased 
after E2 treatment in control mice, and a decrease was 
seen also in C451A mice (Table 2). Las or Bza treatments 
did not affect fat percent in control mice, but both SERM 
treatments resulted in decreased percent fat in C451A  
mice (Table 2).

Las and Bza affect both trabecular and cortical bone 
in a mERα-dependent manner

The skeleton was analyzed by DXA, and both E2 and Las 
treatments significantly increased total body aBMD in 
control mice, and there was a tendency to increased total 
body aBMD also after Bza treatment (P = 0.08), while no 
significant treatment effects were found for any of the 
treatments in C451A mice (Fig. 2A). Analyses using high-
resolution μCT demonstrated that both E2 and SERM 
treatments increased vertebral trabecular bone volume 
fraction (BV/TV) in control mice, while no significant 
effects were seen in C451A mice for any of the treatments 
(Fig. 2B). Detailed analysis of the trabecular bone in 
the vertebra showed significantly increased trabecular 
thickness after E2 treatment in control mice (Fig. 2C), 
while no significant effects were detected for trabecular 
number or trabecular separation (Fig. 2D and E). Las 
treatment increased both trabecular thickness and number 
and decreased trabecular separation in control mice while 
Bza treatment had no effect on any of these trabecular 
parameters in control mice. No significant effects were seen 
for any of the vertebral trabecular parameters after either 
E2 or SERM treatments in C451A mice. Cortical bone was 
also analyzed and both E2 and SERM treatments increased 
cortical thickness of the vertebrae in control mice, while 
no significant treatment responses were seen in C451A 
mice for any of the treatments (Fig. 2F). Femora analyses 
by μCT showed similar results for both the trabecular and 
cortical bone as for the vertebrae (Table 3).

Discussion

Estrogen has beneficial effects on several tissues in the body 
but is not a suitable treatment due to adverse effects. This 
has prompted the development of SERMs, compounds 
with agonistic effects in some tissues and antagonistic 
effects in others. Several SERMs have been approved for 
clinical use, including Tamoxifen, Lasofoxifene, and 
Bazedoxifene (Ellis  et  al. 2015). However, clinically used 
SERMs still have adverse effects, including an increased 
risk of venous thrombosis and endometrial cancer. 

Figure 1
SERM effects on uterus weight are mERα-independent. Twelve-week-old 
C451A and control female mice were ovariectomized and treated with 
17β-estradiol (E2, 0.3 μg/mouse/day), Lasofoxifene (Las, 8 μg/mouse/day), 
Bazedoxifene (Bza, 24 μg/mouse/day), or vehicle (veh) by subcutaneous 
injections daily for 3 weeks. Uterus weight/body weight (bw) (A), and 
thymus weight/bw (B). All individual values are presented with mean 
(horizontal line) and s.e.m (vertical lines). (n = 9–13). ***P  < 0.001,  
**P  < 0.01, *P  < 0.05, one-way ANOVA, followed by Dunnett’s posthoc 
test, vs control veh or C451A veh, respectively. ###P  < 0.001, ##P  < 0.01,  
#P  < 0.05, Interaction P value from two-way ANOVA, for comparison of 
treatment responses between C451A and control mice.
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Diseases that can be alleviated by SERM treatment, for 
example postmenopausal osteoporosis, breast cancer, 
and postmenopausal symptoms, affect a large number of 
individuals. Therefore, it is of great importance to clarify 
the mechanisms behind the tissue-specificity of SERM 
effects in order to aid the development of new SERMs 
lacking adverse effects. Since we and others have shown 
that abrogation of mERα signaling results in tissue-specific 
E2-induced effects, we evaluated if mERα signaling also 
affects the tissue-specificity of SERMs using C451A mice.

The uterus is a very estrogen-sensitive organ. The 
proliferative effects of E2 in the uterus can result in 
endometrial cancer and is one of the unwanted side-effects 
of E2 treatment. The SERMs Las and Bza both antagonize 
the E2 effect on uterus weight, although the antagonizing 
effect of Bza is somewhat greater compared to Las (Crabtree 
et al. 2008). However, in the absence of estrogen, Las has a 
slight agonistic effect on uterus weight in rodent models, 
while Bza shows a lack of effect on uterus weight in most 
(Bernardi et  al. 2014, Borjesson et  al. 2016), but not all 
(Crabtree et  al. 2008) studies. In the current study, both 
Las and Bza resulted in a small, but significant increase in 
uterus weight in control mice. Interestingly, both SERM 
treatments increased uterus weight to a similar extent 
in C451A mice as in control mice and uterine Igf1 mRNA 
expression was also increased by both SERMs in C451A 

mice. These data suggest that the effects of Las and Bza on 
uterine weight involve a mERα-independent increase in 
Igf1 mRNA expression.

The importance of mERα signaling for the proliferative 
effects of E2 treatment in the uterus is not completely 
clear. In this study, E2 treatment resulted in a small, but 
significant, increase in uterus weight in C451A mice. 
However, this E2 effect in C451A mice was significantly 
attenuated compared to the effect in control mice, 
demonstrating that a normal E2 response on uterus weight 
is dependent on mERα signaling, as previously described 
(Pedram et  al. 2014, Gustafsson et  al. 2016). These data 
show that there is a clear difference in mERα-dependency 
between E2 and SERMs for the treatment effects on uterus 
weight.

Nuclear ERα (nERα) signaling is required for normal 
E2 effects on the uterus. This statement is supported by 
studies using mice with a deletion of activation function 
two in ERα, which is required for nuclear actions of ERα 
(Borjesson  et al. 2011, Adlanmerini et al. 2014), and mice 
lacking nERα signaling, while still having intact mERα 
signaling (Pedram et al. 2009). Both these mouse models 
have uteri that are unresponsive to E2 treatment. These 
data, together with the present and previous (Pedram et al. 
2014, Gustafsson et al. 2016) findings of mERα-dependent 
E2 effects in the uterus, suggest that both nuclear and 

Table 1 mRNA expression in the uterus. Twelve-week-old C451A and control female mice were ovariectomized and treated with 
17β-estradiol (E2, 0.3 µg/mouse/day), Lasofoxifene (Las, 8 µg/mouse/day), Bazedoxifene (Bza, 24 µg/mouse/day), or vehicle (veh) 
by subcutaneous injections daily for 3 weeks. 

Control C451A
Veh E2 Las Bza Veh E2 Las Bza

Igf-1 2.7 ± 0.2 4.4 ± 0.5b 7.7 ± 0.9a 2.9 ± 0.2 2.4 ± 0.3 3.3 ± 0.4 6.2 ± 0.9a 4.0 ± 0.5c

Pgr 2.5 ± 0.2 4.5 ± 0.5a 5.2 ± 0.3a 3.4 ± 0.2c 2.8 ± 0.3 5.2 ± 0.5a 4.5 ± 0.3b 3.2 ± 0.4
Ltf 2.3 ± 0.2 372.1 ± 62.5a 31.4 ± 3.4a 4.3 ± 0.6b 3.8 ± 0.7 13.3 ± 2.6a,d 38.4 ± 4.7a 8.5 ± 3.1
Krt8 2.2 ± 0.3 43.4 ± 9.0a 12.0 ± 0.9a 2.9 ± 0.3 2.8 ± 0.2 9.4 ± 1.3a,d 14.6 ± 1.9a 3.8 ± 0.9

aP <0.001, bP <0.01, cP <0.05, one-way ANOVA, followed by Dunnett’s posthoc test, vs control veh or C451A veh, respectively. dP <0.001, interaction P value 
from two-way ANOVA, for comparison of treatment responses between C451A and control mice.
Values (arbitrary unit) are given as mean ± S.E.M. (n=9-13).

Table 2 Body composition of C451A and control mice. Twelve-week-old C451A and control female mice were ovariectomized 
and treated with 17β-estradiol (E2, 0.3 μg/mouse/day), Lasofoxifene (Las, 8 μg/mouse/day), Bazedoxifene (Bza, 24 μg/mouse/day), 
or vehicle (veh) by subcutaneous injections daily for 3 weeks. Lean mass and fat percent were measured by DXA. Values are given 
as mean ± s.e.m. (n = 9–13).

Control C451A
Veh E2 Las Bza Veh E2 Las Bza

Body weight (g) 19.9 ± 0.5 19.6 ± 0.4 19.2 ± 0.4 19.2 ± 0.4 20.0 ± 0.7 20.1 ± 0.5 18.9 ± 0.4 19.5 ± 0.4
Lean mass (%) 14.0 ± 0.3 14.5 ± 0.3 13.5 ± 0.2 13.8 ± 0.3 13.9 ± 0.3 14.4 ± 0.4 13.7 ± 0.3 13.9 ± 0.3
Fat (%) 19.2 ± 0.9 14.8 ± 0.5a 18.7 ± 0.8 16.8 ± 0.4 20.6 ± 1.4 16.9 ± 0.6b 16.3 ± 0.3b 17.1 ± 0.6b

aP  < 0.001, bP < 0.05, one-way ANOVA, followed by Dunnett’s posthoc test, vs control veh or C451A veh, respectively.
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membrane-initiated ERα actions are important for 
optimal estrogenic regulation of the uterus and that there 
is a cross-talk between these signaling mechanisms in  
this tissue.

Normal E2 effects on uterine Igf1 gene expression are 
known to require nuclear ERα action (Hewitt  et al. 2010), 
and nuclear ERα action has also been shown to affect 

transcription of both Pgr and Ltf (Liu & Teng 1992, Kraus 
et al. 1994). Interestingly, the present study confirmed the 
finding by Pedram  et  al that normal E2 treatment effects 
on Igf1 and Ltf mRNA expression is dependent on mERα 
signaling (Pedram et al. 2014). Thus, both mERα signaling 
and nERα actions are important for the E2 regulation 
of uterine expression of Igf1 and Ltf. In contrast, the E2 

Table 3 High-resolution microcomputed tomography analysis of the femur . Twelve-week-old C451A and control female mice 
were ovariectomized and treated with 17β-estradiol (E2, 0.3 µg/mouse/day), Lasofoxifene (Las, 8 µg/mouse/day), Bazedoxifene 
(Bza, 24 µg/mouse/day), or vehicle (veh) by subcutaneous injections daily for 3 weeks. Values are given as mean ± s.e.m. (n = 9–13).

Control C451A
Veh E2 Las Bza Veh E2 Las Bza

BV/TV (%)  12.2 ± 0.8 17.3 ± 0.7a 17.3 ± 0.7a 13.4 ± 0.8 13.5 ± 0.6 14.7 ± 0.5d 16.0 ± 1.0 13.1 ± 0.9
Tb.Th. (μm) 44.1 ± 0.9 49.9 ± 0.6a 50.9 ± 0.7a 46.9 ± 0.9 45.0 ± 0.8 46.0 ± 0.5 47.4 ± 1.6 46.0 ± 1.2
Tb.N. (1/mm) 2.7 ± 0.1 3.5 ± 0.1a 3.4 ± 0.1b 2.9 ± 0.1 3.0 ± 0.1 3.2 ± 0.1 3.4 ± 0.1 2.8 ± 0.2
Tb.Sp. (μm) 129.6 ± 0.8 123.5 ± 1.4 125.5 ± 0.9 129.0 ± 0.8 128.4 ± 0.9 126.9 ± 0.9 126.2 ± 1.4 129.7 ± 1.0
Ct.Th. (μm) 193.6 ± 2.6 213.6 ± 2.4a 207.2 ± 3.9b 205.4 ± 2.5c 196.6 ± 2.5 198.1 ± 3.7d 204.6 ± 3.5 205.1 ± 2.9

aP <0.001, bP <0.01, cP <0.05, one-way ANOVA, followed by Dunnett’s post hoc test, vs control veh or C451A veh, respectively. dP <0.01, interaction P value 
from two-way ANOVA, for comparison of treatment responses between C451A and control mice. 
Ct.Th., cortical thickness; BV/TV, bone volume per total volume; Tb.N., trabecular number; Tb.Sp., trabecular separation; Tb.Th., trabecular thickness.

Figure 2
SERM effects in the skeleton are dependent on 
mERα signaling. Twelve-week-old C451A and 
control female mice were ovariectomized and 
treated with 17β-estradiol (E2, 0.3 μg/mouse/day), 
Lasofoxifene (Las, 8 μg/mouse/day), Bazedoxifene 
(Bza, 24 μg/mouse/day), or vehicle (veh) by 
subcutaneous injections daily for 3 weeks. Total 
body areal bone mineral density (aBMD) (A) 
measured by DXA. Bone volume per total volume 
(BV/TV) (B), trabecular thickness (Tb.Th.) (C), 
trabecular number (Tb.N.) (D), trabecular 
separation (Tb.Sp.) (E), and cortical thickness  
(Ct.Th.) (F) in vertebra L5 measured by high-
resolution microcomputed tomography. All 
individual values are presented with mean 
(horizontal line) and S.E.M. (vertical lines).  
(n = 9–13). ***P  < 0.001, *P  < 0.05, one-way 
ANOVA, followed by Dunnett’s posthoc test, vs 
control veh or C451A veh, respectively.  
###P  < 0.001, ##P  < 0.01, #P  < 0.05, Interaction  
P value from two-way ANOVA, for comparison of 
treatment responses between C451A and  
control mice.
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effect on the uterine expression of Pgr was found to be 
independent of mERα signaling, demonstrating that E2 
effects on the uterus involve both mERα-dependent as well 
as mERα-independent actions.

In contrast to the current study and other reports 
showing that a normal E2 response on uterus weight is 
dependent on functional mERα signaling (Pedram et  al. 
2014, Gustafsson et al. 2016), there are also studies showing 
that the E2 response on uterus weight is independent of 
mERα signaling (Adlanmerini et al. 2014, Vinel et al. 2016). 
The discrepancies in mERα dependency for uterine E2 
responses between studies may be caused by differences in 
stage of development, since ovx was performed in young, 
4-week-old, females in the studies demonstrating mERα-
independent effects (Adlanmerini et  al. 2014, Vinel et  al. 
2016), while the ovx was performed at about three months 
of age in the studies demonstrating mERα-dependent 
effects (Pedram et  al. 2014, Gustafsson et  al. 2016). The 
discrepancy in mERα dependency might also be caused 
by differences in the two models used. Even though the 
same mutation has been introduced, differences in the 
development of the models might affect the E2 responses 
in the uterus (Adlanmerini et al. 2014, Pedram et al. 2014).

A limitation of the current study is the lack of 
histological examination of the uterus to determine the 
cause of the increased uterine weight after E2 and SERM 
treatments. To evaluate whether effects on epithelial cells 
might be involved, we analyzed gene expression of Krt8, 
an epithelial cell marker previously shown to be increased 
by E2 treatment in the uterus (Helvering  et  al. 2005, 
Memarzadeh et  al. 2010). Interestingly, the E2 treatment 
effect on Krt8 expression was found to be highly dependent 
on mERα signaling, similar as seen for the E2 effect on 
uterine weight. In addition, the Las treatment effect on 
Krt8 expression was clearly mERα independent, similar as 
seen for the Las effect on uterine weight. These data suggest 
that effects on epithelial cells might be involved in the 
increased uterine weight seen after E2 and Las treatments, 
however further studies are needed to fully elucidate the 
causes of the effects on uterine weight seen after E2 and 
SERM treatments.

Fractures caused by decreased bone mass are a major 
health problem and cause suffering for patients and great 
costs for society. Las and Bza treatments reduce the risk of 
both non-vertebral and vertebral fractures (Silverman et al. 
2008, Cummings et al. 2010), and it is therefore important 
to learn more about the mechanisms behind their bone-
sparing effects in order to aid the development of new 
SERMs that reduce the risk of fractures. In this study, we 
evaluated the importance of mERα signaling for the effects 

of SERMs on both trabecular and cortical bone. Cortical 
bone comprises about 80% of the total bone mass and this 
bone compartment is important for skeletal strength, not 
only in long bones but also in vertebrae (Roux et al. 2021). 
We found that treatment with Las and Bza increased cortical 
thickness in the vertebrae of control mice to a similar extent 
as E2, while no significant effects were detected in the 
C451A mice for neither E2 nor any of the SERM treatments. 
The same pattern was seen when we analyzed the cortical 
bone in the femur, demonstrating that cortical bone in 
both the axial and the appendicular skeleton is dependent 
on mERα signaling for a normal response to E2, Las, and 
Bza. We also analyzed the trabecular bone compartment 
in both vertebrae and femora and found a similar pattern 
as for the cortical bone, where the effects seen after E2 
or SERM treatments in control mice were absent in the 
C451A mice. These data demonstrate that mERα signaling 
is highly involved in the regulation of both the cortical 
and the trabecular bone compartments in the skeleton by 
Las and Bza treatments and that this signaling pathway 
is interesting when considering the development of new 
SERMs for treatment against bone loss. We and others have 
previously shown that E2 treatment results in significant 
effects on both cortical and trabecular bone parameters in 
C451A mice (Gustafsson et al. 2016, Vinel et al. 2016, 2018). 
However, in these studies the E2 effects in C451A mice 
were significantly decreased compared to the E2 effects 
in control littermates, supporting the notion that mERα 
is required for a normal E2 response in the skeleton. In 
the current study, we did not detect any significant effect 
of E2 treatment on any of the evaluated bone parameters 
in the C451A mice, and a possible explanation to this 
discrepancy may be the difference in administration route 
used compared to the studies where E2 elicited a significant 
response on bone parameters in C451A mice (Gustafsson 
et al. 2016, Vinel et al. 2016, 2018). In this study, we used 
daily subcutaneous injections while the other studies used 
subcutaneous pellets. It has been shown that differences 
in administration route can affect the circulating E2 levels 
during the experiment (Ingberg  et  al. 2012), and pellet 
treatment has been shown to result in higher serum E2 
levels compared to a corresponding dose administered 
via subcutaneous injections during the first 3 weeks of 
treatment (Ström  et  al. 2008). Thus the importance of 
mERα signaling might be dose dependent, with higher E2 
levels leading to an increase in mERα-independent effects.

In this study, we also evaluated the importance of 
mERα signaling for the effects of SERMs and E2 treatment 
on thymus and fat mass, two tissues known to be affected 
by E2 and SERM treatment (Ke  et al. 1998, Cooke & Naaz 
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2004, Stubbins et al. 2012, Kim et al. 2014, Borjesson et al. 
2016). E2 and Las, but not Bza, are known to induce thymic 
atrophy (Borjesson et  al. 2016), and in the current study, 
both E2 and Las treatments resulted in thymic atrophy in 
control mice. E2 treatment was not able to induce thymic 
atrophy in C451A mice, in line with previous studies 
(Gustafsson et al. 2016), and this lack of response in C451A 
mice on thymus weight was also seen after treatment with 
Las. Thus, treatment effects of the SERM Las on thymus is 
dependent on functional mERα signaling.

E2 treatment suppresses fat development and results 
in decreased fat content in both humans and rodent 
models (Gambacciani  et  al. 1997, Cooke & Naaz 2004, 
Stubbins et al. 2012), and the SERMs Las and Bza have been 
shown to have estrogen agonistic effects on adipose tissue 
leading to a decrease in body fat (Ke et al. 1998, Kim et al. 
2014). However, in this study, we only saw a significant 
reduction in total body fat percentage in control mice 
after E2 treatment. Interestingly, the fat percentage was 
significantly decreased in C451A mice, not only after 
E2 treatment, as previously described (Gustafsson et  al. 
2016) but also after both Las and Bza treatments. Thus, 
Las and Bza treatment can reduce the fat percentage in 
mice lacking mERα signaling. We have previously shown 
that the E2 treatment effect on fat percentage is mERα-
independent (Gustafsson et  al. 2016), but this is the first 
study showing that SERMs can affect fat percentage in the 
absence of functional mERα signaling. We did not find a 
significant effect of SERM treatment on fat percentage 
in control mice, indicating that mERα signaling might 
mediate an inhibitory effect on fat after SERM treatment. 
It has been demonstrated that both C451A mice, and 
mice in which only the mERα signaling is intact, have 
increased abdominal fat mass, suggesting that both 
mERα and nERα play a role in fat regulation (Pedram et al. 
2016). Furthermore, it was recently shown that mERα and 
nERα collaborate to suppress adipogenesis by inhibition 
of PPARγ expression which subsequently results in 
diminished commitment of stem cells to adipogenesis and 
reduced number of adipocytes (Ahluwalia et al. 2020), also 
supporting a role for mERα signaling in the regulation of 
fat mass. Additional studies are needed to fully understand 
the mechanism behind the mERα-independent effects on 
fat percentage reported in this study.

In summary, SERM effects were found to be mERα-
independent in the uterus, which is in sharp contrast to 
the substantial mERα-dependency seen by E2 treatment in 
this organ. In contrast, both SERM and E2 effects on the 
skeleton and thymus were found to be dependent on mERα 
signaling, while effects on fat percentage were present 

in mice with inactivated mERα signaling. Thus, mERα 
signaling can modulate responses to SERMs in a tissue-
specific manner. This novel knowledge regarding signaling 
mechanisms behind SERM effects in various tissues may aid 
the development of new SERMs with less adverse events.
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