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Abstract: Dihydromyricetin (DHM) has garnered attention due to its promising antitumor activity,
but its low bioavailability restricts its clinical application. Thus, developing nano-drug delivery
systems could enhance its antitumor activity. We prepared DHM@ZIF-8 nanoparticles using the
zeolite imidazole framework-8 (ZIF-8) as a carrier loaded with dihydromyricetin. A series of char-
acterizations were performed, including morphology, particle size, zeta potential, X-single crystal
diffraction, ultraviolet spectroscopy, infrared spectroscopy, and Brunauer–Emmett–Teller (BET). The
in vitro release characteristics of DHM@ZIF-8 under pH = 5.0 and pH = 7.4 were studied using
membrane dialysis. The antitumor activity and pro-apoptotic mechanism of DHM@ZIF-8 were
investigated through CCK-8 assay, reactive oxygen species (ROS), Annexin V/PI double-staining,
transmission electron microscopy, and Western blot. The results depicted that DHM@ZIF-8 possessed
a regular morphology with a particle size of 211.07 ± 9.65 nm (PDI: 0.19 ± 0.06) and a Zeta potential
of −28.77 ± 0.67 mV. The 24 h drug releasing rate in PBS solution at pH = 7.4 was 32.08% and at
pH = 5.0 was 85.52% in a simulated tumor micro acid environment. DHM@ZIF-8 could significantly
enhance the killing effect on HepG2 cells compared to the prodrug. It can effectively remove ROS
from the tumor cells, promote apoptosis, and significantly affect the expression of apoptosis-related
proteins within tumor cells.
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1. Introduction

Liver cancer is one of the most common global malignancies, with a five-year survival
rate of 15–17% [1]. Statistical data reveal that liver cancer ranks in the top five most
prevalent cancers worldwide and it’s also the third leading cause of cancer-related deaths [2].
Currently, the main clinical treatments involve surgical resection, liver transplantation,
and systemic chemotherapy, but the prognosis for patients remains extremely poor. The
chemotherapy drugs target tumor cells and severely affect normal cells [3]. Therefore,
targeted drugs addressing the tumor cells remain a shared goal of drug research.

Dihydromyricetin (DHM) is a compound causing damage to tumor cells without any
significant toxicity to normal cells [4,5]. It is abundant in Ampelopsis grossedentata (Hand.-
Mazz.) W.T. Wang (Vitaceae) (20–30%, w/w), whose tender stems and leaves are widely
used as vine tea in south China [6,7]. It has exhibited several pharmacological activities,
including anti-inflammatory [8], hypoglycemic [9], antiviral [10], antimicrobial [11], and
anti-allergic effects [12]. Besides, DHM suppresses hepatocellular carcinoma [13,14], non-
small cell lung carcinoma [15], ovarian cancer [16], and melanoma [8]. DHM treatment
inhibits cell proliferation, induces apoptosis and autophagy, and regulates redox balance in
liver cancer cells; thus, exhibiting remarkable anticancer effects [7,17]. However, poor water
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solubility and extremely low oral bioavailability of DHM have considerably restricted its
clinical application [18].

It is vital to select a suitable nanocarrier to improve the bioavailability of DHM. Metal
organic frameworks (MOFs) are a new class of hybrid materials with metal ions and organic
ligands bridged with large specific surface area, tunable pore size, and biodegradability, of-
fering efficient drug loading [19,20]. Zeolite imidazole framework-8 (ZIF-8) is an emerging
nano-metal organic framework (NMOF) with a simple synthesis strategy, easy functional-
ization, high loading capacity, and pH-responsive degradation. Nanoparticles of ZIF-8 have
been widely used for DNA, protein, and drug delivery, and ZIF-8-based nano-delivery
systems can avoid premature drug release and offer the possibility of enhancing drug
bioavailability [21].

Therefore, we prepared a DHM drug delivery system using ZIF-8 as the carrier. The
results revealed that this system could be better released within a micro-acidic environment,
effectively enhancing the pro-apoptotic effect of DHM on HepG2 cells and increasing the
expression of apoptosis-related proteins.

2. Results and Discussion
2.1. Synthesis and Characterization of DHM@ZIF-8

As shown in Figure 1A, the SEM (a) and TEM (b) images depicted that DHM@ZIF-8
possessed a relatively uniform particle size. A Malvern particle sizer determined the
hydrated particle size of DHM@ZIF-8 (Figure 1B) as 211.07± 9.65 nm (PDI: 0.19± 0.06), and
the Zeta potential was measured as −28.77 ± 0.67 mV. The elemental dispersive spectrum
(EDS) showed that the content of oxygen(O) element in DHM@ZIF-8 increased significantly
compared with ZIF-8 due to DHM loading (Figure S1). The crystalline structures of
ZIF-8 and DHM@ZIF-8 were examined through XRD (Figure 2A), and the crystalline
structure of the prepared DHM@ZIF-8 was the same as that of ZIF-8. Therefore, the
loading of DHM did not destroy the crystal structural integrity of ZIF-8. The UV-Vis
detection results (Figure 2B) indicate that no absorption band of DHM was present within
the spectrum of DHM@ZIF-8, indicating that DHM was loaded in ZIF-8. In addition,
the loading process of the DHM nanoplatform was determined using Fourier transform
infrared (FT-IR) spectroscopy (Figure 2C). Comparing the spectra of DHM and DHM@ZIF-8,
it was observed that the characteristic peaks at 3361 cm−1 (OH) and those of benzene rings
at 1643 cm−1, 1550 cm−1, 1512 cm−1, and 1457 cm−1 disappeared within the spectrum of
DHM. These results indicated that the characteristic peaks of DHM were covered due to the
physical shielding of DHM with ZIF-8, which further suggests that the DHM was loaded
inside ZIF-8. In addition, we used Brunauer–Emmett–Teller (BET) to determine the specific
surface area of DHM@ZIF-8 nanostructures (Figure 2D), and ZIF-8 was utilized as the
control under similar conditions. The BET-specific surface area of ZIF-8 was 1232.59 m2/g,
and the BET-specific surface area was 980.98 m2/g. The decrease in the specific surface area
also indicated the successful loading of the drug.
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Figure 2. (A) XRD maps of ZIF-8, DHM and DHM@ZIF-8. (B) UV absorption profiles of ZIF-8, DHM,
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isotherms of ZIF-8 and DHM@ZIF-8.

2.2. Drug Loading Rate and Drug Releasing Rate

As shown in Figure S2, to assess the loading and release behavior of ZIF-8 on DHM,
we established a standard curve of DHM solution at 290 nm. We investigated the drug
loading under different ratios of drug and nanoparticles, and found that the ratio of 1:1
can significantly increase the drug loading compared with the ratio of 1:3 drug to carrier.
However, when using the 3:1 ratio of drug to carrier for feeding, the increase of drug loading
was not significant, so we choose the 1:1 ratio for follow-up experiments (Figure S3). We
finally measured that the loading rate of DHM@ZIF-8 was 19.17 ± 1.24%. Then, we
measured the drug release behavior under different pH values (pH = 5.0 or pH = 7.4). As
described in Figure 3, the 24 h drug releasing rate was 32.08% in a PBS solution simulating
the pH of the normal physiological environment. In contrast, the final drug releasing rate
was 85.52% within a PBS solution simulating the pH of the slightly acidic environment of
the tumor. This exhibited that ZIF-8 had good acid-responsive release properties and was a
good platform for tumor drug delivery.
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2.3. Cytotoxicity Assay

The CCK-8 assay was used to determine the cell survival rate at different doses to
investigate the lethal effect of the DHM@ZIF-8 drug delivery system on HepG2 (Figure 4).
It was observed that ZIF-8 and DHM failed to kill HepG2. In contrast, a significant
decrease in cell survival was observed when HepG2 cells were treated using a nano-
delivery system consisting of ZIF-8 loaded DHM, demonstrating the superior killing effect
of the DHM@ZIF-8 drug delivery system over HepG2 tumor cells.
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2.4. Live/Dead Cell Staining

Calcein AM enters the cell and is hydrolyzed by endogenous esterases in living cells
to produce calcein, a polar molecule with a strong negative charge not permeating the cell
membrane. It is retained in the cell to emit strong green fluorescence. Therefore, only live
cells are stained with solid green fluorescence; dead cells are not stained or stained very
weakly. The nucleic acid red fluorescent dye propidium iodide (PI) can only stain the dead
cells where the integrity of the cell membrane is disrupted. Therefore, both are used to
detect cell activity and cytotoxicity. As shown in the Figure 5, after the action of DHM on
HepG2 cells by the live/dead cell staining assay, no significant killing effect on tumor cells
was observed compared to the control group. When ZIF-8 was used as a nanoplatform
for delivering DHM, it caused a massive tumor cell death, as evidenced by a significant
enhancement of red fluorescence in the field of view. This demonstrated the excellent
antitumor effect of the DHM@ZIF-8 nanodelivery system.
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2.5. Determination of ROS Content

Redox imbalance induced by ROS excess or deficiency is a predisposing factor in
disease pathogenesis, including tumorigenesis and progression. Cancer cells require a
higher level of ROS than normal cells. In case the level of ROS is lower than the minimum
requirement for the cellular response, cancer cells cannot grow naturally [22,23]. DHM
has previously disrupted the redox balance in HepG2 cells through ROS, inhibiting their
proliferation and inducing apoptosis [7,24]. We measured the intracellular reactive oxygen
species (ROS) levels in HepG2 cells treated with DHM and DHM@ZIF-8. As shown in
Figure 6A,B, our results indicated that HepG2 cells had highly expressed ROS and that
DHM could not scavenge ROS well at lower doses, while the intracellular delivery of DHM
using ZIF-8 as a vector significantly affects the production of ROS in tumor cells, thus
affecting tumor cell growth.
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2.6. Cell Apoptosis

The facilitation of apoptosis in tumor cells is one of the mechanisms by which many
natural product drugs exert their antitumor effects [25]. To demonstrate that DHM@ZIF-8
enhances the apoptosis-inducing effect of DHM on tumor cells, we measured the apoptosis
rates of different drugs using flow cytometry. As shown in the Figure 7A,B, the apoptosis-
inducing effect of DHM on tumor cells was not evident at lower doses, with an apoptosis
rate of only 11.6 ± 0.26%. In contrast, the apoptosis rate of tumor cells was substantially
increased when DHM@ZIF-8 was used for the same duration of action, with an apoptosis
rate of 56.07 ± 1.27%. The effective delivery of ZIF-8 resulted in a substantial increase in
the effect of DHM in promoting apoptosis.
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2.7. Apoptotic Cell Morphology Observed Using the Transmission Electron Microscope

To visualize the changes inside the cells more closely, we used transmission electron
microscopy to observe the morphology of the cells under different treatment conditions. As
shown in the Figure 8, the cell morphology of the blank group was normal, and the nuclear
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chromatin was aggregated after treatment of HepG2 cells with DHM, suggesting that DHM
treatment had a certain degree of effect on the tumor cells, yet it was not apparent. In
contrast, the HepG2 cells treated with DHM@ZIF-8 had irregular nuclear morphology,
severe cytoplasmic bubbling, and severe apoptosis of tumor cells.
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Figure 8. Cell morphology after treatment with DHM or DHM@ZIF-8. Scale bars = 2 µm.

2.8. Western Blot

Bax and Bcl-2 are two mutually antagonistic apoptosis regulatory proteins and mem-
bers of the Bcl-2 family. The ratio of Bax/Bcl-2 determines whether a cell survives or
apoptoses [26,27]. Under normal conditions, Bax and Bcl-2 remain in the proper ratio, and
when apoptosis occurs, the Bax/Bcl-2 ratio is altered. As the expression of Bax increases,
mitochondrial membrane permeability improves and activates Caspase family proteins,
such as Caspase-3. Previous studies have shown that DHM induced apoptosis in HepG2
cells, increased Bax/Bcl-2 ratio and casepase-3 protein expression [4]. We used Western blot
to detect the expression of the anti-apoptotic protein Bcl-2 and the pro-apoptotic proteins
Bax and Caspase-3 to ascertain the facilitating effect of DHM@ZIF-8 on apoptosis in HepG2
cells at the protein level (Figure 9A). We measured the Bax/Bcl-2 ratio and the expression
of Caspase-3 (Figure 9B). The results depicted that DHM@ZIF-8 significantly elevated the
Bax/Bcl-2 ratio and the expression of Caspase-3 compared to the original DHM, revealing
that DHM@ZIF-8 significantly enhanced the pro-apoptotic ability of DHM.
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3. Materials and Methods
3.1. Materials and Reagents

Zinc nitrate hexahydrate (Zn(NO3)2·6H2O, 99%) was obtained from Tianjin FuChen
Chemical Reagent Co., Ltd. (Tianjin, China). 2-methylimidazole (C4H6N2, 98%) was pur-
chased from TCI Development Co., Ltd. (Shanghai, China). Dihydromyricetin was secured
from Shanghai Winherb Medical Technology Co., Ltd. (Shanghai, China) with purity >99%;
PAN Seratech GmbH, Aidenbach, Germany, provided fetal bovine serum. Cell Counting
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Kit-8 (CCK-8) and Calcein/PI Cell Viability/Cytotoxicity Assay Kit were supplied by
Shanghai Beyotime Biotechnology Co., Ltd. (Shanghai, China). Annexin V-FITC Apoptosis
Detection Kit and 2′,7′-Dichlorodihydrofluorescein diacetate was purchased from Beijing
Solarbio Science & Technology Co., Ltd. (Beijing, China). The antibodies were purchased
from Abcam (Shanghai) trading Co., Ltd. (Shanghai, China). Absorbance and fluorescence
intensity were detected using the TECAN spark multifunctional microplate reader. Fluo-
rescence images were taken with a Nikon Tclipse Ts2R fluorescence inverted microscope.
The apoptosis assay was performed with the BD FACSaira II flow cytometer. The apoptotic
morphology was photographed using a JEM-1200EX (JEOL, Tokyo, Japan) transmission
electron microscope.

3.2. Cell Lines

HepG2 cells were provided by the Cell Resource Centre, Institute of Basic Medical
Sciences, Chinese Academy of Medical Sciences and were cultured in 5% CO2 at 37 ◦C.

3.3. Synthesis of DHM@ZIF-8
3.3.1. Synthesis of ZIF-8

2.975 g of zinc nitrate hexahydrate and 3.284 g of 2-methylimidazole (1:4 molar ratio)
were weighed. Zinc nitrate hexahydrate was placed in a 1000 mL round bottom flask, and
2-methylimidazole was put in a 500 mL conical flask. 200 mL of methanol was added
separately and stirred at 1000 r/min for 5 min. The 2-methylimidazole solution was poured
into the stirring zinc nitrate hexahydrate solution, which was stirred for 1.5 h, left for 24 h,
and the precipitate was collected through centrifugation at 8000 r/min and washed with
fresh methanol. The resultant precipitate was kept in a vacuum drying oven and dried
overnight at 60 ◦C to acquire ZIF-8.

3.3.2. Synthesis of DHM@ZIF-8

DHM was loaded with a post-adsorption method. Different proportions of dihy-
dromyricetin and ZIF-8 nanoparticles were weighed and dispersed within 50 mL of
methanol, stirred at 600 r/min for 24 h, washed several times using methanol, centrifuged,
and the precipitate was obtained and dried overnight in a vacuum drying oven.

3.4. Characterization of DHM@ZIF-8

SEM images were obtained using a ZEISS Sigma 500 scanning electron microscope.
TEM micrographs were collected from an FEI Talos F200s 200 kV, a field emission trans-
mission electron microscope. The elemental dispersive spectra (EDS) were obtained by
Japanese electron field emission scanning electron microscope JSM-7800F.The particle size
was determined by Malvern Mastersizer 2000 laser particle sizer. XRD was recorded on a
D8 ADVANCE X-ray polycrystalline diffractometer. The UV–vis absorption spectra were
evaluated through a UV-3600i Plus spectrophotometer. FT-IR was secured on a Thermo
Scientific Nicolet iS5N with KBr pellets. Nitrogen adsorption/desorption analyses were
performed with a Micromeritics ASAP 2460.

3.5. Determination of Drug-Loading Rate and Drug-Releasing Rate

The loading and releasing rates were measured using the Agilent Technologies Cary
series UV-vis spectrophotometer at 290 nm absorption. A standard curve for DHM was
developed. A specific mass of nanoparticles was weighed in a volumetric flask, and a small
amount of 0.9% hydrochloric acid-methanol solution was utilized to disrupt the structure
of ZIF-8 to release the drug. The absorbance was measured after determining the volume.
The drug loading rate was calculated with the following equation.

DLE (%) =
W1
Wt
× 100%
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W1 is the weight of the drug loaded within the nanoparticles, and Wt is the total
weight of the nanoparticles.

The drug releasing rate was measured with dynamic membrane dialysis. A mass of
DHM@ZIF-8 was weighed, dispersed using phosphate buffered solution (PBS) of different
pH, and kept in a dialysis bag (MWCO: 3500 Da). Then, the dialysis bags were placed in
centrifuge tubes containing 25 mL of different pH (pH = 5.0 or pH = 7.4) on a shaker at
37 ◦C and centrifuged at 100 r/min. Subsequently, 0.5 mL of PBS was removed at a set time
point and replenished using the same volume of fresh PBS. The absorbance was measured
with a UV spectrophotometer, and the cumulative release rate of the drug was determined.

3.6. Role of In Vitro Anti-Hepatocellular Carcinoma Cells HepG2
3.6.1. Cytotoxicity Assay

HepG2 cells were inoculated within 96-well plates at a density of approximately
8 × 103 cells per well and then incubated at 37 ◦C for 24 h. The culture medium was re-
moved, and then the cells were incubated in a cell culture medium with ZIF-8, DHM
and DHM@ZIF-8 (the concentrations of ZIF-8 and DHM were determined using the
DHM@ZIF-8 content, having a final concentration of 12–24 µg/mL of DHM) for 12 h.
At the end of the incubation, the medium was aspirated and discarded, 100 µL of the
CCK-8 dilution solution was added, and the incubation was continued for 1 h. At the end
of the incubation, the absorbance was measured at 450 nm with a standard enzyme.

3.6.2. Living/Dead Cell Staining

HepG2 cells were inoculated at 2.5 × 104 cells per well density in 24-well culture
dishes and incubated for 24 h. After cell apposition, the culture medium containing DHM
or DHM@ZIF-8 (containing 20 µg/mL of DHM) was replaced. In the blank group, the fresh
culture medium without the drug was replaced with three samples within each group.
After interacting with the drug, the residual drug was washed off using PBS, and 0.5 mL
Calcein-AM/PI solution was added to stain the cells for 30 min. The cell fluorescence
images were obtained using an inverted fluorescent microscope.

3.7. Determination of ROS Content

HepG2 cells were inoculated at 8 × 103 cells per well in 96-well black culture plates
having transparent bottoms and incubated for 48 h. After cell apposition, the medium was
replaced using a culture medium containing DHM or DHM@ZIF-8 (containing 20 µg/mL
of DHM). The blank group was replaced with a fresh cell culture medium without a drug.
After 12 h of drug interaction, the cells were stained with 2,7-dichlorofluorescein diacetate
(DCFH-DA) solution used to measure intracellular ROS production for 10 min, gently
washed, photographed using a fluorescence microscope, and quantified using a fluorescent
enzyme marker.

3.8. Cell Apoptosis

HepG2 cells were inoculated within cell culture flasks at a density of 4 × 105 and incu-
bated against the wall for 48 h. The medium was replaced with a cell medium containing
DHM or DHM@ZIF-8 (containing 20 µg/mL of DHM). In the blank group, the medium
was replaced using a fresh cell medium without drugs, and three samples were repeated
in parallel within each group. Cells were stained after 12 h of incubation based on the kit
instructions, and then the samples were assayed with flow cytometry.

3.9. Observation Using the Transmission Electron Microscope

A bottle of cells grown to approximately 90% fusion was passaged at a 1:4 ratio and
well-cultured for 24 h. The cell medium containing DHM or DHM@ZIF-8 (containing
20 µg/mL of DHM) was used, and for the blank group, a fresh cell medium without the
drugs was used. After incubation for 12 h the cells were fixed with 2.5% glutaraldehyde
at 4 ◦C for 30 min. Then, the cells were gently scraped off using a cell scraper, packed in
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1.5 mL EP tubes, and centrifuged at 3000 r/min to collect the cell pellets. After enrichment
of sufficient cell clusters, 1 mL fresh glutaraldehyde fixative was added at 4 ◦C overnight.
The samples were photographed after pre-treatment with the machine.

3.10. Apoptosis-Related Proteins Detected Using Western Blot

HepG2 cells were treated with a medium having DHM or DHM@ZIF-8 (containing
20 µg/mL of DHM) for 12 h and gently rinsed using PBS. The appropriate volume of
RIPA lysate was added (protease inhibitor was added minutes before use). Moreover, total
protein was extracted and processed based on the manufacturer’s instructions. Proteins
were resolved with SDS–PAGE and transferred onto the PVDF membranes (Millipore,
Tullagreen Carrigtwohill, County Cork, Ireland). After being blocked with 5% nonfat dry
milk, the membranes were incubated with primary antibodies at 1:1000, followed by three
10 min washes, and incubated with the HRP-second antibody at a dilution of 1:1000. The
imaging was obtained through chemiluminescence and analyzed using the “Image-pro
plus 6.0 (Media Cybernetics, MD, USA)”.

3.11. Statistics

Data are expressed as means ± SD. Statistical evaluation was performed by one-way
ANOVA. ns represents no statistical significance, ** is p < 0.01 and *** is p < 0.001.

4. Conclusions

In this work, a simple method was used to synthesize a DHM nano-drug deliv-
ery system that significantly enhances the killing effect of the prodrug DHM on HepG2.
DHM@ZIF-8 has a smaller particle size and characterized by a narrow particle size dis-
tribution. Using various characterization tools, the drug DHM was successfully loaded
into ZIF-8. Due to its acid-responsive properties, ZIF-8 could selectively release DHM
in response to the micro-acidic environment of the tumor, thereby significantly boosting
the killing effect on HepG2 cells. It was further observed that the delivery of ZIF-8 also
enhanced the ability of DHM to scavenge ROS from tumor cells, facilitating an elevation in
the apoptotic rate and changes in apoptotic morphology. This resulted in an increase in the
Bax/Bcl-2 ratio and high production of the pro-apoptotic protein caspase-3 within tumor
cells. As a result, DHM@ZIF-8 provides a possible strategy for more efficient treatment
of cancer.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27175484/s1, Figure S1: The elemental dispersive
spectrum (EDS) of ZIF-8 and DHM@ZIF-8; Figure S2: Standard curve of DHM solution detected by
UV spectrophotometer at 290 nm; Figure S3: The loading efficiency of DHM@ZIF-8 increased with
DHM feeding.
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