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There is great interest in relating individual differences in cognitive processing to
activation of neural systems. The general process involves relating measures of task
performance like reaction times or accuracy to brain activity to identify individual
differences in neural processing. One limitation of this approach is that measures like
reaction times can be affected by multiple components of processing. For instance,
some individuals might have higher accuracy in a memory task because they respond
more cautiously, not because they have better memory. Computational models of
decision making, like the drift–diffusion model and the linear ballistic accumulator model,
provide a potential solution to this problem. They can be fitted to data from individual
participants to disentangle the effects of the different processes driving behavior. In
this sense the models can provide cleaner measures of the processes of interest,
and enhance our understanding of how neural activity varies across individuals or
populations. The advantages of this model-based approach to investigating individual
differences in neural activity are discussed with recent examples of how this method can
improve our understanding of the brain–behavior relationship.
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INTRODUCTION

Researchers in cognitive neuroscience have placed recent emphasis on relating differences in brain
activity to cognitive performance in service of identifying individual or group differences in neural
processing. For example, Tam et al. (2015) related reaction times (RTs) from a Stroop task to blood
oxygen level-dependent (BOLD) activity from functional magnetic resonance imaging (fMRI).
They showed that longer RTs were associated with greater activity in frontoparietal areas for older
adults, but they were associated with greater activity in default mode network areas for younger
adults. Studies such as these can provide insight into how the neural mechanisms driving behavior
differ across individuals or groups. This approach can be generalized to investigate individual
differences from a range of tasks (e.g., memory, perceptual, emotional, etc.) and used to compare
neural activation across a range of populations (e.g., young vs. old, depressed vs. non-depressed,
etc.). This general experimental approach has great potential to further our understanding of the
cognitive and neural mechanisms underlying individual differences in daily function.

However, there is a potential problem to this approach that centers on the use of forward and
reverse inference for relating cognitive processes to observed behavior. With forward inference,
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we can infer that if there is a difference in the process of
interest for an experimental task, say memory processing, it
should manifest as a difference in our task measures (e.g.,
RTs or accuracy for remembered items). To the extent that
the experimental paradigms are appropriately designed, this
forward inference is valid. The traditional analytical approach
in studies of cognition, on the other hand, reverses this
inference to claim that if there is a difference in a dependent
measure like RTs, we can infer there is a difference in the
process of interest like memory. This reverse inference is only
valid to the extent that differences in behavior are driven by
memory and only memory. Unfortunately, dependent measures
of behavior, typically assessed by RTs and/or accuracy values,
are affected by numerous processes (Figure 1A, top). There is
robust evidence that additional factors like how cautiously a
participant responds (i.e., their speed/accuracy settings) affect
both RTs and accuracy (e.g., Wickelgren, 1977; Ratcliff et al.,
2004). Thus if we observe individual differences in accuracy
across participants in a memory task, our measure of memory
processing could be contaminated by factors like response
caution that are extraneous to the process of primary interest,
memory. This leaves the researchers with a problem of reverse
inference: differences in memory will be reflected by differences
in accuracy, but that does not guarantee that differences in
accuracy indicate differences in memory (Krajbich et al., 2015).
This problem extends to cognitive neuroscience studies; if
a researcher finds a correlation across individuals between
accuracy and BOLD fMRI activity in a region of the brain,
they cannot know for sure which factors are driving that
relationship.

A MODEL-BASED SOLUTION

Computational models of decision making present a solution
to this problem. In particular, choice RT models like the drift–
diffusion model (DDM; Ratcliff and McKoon, 2008) or the
linear ballistic accumulator (LBA) model (Brown and Heathcote,
2008) can be used to estimate and control for individual
differences in different decision components. The remainder of
this commentary focuses on the DDM and LBA, but it should
be noted that other accumulator models have been successful
at linking behavioral and neural data (e.g., Purcell et al., 2012;
Logan et al., 2015). In general, these accumulator models assume
that evidence is accumulated over time until a threshold amount
is reached, signaling commitment to that response option. The
framework of these models contains four primary parameters
that relate to different psychological components of simple
decisions (Figure 1B): response caution is typically reflected by
the boundary separation parameter (a, but see Cassey et al., 2014
and Rae et al., 2014 for alternative explanation) and indicates the
overall amount of evidence that needs to be accumulated before
the choice is committed; the duration of encoding and motor
processes is reflected by the non-decision time parameter; the
quality and strength of evidence from the stimulus is reflected by
the drift rate parameter (v); and the response bias for one option
over another is reflected by the starting point parameter (z).

In the framework of these choice RT models, the different
components can all influence the dependent behavioral measures
of RTs and accuracy. Fortunately, the models are mathematically
specified to make predictions about expected behavior based on
the values of each component, allowing these components to
be estimated from the behavioral data. The general procedure
for a model-based cognitive neuroscience study of individual
differences is as follows: a DDM or LBA is fitted to each
participant’s behavioral data to estimate values of the decision
parameters (Figure 1B). Then these decision components can
be correlated with neural data from fMRI (see Mulder et al.,
2014; de Hollander et al., 2015; Forstmann and Wagenmakers,
2015 for a review), electroencephalography (EEG) (Philiastides
et al., 2014; van Vugt et al., 2014; Frank et al., 2015),
electromyography (EMG) (Servant et al., 2015), or single-cell
recordings (Cassey et al., 2014; Hanks et al., 2014). This approach
has been ubiquitously employed to describe how these decision
components differ across tasks, conditions, and individuals.

ADVANTAGES OF MODEL-BASED
ANALYSIS OF INDIVIDUAL
DIFFERENCES

The analytical approach of fitting choice RT models to behavioral
data offers a potential solution to the reverse inference problem
when relating RTs and accuracy values to brain activity across
individuals. Specifically, models like the DDM or LBA can
be fitted to each participant’s data to estimate their level
of response caution, quality of stimulus evidence, response
bias, and non-decision processing duration. In doing so, these
decision components are disentangled from each other, allowing
more focused comparisons of individual differences. Thus if
researchers were interested in relating individual differences in
memory strength to neural activity, the drift rate parameter from
the models provides a cleaner measure than RTs or accuracy
values because is not influenced by extraneous factors like caution
or response bias that might vary across individuals. We argue
that studies of individual differences in brain activity can greatly
benefit from using the decision models to control for potential
confounds present in the behavioral data.

This approach provides two major advantages over traditional
analyses with RTs or accuracy. First, the measure of stimulus
processing which is typically of primary interest, drift rates, is
not contaminated by individual differences in the other decision
components. For example, in a study of lexical processing White
et al. (2010b) had participants perform a lexical decision task
alternating between speed and accuracy emphases in the task.
They found that the word frequency effect, the difference in
performance between common (high frequency) and uncommon
(low frequency) words, was significantly larger under accuracy
emphasis compared to speed emphasis for RTs. Thus when
participants were more cautious, it manifested as a larger effect in
the RT measure of lexical processing, even though presumably it
was driven by response caution. However, when aDDMwas fitted
to the data the effect of caution was absorbed by the boundary
separation parameter, and the resulting drift rate estimate of
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FIGURE 1 | (A) Schematic of traditional analyses relating task performance to neural activity. (B) Schematic of the drift–diffusion model (DDM; left) and model-based
analysis for relating cognitive mechanisms to neural activity (right). See text for description of model parameters

lexical processing did not differ between speed and accuracy
trials. In this sense the drift rate measure from the model
provided a more precise index of lexical processing because it was
not contaminated by differences in response caution.

Two studies with model-based analysis of neural data illustrate
the advantage of this approach. We used a DDM analysis to
identify the neural correlates of perceptual decision criteria in
a study with fMRI (White et al., 2012). Participants classified
perceptual stimuli as small or large based on different midpoints
or criteria, and the analysis centered on identifying where
these criteria were represented in the brain. The DDM was
employed to estimate the values of the criteria, which were
reflected by the drift rates, for each participant and condition to
capture the variability across individuals. Although a traditional
analysis that did not account for individual differences in criteria
placement resulted in no significant BOLD activation, the DDM-
based analysis revealed activation of the left inferior temporal
gyrus relating to the changing perceptual criteria. In a similar
manner, Mulder et al. (2012) used different cue conditions to bias
perceptual decisions in an fMRI study. A traditional analysis of
the cue conditions did not reveal any significant BOLD activity
related to the bias manipulation, but an LBA-based analysis
of the BOLD data that accounted for individual differences in
bias revealed activation in the orbitofrontal cortex related to

the perceptual bias. These two studies illustrate how the model
parameters from the DDM and LBA can provide a more precise
measure of individual differences in decision components and
enhance the ability to relate these constructs to neural activity.
Without themodel-based approach to the fMRI data, both studies
would have resulted in null effects in the BOLD signal.

The second major advantage of using these decision models to
relate cognitive processes to brain activity stems from the ability
to separately investigate the effects of differences in caution, non-
decision time, bias, and drift rates across individuals. White et al.
(2014) used this approach with data from a stop-signal task
while participants underwent fMRI, and found that individual
differences in the drift rate parameter correlated with BOLD
activity in regions associated with the stopping network (pre-
supplemental motor area, inferior frontal gyrus, and basal
ganglia), whereas differences in the non-decision time parameter
correlated with BOLD activity in the right angular gyrus of
the posterior lobe (Figure 2). Thus the model-based approach
allowed the effects of the different parameters to be dissociated,
providing a more detailed examination of corresponding brain
activity.

Overall, using choice RT models to relate individual
differences in behavior, cognitive processes, and neural activity
can enhance our study of the brain–behavior relationship.
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FIGURE 2 | Results of a DDM analysis of individual differences in functional magnetic resonance imaging (fMRI) activation related to performance on
the stop-signal task (figure taken from White et al., 2014). (A) Correlations with mean reaction times (RTs) from go trials. (B) Correlations with stop-signal
reaction times from stop trials. (C) Correlations with the DDM parameter of drift rate on go and stop trials. (D) Correlations with the DDM parameter of non-decision
time on stop trials.

Compared to behavioral measures of RT and accuracy, the
model parameters are more sensitive to the processes of interest
because effects of other components are controlled by the
other parameters (see White et al., 2010b, 2014). The model
parameters also provide better specificity because the effects
of different decision components are disentangled and can
be separately investigated. This general approach has been
successfully applied across a range of studies with fMRI to
investigate the neural correlates of reward- and-expectation-
based response bias (Mulder et al., 2012), evidence accumulation
across different response modalities (Ho et al., 2009), perceptual
decision criteria (White et al., 2012), and adjustments in response
caution (Mansfield et al., 2011; van Maanen et al., 2011; Ho
et al., 2012). We argue that such model-based analysis of neural
data has particular promise for investigations of individual/group
differences because populations might differ in multiple decision
components (e.g., drift rates and boundary separation), and these
differences must be accounted for when probing neural activity.

The use of choice RT models to relate decision components
to neural activity has the additional advantage that it can
be added to future and existing studies with relatively little
additional work. RT data that have been previously collected
can be analyzed with these models in a post hoc fashion,
and future studies require few, if any, adjustments to the

experimental design to result in data that are suitable for this
type of analysis. Further, statistical packages have been designed
in R (Wagenmakers et al., 2007), MATLAB (Vandekerckhove
and Tuerlinckx, 2008), and Python (Wiecki et al., 2013) to
implement these analyses in a user-friendly manner. Thus
cognitive neuroscience studies can be enhanced by simply
adding the model-based analysis to the pre-established
analysis pipeline. However, there are several considerations
and concerns that must be addressed for this type of
model-based cognitive neuroscience, which are described
below.

CONSIDERATIONS FOR MODEL-BASED
COGNITIVE NEUROSCIENCE

There are myriad concerns for employing models like the DDM
or LBA to relate behavior to underlying cognitive processes.
Given the restricted scope of this commentary, we will focus only
on the most pressing consideration here and point interested
readers to excellent overviews by de Hollander et al. (2015) and
Forstmann andWagenmakers (2015) for additional information.
The primary concern for performing model-based studies of
individual differences in neural activity is to ensure that the
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parameters estimated from the model provide accurate measures
of the different decision components for each participant. This
involves two related concerns: first that the model assumptions
are appropriate for the experimental task, and second that there
are a sufficient number of observations to constrain the estimated
parameters. The latter concern is especially relevant for studies
of individual differences in brain activity because there are often
limits to how many observations can be collected due to practical
constraints like the cost of scanning time for fMRI, and the focus
on individual differences disallows the practice of pooling data
across participants.

Assessing the appropriateness of the model for behavioral
data is typically conducted by ensuring that the model “fits”
the data. This can be done by simulating data from the best-
fitting parameters and comparing them to the observed data to
check for concordance. If the predicted data from the model
align with the observed data, it provides more confidence that
the model is appropriate for the task. The DDM and LBA have
been shown to successfully account for data from a range of
tasks, including recognition memory (Criss, 2010; Starns and
Ratcliff, 2014), lexical decision (Ratcliff et al., 2004;Wagenmakers
et al., 2008), perceptual processes (Ratcliff and Rouder, 1998),
inhibitory control (Cohen-Gilbert et al., 2014; White et al., 2014),
and emotional classification (White et al., 2015).

However, other tasks exist that do not match the assumptions
of the standard models. Specifically, tasks in which the decision
evidence changes over the course of a trial, such as executive
function and conflict tasks, are inconsistent with the standard
assumption of a constant drift rate in the DDM and LBA.
For tasks like these, augmented versions of the DDM and
LBA can be created to capture the nature of the time-varying
decision evidence. For example, DDMs for conflict tasks have
been developed to capture the effects of engaging executive
function (Hubner et al., 2010; White et al., 2011; Ulrich et al.,
2015), and LBA models have been developed to account for
changing decision evidence (Holmes et al., 2016). Overall, it is
crucial to establish that the model assumptions are appropriate
for the data being analyzed, otherwise the estimated parameter
values lack validity and should not be correlated with neural
activity.

A related concern about the model parameters has to do
with having sufficient data to constrain the estimated parameter
values. Models like the DDM and LBA require a fairly large
number of observations to constrain the fitting process and result
in accurate parameter recovery. This is because the parameter
estimates are based on the RT distributions for correct and error
trials. Thus if there are only three errors in a condition, the data
are insufficient to estimate the RT distribution and constrain the

parameter estimates. This is a practical concern for studies using
fMRI or EEG, which are often limited in terms of the amount
of data that can be collected. Fortunately there are techniques
for dealing with limited data, including using filler conditions
with many observations to constrain parameter estimates for
conditions with few observations (White et al., 2010a), employing
a Hierarchical Bayesian version of the models for situations with
sparse or missing data (Turner et al., 2013a,b; Wiecki et al., 2013)
and collecting additional behavioral data outside of the MRI or
EEG session to increase the number of observations (Mulder
et al., 2012; White et al., 2012).

Overall, model-based studies of neural activity must ensure
that the parameter values estimated from the data are valid
indices of the components of interest. It is incumbent upon
researchers to demonstrate that the estimated parameters are
valid indices of the underlying decision components by ensuring
that (i) the model assumptions are appropriate for the task data
to which it is applied (e.g., the model fits the data), and (ii) there
are sufficient observations to constrain the model fitting process.
Fortunately, there are a range of tasks and analytical approaches
to ensure the success of these methods.

CONCLUSION

Choice RT models like the DDM and LBA provide an elegant
analytical approach to relating individual differences in cognitive
processes to neural activity. Compared to traditional analyses
with RTs or accuracy, the model-based analyses can provide
greater sensitivity for observing individual differences in neural
activation, and greater specificity for relating these differences
to specific cognitive components of task performance. These
advantages are particularly relevant for comparing neural activity
across individuals or groups that might differ in more than one
component (e.g., response caution and memory strength). Such
analyses can be readily added to most existing and future studies,
and have great potential to enhance the process of relating
individual or group differences in behavior, neural processes, and
cognitive mechanisms.
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