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Abstract
Purpose  COVID-19 is still showing a tendency of spreading around the world. In 
order to improve the subsequent control of COVID-19, it is essential to conduct a 
study on measuring and predicting the scale of the outbreak in the future.
Methods  This paper uses rolling mechanism and grid search to find the best frac-
tional order of Fractional Order Accumulation Grey Model (FGM). Buffer level is 
proposed based on the general form of weakening buffer operator to measure the 
effect of government control measurements on the epidemic. And the buffer level is 
associated with the Government Response Stringency index and the Mobility Index.
Results  Firstly, the model proposed in this paper dominates the ARIMA model 
which has been widely used in predicting the confirmed COVID-19 cases. Secondly, 
in the process of using the buffer level to modify the FGM, this paper finds that gov-
ernment measurements require the active cooperation of the public and often have a 
time lag when they are effective. Only when government increase its stringency and 
the public observe the order can the spread of COVID-19 be slowed down. If there 
is only the controlling measure and the public does not react actively, it will not 
slow down the epidemic. Thirdly, according to the Mobility Index and Government 
Response Stringency Index in December, this paper predicts the cumulative con-
firmed cases of the end of January in different scenarios according to different buffer 
levels. The study suggests that the world should continue to maintain high vigilance 
and take corresponding control measures for the outbreak of COVID-19.
Conclusions  Government’s control measures and public’s abidance are both impor-
tant in this battle with COVID-19. Governments control measures have time-lag 
effect and the time lag is about 9  days. When the government increases its strin-
gency and the public cooperates with the government, we must consider the weaken 
buffer operator with proper buffer level in the prediction process. These prediction 
methods can be considered in the prediction of COVID-19 confirmed cases in the 
future or the trend of other epidemics.
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1  Introduction

COVID-19 caused by SARs-CoV-2 continues to spread around the world today, and 
the earliest appearance of COVID-19 symptoms can be traced back to December 1, 
2019 [12]. On January 30, 2020, the World Health Organization declared the out-
break of COVID-19 as PHEIC (Public Health Emergency of International Concern). 
At this time, a total of 9692 cases were confirmed in China, and there were 98 cases 
in 18 countries except China. As COVID-19 continues to spread between countries, 
the World Health Organization announced on March 11, 2020, that COVID-19 
may have constituted a pandemic. At this time, a total of 121,190 cases were con-
firmed globally, spreading across all continents. As of November 26, 2020, a total of 
60,110,143 cases were confirmed globally, and the trend continues to rise, as shown 
in Fig.  1. With the spread of COVID-19 around the world, it has put great pres-
sure on the global health system and the world economy. In order to effectively con-
trol the COVID-19, countries adopt methods such as tracking and isolating infected 
patients to cut off the spread of the virus. The World Health Organization and sci-
entists from various countries work together to develop related vaccines for treating 
infected patients and enhancing the immunity of those who are susceptible to the 
virus. With the successful development of the vaccine, people are confident that the 
virus will be defeated in the long term. For now, however, predicting future trends 

Fig. 1   Global cumulative confirmed cases by regions. Note: The histogram shows the cumulative number 
of confirmed cases in various regions since April, and the cumulative number of confirmed cases world-
wide is mainly distributed in Asia, Europe, and North America
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and the scale of confirmed cases is still essential, which can improve the subsequent 
control of COVID-19.

Regarding the prediction of confirmed cases, it becomes a hot topic since the 
outbreak of COVID-19. Because accurate prediction of confirmed cases can help 
the government to arrange appropriate preventive measures and allocate medical 
resources scientifically, in the past few months, hundreds of related research arti-
cles have been published. Generally speaking, the models used in these articles fall 
into three categories. The first category uses linear regression model, among which 
ARMA/ARIMA is the most commonly used model. For example, Sharma et  al. 
[27] used ARIMA (2,1,0) to forecast the short-term infected and recovered cases for 
Saudi Arabia. de Lima et al. [7] integrated ARIMA models for the real-time predic-
tion of cumulative cases of Covid-19 in Brazil. Choi and Ahn [4] forecasted daily 
imported COVID-19 cases in South Korea with ARIMAX. Malki et  al. [21] used 
the seasonal ARIMA model to predict the spread of COVID-19 in several selected 
countries. Other similar researches include Abuhasel et al. [1, 28, 29], Singh et al. 
[28, 29], and Yousaf et al. [36]. The other linear methods include quantile regression 
[23] and Kalman Filter [28, 29, 37]. The second uses artificial intelligence methods, 
since the increase of confirmed cases is nonlinear. With this in mind, Hazarika and 
Gupta [11] proposed a wavelet-coupled random vector functional link networks to 
predict cumulative number of positive cases for five countries. Chimmula and Zhang 
[3] adopted LSTM networks to predict the future infections in Canada. Other non-
linear growth models constitute the third category. Susceptible-infected-recovered 
(SIR) model is the most used models in this category. It is very popular in simu-
lating the trend of epidemic. Liu et  al. [16] used a modified SIR model to simu-
late the spread of COVID-19 in the USA. Ibrahim and Al-Najafi [13] developed a 
generalized SEIR (susceptible-exposed-infected-recovered) model for the spread of 
COVID-19, taking into account mildly and symptomatically infected individuals. 
Venkatasen et al. [30] and Sarkar et al. [26] adopted different forms of SIR model 
for India. Besides SIR model, Mahanty et  al. [20] used Gompertz and Verhulst 
model to predict the number of infected cases for the next 28 days.

With reference to the three mainstream forecasting methods, we find that the first two 
methods are data-driven methods. Most of them use the number of confirmed cases only, 
such as Sharma et al. [27], Chimmula and Zhang [3], and Hazarika and Gupta [11]. The 
researches using the SIR model usually involves the impact of prevention measurements. 
For example, M. Liu et al. [16] took into account the effect of social distancing. Ven-
katasen et al. [30] examined the effectiveness of containment and lock-down.

Uncertain systems often have some problems, such as incomplete information 
and inaccurate data. As a result, constructing complex models often fails to achieve 
corresponding accurate results. Under the condition of less data environment, the 
grey system theory makes full use of the known “minimum information,” gives 
priority to extract the more valuable “new information,” and realizes the modeling 
of the whole system. It can be used to predict the changing trend of the system in 
the future (Deng, 1982; [19]). In order to improve the accuracy of prediction, many 
scholars derived more models from the traditional GM (1,1), such as Grey Verhulst 
model [8, 32, 38], Grey Bernoulli model [2, 33], and Fractional Order Accumulation 
Grey Model [35].
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Grey system models are also applied to the prediction of COVID-19 epidemic, 
because it is proved to be effective for the data prediction of exponential growth. 
Due to the exponential growth in the number of cumulative confirmed cases, Şahin 
and Şahin [25] employed GM (1,1), nonlinear grey Bernoulli model (NGBM (1,1)) 
and fractional nonlinear grey Bernoulli model (FANGBM (1,1)) to predict the num-
ber of cumulative confirmed cases. Liu et al. [17] suggested that Fractional Order 
Accumulation grey model can accurately predict the spread of disease. Both studies 
focused on early-stage trends of COVID-19, but neither took into account the impact 
of social distancing, home quarantine order, and lock down. However, with the pas-
sage of time, the world is deeply involved in the secondary impact of COVID-19. 
Attention to the epidemic trend of the disease remains crucial. It is of more practi-
cal significance to predict the epidemic trend of the disease taking into account the 
influence of prevention and containment.

When the development of the system is disturbed, the future trend of the system 
changes accordingly. The problem in forecasting at this time does not lie in the pros 
and cons of the model, but in the fact that the information provided by the system 
cannot accurately reflect the future trend. It is difficult to use the information directly 
to make accurate prediction. In order to deal with this problem in system predic-
tion, Liu [18] proposed the concept of buffer operator in the grey system predictive 
method. The operator which slows down the growth rate of the sequence is called the 
weakening buffer operator (WBO). Many scholars have proposed a variety of buffer 
operators based on different data to accurately predict the system with disturbance 
[5, 6, 31, 34], among which Wei and Kong [34] summarized the form of buffer oper-
ator and proposed a general form. As the COVID-19 spreads across the world, many 
disturbance factors are added to the prediction of the cumulative confirmed cases, 
which has an impact on the future trend. With regard to this problem, home quaran-
tine order, gathering restriction, school closure, and international movement restric-
tion issued by the government can effectively slow the spread of the virus, keep the 
public from being infected, and finally achieve the effect of controlling the spread of 
the epidemic. However, the implementation of the control measures varies greatly 
among the people of different countries, and the public’s awareness of the COVID-
19 and related control measures lags behind. When predicting the future trend of 
the cumulative number of confirmed cases, the introduction of relevant government 
control measures and public response should also be taken into consideration.

In China, for example, after experts confirmed that the SARs-CoV-2 could be 
transmitted from person to person, a lockdown is imposed in Wuhan, China, on Jan-
uary 23, 2020. Other control measures are further taken, such as gathering restric-
tion, mandatory wearing masks in public places, partial traffic control and restriction 
on international movement. Since February 2, home quarantine orders have been 
comprehensively strengthened nationwide. China is capable of control the COVID-
19 epidemic soon because it adopts a comprehensive approach to control the spread 
of the disease. This is diametrically opposed to the early concept of herd immu-
nity in some western countries, which underestimates the severity of the epidemic 
and delays control measures such as home quarantine orders. China’s COVID-19 
epidemic occurred in January, which coincided with the Spring Festival. It is also 
a time when China’s annual Spring Festival travel rush is about to reach its peak. 
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Visiting relatives and friends during the Spring Festival has been a Chinese tradition 
for thousands of years. Large-scale interpersonal communication activities acceler-
ated the spread of the disease and many people did not realize the seriousness of 
the COVID-19 epidemic in the early stage after the lockdown in Wuhan. The Chi-
nese government made a great deal of publicity on the prevention and control of the 
COVID-19 epidemic, as well as the full implementation of control measures, includ-
ing persuasion to those who failed to comply with the regulations and accountability 
for those who seriously violated the regulations. More and more Chinese took the 
initiative to implement control measures and stay at home. As shown in Fig. 2, this 
leads to a peak in the number of new daily cases in China on February 12, and the 
growth rate has slowed significantly since March.

The indicator used to measure the level of government control measures in Fig. 2 
comes from the Government Response Stringency Index (hereinafter referred to as 
“the Stringency Index”) constructed by scholars from University of Oxford.

In this paper, we use rolling fractional order accumulation grey model to predict 
the cumulative number of confirmed cases in various countries. In order to include 
control measures and public response in the prediction process to get more accurate 
results, we propose buffer level ∆ based on the general form of weakening buffer 
operator proposed by Wei and Kong [34]. We calculate the buffer level ∆ from the 
historical data of countries and introduce appropriate buffer level in the prediction 
according to the actual control measures and public response of each country. The 
introduction of different levels of buffer level can not only enhance the forecasting 
accuracy, but also provide predicted values in different scenarios.

The reminder of the research is arranged as follows: Section  2 introduces the 
model and methods, including FGM and buffer level. Section 3 shows the model 

Fig. 2   China daily confirmed cases and Government Response Stringency Index (January 21, 2020, 
to March 14, 2020). Note: The red line depicts the changes in China’s Stringency Index and the blue 
bars depict the number of daily confirmed cases in China. With the strengthening of the Chinese gov-
ernment’s control measures, the number of daily confirmed cases in China peaked on February 12 and 
decreased significantly in March
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accuracy and application of buffer level. Section 4 presents the predictive results of 
the cumulative number of confirmed cases in these countries. The conclusions are 
drawn in the Section 5.

2 � Models and Methods

2.1 � Introduction of Fractional Order Accumulation Grey Model

GM (1,1) is the most classical and basic model in grey system theory. Driven by 
practice, academic research on GM (1,1) has been very active over the past three 
decades. Scholars derive many models from the traditional GM (1,1) to improve the 
forecast precision and apply them to more new fields. Fractional Order Accumula-
tion Grey Model (FGM) is one of these derived models.

A standard FGM (1,1) is established as follow.

Definition 1  It is assumed that the original sequence is.

X(0) is a non-negative sequence, while the r-AGO (0 < r < 1) sequence of X(0) i s.
X(r) =

(
x(r)(1), x(r)(2),⋯ , x(r)(n)

)
 , in which

According to the definition of Gamma function, X(r) can be rewritten in the form 
of Gamma function as follow.

Z(r) represents the generated mean sequence of consecutive neighbors of X(r).
Z(r) =

(
z(r)(1), z(r)(2),⋯ , z(r)(n)

)
 , in which

Definition 2  If X(0),X(r),Z(r) are described as Definition 1, the following formula is 
obtained.

This formula is the original form of FGM (1,1), and

X
(0) =

(
x
(0)(1), x(0)(2),⋯ , x(0)(n)

)
,

(1)x
(r)(k) =

k∑
i=1

C
k−i
k−i+r−1

x
(0)(i), k = 1,2,… , n

(2)x
(r)(k) =

k∑
i=1

Γ(k − i + r)

Γ(k − i + 1) ⋅ Γ(r)
x
(0)(i), k = 1, 2,… , n

(3)z
(r)(k) =

x(r)(k) + x(r)(k + 1)

2
, k = 1,2,… , n − 1

(4)x
(r)(k) − x

(r)(k − 1) + az
(r)(k) = u

(5)dx(r)

dt
+ ax

(r) = u
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is the whitening equation of the FGM (1,1).

Theorem  1  If X(0),X(r) are described as Definition 1, the parameter vector 
â = [a, u]T can be estimated by the least square method as follows.

â=
(
BTB

)−1
BTY  , where

The solution to the whitening equation of FGM (1,1) is shown as follows

By substituting the parameter vector â = [a, u]T into the formula (7), the fitting 
values sequence X̂(r) can be obtained. The fitting value sequence X̂(0) can be calcu-
lated by the r-order inverse accumulation.

2.2 � Rolling Mechanism

The rolling mechanism updates the initial value of the sequence, excludes the early 
information that loses its timeliness from the sequence, and adds new information with 
timeliness to the sequence, which can effectively enhances the predictive accuracy. 
This is in line with the principle of new information priority, which is one of the basic 
principles in grey system theory. The effect of new information on cognition is greater 
than that of old information, which is the information view of the whole grey system 
theory [19]. Many literatures that use the grey system method to model the confirmed, 
recovered, and death cases of COVID-19 adopt the rolling mechanism [17, 38]. The 
example of rolling mechanism used in this paper is shown in Fig. 3.

The original sequence is x(0)(1), x(0)(2),⋯ , x(0)(n − 1), x(0)(n) . Rolling sequence 
length is set first, which is n − 1 in Fig.  3. The FGM (1,1) is established accord-
ing to the rolling sequence x(0)(1), x(0)(2),⋯ , x(0)(n − 1) . In the in-sample predic-
tion, the predicted value x̂(0)(n) is used to evaluate the predictive accuracy of the 
model. When rolling sequence is updated, the initial value of the rolling sequence is 

(6)B =

⎡
⎢⎢⎢⎢⎣

−
x(r)(1)+x(r)(2)

2
1

−
x(r)(2)+x(r)(3)

2
1

⋮

−
x(r)(n−1)+x(r)(n)

2
1

⎤
⎥⎥⎥⎥⎦
, Y =

⎡
⎢⎢⎢⎣

x(r)(2) − x(r)(1)

x(r)(3) − x(r)(2)

⋮

x(r)(n) − x(r)(n − 1)

⎤
⎥⎥⎥⎦

(7)x̂
(r)(k) =

(
x
(0)(1) −

u

a

)
e
−a(k−1) +

u

a

(8)
X̂
(1) =

(
x̂
(1)(1), x̂(1)(2),⋯ , x̂

(1)(n + 1),⋯
)

=
(
x̂
(r)(1−r)(1), x̂(r)(1−r)(2),⋯ , x̂

(r)(1−r)(n + 1),⋯
)

(9)x̂
(0)(k) = x̂

(1)(k + 1) − x̂
(1)(k)

(10)X̂
(0) =

(
x̂
(0)(1), x̂(0)(2),⋯ , x̂(0)(n + 1),⋯

)

503Journal of Healthcare Informatics Research (2021) 5:497–528



1 3

excluded and the original value x(0)(n) is added. In the out-of-sample prediction, the 
real value x(0)(n + 1) remains unknown. So, when rolling sequence is updated, the 
initial value of the rolling sequence is excluded and the predicted value x̂(0)(n + 1) is 
added instead of the real value. As it goes on, the new predicted value x̂(0)(n + 2) 
will be added in the next update. Through the mechanism above, we make full use of 
all the new information in the original sequence and exclude it when its timeliness 
weakens, which can effectively improve the predictive accuracy.

2.3 � Grid Search

Compared with the GM (1,1) model, FGM (1,1) is characterized by the use of fractional 
order accumulation. According to the research of Wu et  al. [35], when the fractional 
order r increases, the FGM model increases the weight of the old information. Therefore, 
when r is relatively small, FGM (1,1) is suitable for modeling short memory process. 
Conversely, when r is relatively large, FGM (1,1) is suitable for modeling the long mem-
ory process. In this paper, we use grid search to optimize the fractional order r.

Grid search is an enumeration method for adjusting parameters. It is very suitable for 
small-scale and limited parameter adjustment. In the previous literatures, the fractional 
order r is accurate to one decimal place. We extend it to three decimal places, which 
generate 1000 grids on interval (0,1). We compare the in-sample predictive accuracy 
obtained by 1000 grids, select r with the highest predictive accuracy, and output its 
subsequent prediction value. The flow chart of the rolling FGM (1,1) is shown in Fig. 4.

2.4 � Buffer Operator and Buffer Level

In order to include control measures and public response in the prediction process 
to improve the forecasting accuracy, we propose buffer level ∆ based on the general 
form of weakening buffer operator proposed by Wei and Kong [34]. They summa-
rized the form of buffer operator and proposed a general form as follows.

Proposition 1  Let the original sequence is assumed to be

Fig. 3   Rolling mechanism of FGM (1,1). Note: The original sequence is x(0)(1), x(0)(2),⋯ , x(0)(n − 1), x(0)(n) . 
The FGM (1,1) is established according to the rolling sequence x(0)(1), x(0)(2),⋯ , x(0)(n − 1) . In the in-sample 
prediction, the predicted value x̂(0)(n + 1) is estimated by the updated original sequence. In the out-sample pre-
diction, the predicted value x̂(0)(n + 2) is estimated both by the updated original sequence and the predicted 
value x̂(0)(n + 1)
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� =
(
�1,�2,⋯ ,�n

)
 is its corresponding weight vector, in which 𝜔i > 0, i = 1,2,… , n . 

The sequence with buffer operator X(0)D = (x(0)(1)d, x(0)(2)d,⋯ , x(0)(n)d) , in which

When 𝛼 < 0 , D is a weakening buffer operator (WBO) for both monotonically 
increasing sequence and monotonically decreasing sequence.

When 𝛼 > 0 , D is a strengthening buffer operator (SBO) for both monotonically 
increasing sequences and monotonically decreasing sequences.

When � = 0 , D is an identity operator, which means there is no buffering.

When the control measures are reinforced and the public respond actively, 
the growth trend of the cumulative number of confirmed cases slow down. 
Therefore, we only consider the WBO and identity operator in the general form, 
when � ≤ 0 . We want to obtain the buffer operator through historical data, 
so we propose buffer level ∆ based on the general form of weakening buffer 
operator.

We can obtain Δ from the formula Δ = −� . As � ≤ 0 , it means that Δ ≥ 0 . For sim-
plicity, it is assumed that �1 = �2 = ⋯ = �n . Then, formula (11) can be simplified to

When Δ=0,x(0)(k)d = x(0)(k) , D is an identity operator.

When Δ=1,x(0)(k)d = 
∑n

i=k
x(0)(i)

n−k+1
 , D is an average weakening buffer operator 

(AWBO) [18].

Proposition 2  Δ is defined as buffer level. When x(0)(k) > 1 , as Δ increases, the 
weakening effect on the sequence will be enhanced.

Proof  Let Δ1 < Δ2 , which means the original sequency will be buffered at differ-
ent levels. The buffer operators are D1 and D2 separately. The sequency with buffer 
operator D1 is.

And the sequency with buffer operator D2 is

X
(0) =

(
x
(0)(1), x(0)(2),⋯ , x(0)(n)

)

(11)x
(0)(k)d = x

(0)(k) ⋅

�
x
(0)(k)∕

∑n

i=k
wix

(0)(i)∑n

i=k
wi

�

(12)
x(0)(k)d = x(0)(k) ⋅

�
x(0)(k)+x(0)(k+1)…….+x(0)(n)

(n−k+1)⋅x(0)(k)

�Δ

= x(0)(k) ⋅
� ∑n

i=k
x(0)(i)

(n−k+1)⋅x(0)(k)

�Δ

X
(0)
D1 = (x(0)(1)d1, x

(0)(2)d1,⋯ , x(0)(n)d1)
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In which,

When X(0) is monotonically increasing,

X
(0)
D2 = (x(0)(1)d2, x

(0)(2)d2,⋯ , x(0)(n)d2)

x
(0)(k)d1 = x

(0)(k) ⋅

� ∑n

i=k
x(0)(i)

(n − k + 1) ⋅ x(0)(k)

�Δ1

x
(0)(k)d2 = x

(0)(k) ⋅

� ∑n

i=k
x(0)(i)

(n − k + 1) ⋅ x(0)(k)

�Δ2

x(0)(k)d2

x(0)(k)d1
=

[
n∑
i=k

x
(0)(i)

]Δ2−Δ1

⋅ (n − k + 1)Δ1−Δ2 ⋅ x
(0)(k)

Δ1−Δ2

Fig. 4   Flow chart of rolling 
FGM (1,1). Note: This is the 
flow chart of the rolling FGM 
(1,1) model. After obtaining 
the raw data, we set the rolling 
sequence length and generate 
the initial rolling sequence. 
After the optimal parameter is 
calculated by grid search, we 
establish the FGM (1,1) model 
and update the rolling sequence 
until the predictive aim is 
reached
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So

When X(0) is monotonically decreasing,

So

To be specific, the sequence curve of X(0)D2 is flatter than X(0)D1 . In other words, 
through buffering, the increasing or decreasing speed is reduced. The larger the 
value of Δ is, the larger the speed is reduced.

Because Δ is the negative value of α, the weakening operator D constructed from 
Δ satisfies three axioms of buffer operator proposed by S. Liu [18].

The calculation of buffer level takes China and Japan as an example. The early 
epidemic control in both China and Japan achieved certain results. After lockdown 
was implemented in Wuhan, China, on January 23, control measures were strength-
ened comprehensively nationwide. China’s Stringency Index rose rapidly from 26.39 
before the lockdown of Wuhan to 81.02 in early March. The increase in the number 
of daily confirmed cases has been significantly slow since March, and the spread of 
the disease has been initially controlled. At the beginning of March, the buffer level 
is estimated by constructing a corresponding weakening buffer operator to minimize 
the MAPE (mean absolute percentage error) of the sequence in a period of time 
after March. It can be estimated that the buffer level ∆ of the China’s epidemic con-
trol in early March is about 1.5, which is bigger than the buffer level of AWBO.

The early epidemic of COVID-19 in Japan is shown in Fig.  5. With the emer-
gence of a small-scale spread of COVID-19 on Feb. 6, 2020, the Japanese govern-
ment gradually began to take measures such as gathering restriction, international 
movement restriction, and information campaigns. On April 7, the Japanese govern-
ment issued the home quarantine order. In the following week, Japan’s Stringency 
Index reached 47.22, which was the peak of the index as of November 31.

We use the Google COVID-19 mobility dataset to construct a Mobility Index. 
This dataset contains the mobility trend of people in various places compared to the 
baseline (Jan 3 to Feb 6). We choose retail and recreation mobility and residential 
mobility. Generally speaking, reduction in the mobility of retail and recreation and 
increase in the mobility of residential means that people respond actively to gov-
ernment control measures. However, the raw data of mobility has obvious weekly 
periodicity. Therefore, we process the raw data in a seven-day moving average in 

≥ [(n − k + 1)x(0)(k)]
Δ2−Δ1

⋅ (n − k + 1)Δ1−Δ2 ⋅ x
(0)(k)

Δ1−Δ2
= 1

x
(0)(k)d2 ≥ x

(0)(k)d1

x(0)(k)d2

x(0)(k)d1
=

[
n∑
i=k

x
(0)(i)

]Δ2−Δ1

⋅ (n − k + 1)Δ1−Δ2 ⋅ x
(0)(k)

Δ1−Δ2

≤ [(n − k + 1)x(0)(k)]
Δ2−Δ1

⋅ (n − k + 1)Δ1−Δ2 ⋅ x
(0)(k)

Δ1−Δ2
= 1

x
(0)(k)d1 ≥ x

(0)(k)d2
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order to smooth the unnecessary periodicity. As the retail and recreation mobility 
is almost all negative, we change it into additive inverse value and accumulate it 
with residential mobility. We construct an index namely Mobility Index, which can 
reflect public response to COVID-19 and government control measures.

Since Google does not have relevant services in China, we calculate the buffer 
level of China on the basis of the Stringency Index. For Japan and other countries, 
we can take both Stringency Index and Mobility Index into consideration. Since the 
implementation of the home quarantine order in April, mobility has increased sig-
nificantly and the epidemic has been effectively controlled. The buffer level of Japan 
was estimated from late April to mid-May, which is about 0.9. It is slightly smaller 
than 1, the buffer level of AWBO.

3 � Empirical Analysis

3.1 � Brief Introduction to Datasets

The raw data of Stringency Index is collected from publicly available sources such 
as news articles and government press releases and sorted by the team from Oxford 
University. The raw data of Mobility Index is collected and sorted by Google. The 
data of cumulative confirmed cases used in this paper are collected from Center for 
Systems Science and Engineering (CSSE) at Johns Hopkins University. The data of 
cumulative confirmed cases used in this paper for training and testing is from Janu-
ary 2 to November 26, 2020, and the total length of the sequence is 330. Nine coun-
tries are contained in our model and prediction, including China, Japan, the USA, 
France, the UK, Germany, Brazil, India, and Argentina.

3.2 � Rolling Sequence Length Selection

We first select the optimal rolling sequence length for each country. Table 1 reports 
the MAPE of different rolling sequence lengths in nine countries. Except for China, 
which has large outliers in the early stage when the length is 7 and 8, the MAPEs of 
these countries are all less than 10.

It is initiatively proved that rolling FGM (1,1) can well fit the cumulative number 
of confirmed cases in these countries. In this paper, the length with the minimum 
MAPE is selected as the optimal length of the corresponding country. The actual 
value and predicted value by the optimal rolling FGM (1,1) in various countries are 
shown in Fig. 6. The other eight countries show an obvious growth trend, while the 
cumulative number of confirmed cases in China is stable.

3.3 � Comparison of Model Accuracy

In this paper, rolling FGM (1,1) is compared with the ARMA, which is the most 
commonly used time series model in modeling the cumulative confirmed cases. The 

508 Journal of Healthcare Informatics Research (2021) 5:497–528



1 3

specifications of ARMA are different for different countries. We use AIC and BIC 
to choose the best order of ARMA. The specifications of ARMA are shown in the 
Appendix (Table 7). We use the data from January 2 to October 31 as the training 
set and the data from November 1 to November 26 as the test set. Table 2 reports 
the predictive accuracy of a 14-day test set (from November 1 to November 14), 
and Table 3 reports the predictive accuracy of a 26-day test set (from November 1 
to November 26). The predictive accuracy is calculated in both MAPE and RMSE.

According to Tables 2 and 3, the predictive accuracy of the rolling FGM (1,1) 
is better than that of the ARMA in 14-day and 26-day test set. The MAPEs of the 
14-day test sets in all countries are less than 10%, and the MAPEs of the 26-day 
test sets are less than 15%. This indicates that the FGM (1,1) model can effec-
tively predict the cumulative number of confirmed cases. Figure 7 compares the 
performance of ARMA and FGM (1,1) in the 26-day test set. With the exception 
of Brazil and India, the FGM (1,1) model shows good predictive ability.

With reference to the forecast of cumulative confirmed cases in Brazil and 
India in November, our model is not better than ARMA; our model predicts 
that there will be more cumulative confirmed cases in Brazil and India. In fact, 
related studies point out that the official cumulative confirmed cases of Brazil 
and India may be understated. Marinho et al. [22] pointed out that there was lit-
tle statistical correlation in the number of confirmed cases in Brazil, because as 
of October 29, 2020, only less than 7% of the population had been tested. The 
number of confirmed cases in Brazil was underestimated due to the limitation 
of testing capacity and speed. Mukherjee [24] pointed out that the test speed 
in India was lower than that in the early stage of the outbreak, and the exten-
sive use of only RAT (Rapid Antigen Test) instead of RAT + RT-PCR testing 

Fig. 5   Japan daily confirmed cases, Government Response Stringency Index, and Mobility Index (Febru-
ary 6, 2020, to May 8, 2020). Note: The red line depicts the changes in Japan’s Stringency Index. The 
orange line depicts the changes in Japan’s Mobility Index, and the bar chart depicts the number of daily 
confirmed cases in Japan. With the strengthening of the Japan government’s control measures and the 
public’s awareness to the epidemic of COVID-19, the number of daily confirmed cases in Japan peaked 
in the early April and decreased significantly on May
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protocol led to a large number of false negatives in the test results, which seri-
ously affected the reliability of Indian official data. As a result, FGM (1,1) which 
proves to be effective for the data prediction of exponential growth does not 
achieve excellent predictive results.

3.4 � Application of Buffer Level

As the increase of control measures and public response have a weakening effect 
on the cumulative confirmed number in the future, it is possible that using all the 
new information and excluding the old information timely may not predict the 
future trend accurately. This feature appears in the prediction of cumulative con-
firmed cases in Italy, of which MAPE reaches 25.2%. The problem comes down to 
the ignorance of the control measures and public response. Applying the buffer level 
to adjust the rolling sequence of Italy, the result with better predictive accuracy is 
obtained.

Since the end of October, Italy has strengthened control measures such as traf-
fic control and home quarantine order, making the Stringency Index gradually 
increase from 50 to 66.7 in early November. As shown in Fig.  8, the Mobility 
Index increases at the same time. This indicates that people actively respond to 
these policies and their lifestyles change partly. These factors have a weakening 
effect on the future trend. Using FGM (1,1) only to predict produces a relatively 
large error.

In the middle and late March of 2020, the Italy Government implemented rel-
atively strict control measures and the public complied with these measures. This 
allows the growth trend of COVID-19 epidemic to be controlled, so we use the 
historical data to estimate the buffer level to be 0.55 at that time. By applying the 
buffer level to the data in early November (9 or 10 days after the increase of the 

Table 1   MAPE of different rolling sequence lengths for FGM

Note: We calculate the MAPE of the FGM (1,1) model with a rolling sequence length of 5–10 to select 
the optimal rolling sequence length for each country. Except for the USA, Britain, and Germany, the 
optimal rolling sequence length is 6, and the optimal rolling sequence length for other countries is 5

Country Rolling sequence length

L = 5 L = 6 L = 7 L = 8 L = 9 L = 10

China MAPE (%) 2.73 7.307 44.048 213.25 3.089 7.694
Japan MAPE (%) 1.138 1.175 1.215 1.278 1.35 1.398
USA MAPE (%) 2.248 2.246 2.404 2.511 2.618 2.638
France MAPE (%) 2.573 2.553 2.579 2.73 2.975 2.905
UK MAPE (%) 2.499 2.063 2.28 2.278 2.361 2.361
Germany MAPE (%) 2.493 2.613 2.838 2.927 3.048 2.899
Brazil MAPE (%) 2.825 2.975 3.073 3.222 3.96 4.388
India MAPE (%) 2.837 4.464 6.263 7.392 7.924 7.988
Argentina MAPE (%) 2.527 2.65 3.834 3.978 4.2 4.416
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Stringency Index), the predictive accuracy is greatly improved, with MAPE decreas-
ing from 25.2 to 2.84%. The MAPE of FGM in the 14-day test set is the same as 
that of ARMA, both at 0.89%. The Stringency Index increased from 66.67 to 79.85 
in November 6, and the Mobility Index continued to increase at the same time. By 
applying the buffer level to the data in November 15 (9 or 10 days after the increase 
of the Stringency Index), the predictive accuracy of FGM (1,1) is better than that of 
ARMA in the 12-day test set (from Nov 15, 2020, to Nov 26, 2020). The compari-
son of model accuracy is shown in Table 4. From the example of Italy, we find that 
government control measures require the active cooperation of the public and often 
have a time lag when they are effective. Applying the buffer level at that time can 
enhance predictive accuracy of FGM (1,1).

The result in France can provide a similar example. As shown in Fig.  9, the 
French government strengthened the control measures on October 30, 2020. The 
Mobility Index increased in the same time. However, it has only been implemented 
for 2 days. So, FGM is better than ARMA in predicting cumulative cases in 26-day 
test set (from Nov 1, 2020, to Nov 26, 2020).

We use the historical data in the middle and late March of 2020 to estimate the 
buffer level to be 0.25 at that time. Applying the buffer level to the data of Novem-
ber 9 (9 or 10 days after the increase of the Stringency Index) can enhance the pre-
dictive accuracy in 18-day test set, which is shown in Table 5.

The example of the USA also supports our finding. As is shown in Fig.  10, 
the Stringency Index of the USA rose twice on November 8 and November 16. 
However, there is no significant increase in the Mobility Index, which means that 
Americans do not respond actively to the control measures. As a result, there is 
no weakening effect on the cumulative number of confirmed cases in the USA. 

Fig. 6   Predictive results of the cumulative cases in different countries using FGM (1,1). Note: The pic-
ture shows the predictive results of the cumulative cases in different countries using the FGM (1,1), and 
the MAPE of these models is less than 3%
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The cumulative number of confirmed cases in the USA continued to grow expo-
nentially throughout November. Better result is obtained by using FGM (1,1) 
with buffer level of 0.

The Stringency Index and Mobility Index of Brazil and India in the end of Octo-
ber and in November remain stable, as there is no weakening effect on the cumula-
tive number of confirmed cases. We do not use buffer level to improve our predic-
tive accuracy. Our model predicts that the cumulative number of confirmed cases in 
Brazil and India is much more than the reported number, mainly due to bias between 
actual number and reported number mentioned above (Figs. 11 and 12).

4 � Predictive Results in Different Scenarios

As the buffer level can be used to improve predictive accuracy in the test set, 
it can also be used to predict cumulative confirmed cases in different scenar-
ios. In this section, we predict the cumulative confirmed cases from January 1 
to 31, 2021, in Japan, the USA, France, Britain, Germany, Italy, Brazil, India, 
and Argentina based on the data as of December 31, 2020 in different scenarios. 
Different scenarios mean using different buffer levels to represent the mitiga-
tion effect of the coordination of control measures and public responses on the 
spread of the epidemic. We use the buffer levels of 0.55 and 0.9 as the bench-
mark, which is based on the early data in Italy and Japan. Δ = 0.55 means that 

Fig. 7   Comparison of model accuracy in different countries. Note: The picture shows the predictive 
results of the cumulative cases in different countries using the FGM (1,1) and ARMA. The prediction 
accuracy of FGM (1,1) is better than that of ARMA model except India and Brazil
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the country has effective epidemic control while Δ = 0.9 means that the country 
has better epidemic control.

4.1 � Japan

The cumulative number of confirmed cases in Japan as of December 31 was 
235,788. The actual number of confirmed cases in Japan in January 31 fall in the 
range of the predicted value with a buffer level of 0 to 0.9, and the it is most close to 
the predictive result with a buffer level of 0.55 (Fig. 13).

Fig. 8   Italy Government Response Stringency Index and Mobility Index. Note: The red line depicts the 
changes in Italy’s Stringency Index and the orange line depicts the changes in Italy’s Mobility Index. 
Since the end of October, Italy has strengthened control measures and people have actively responded to 
these policies

Table 4   Comparison of model 
accuracy in Italy

Note: Applying a buffer level in the FGM (1,1) can enhance the pre-
dictive accuracy of the model, and the predictive accuracy of FGM 
(1,1) is better than that of ARMA model

Model FGM FGM ARMA
Δ=0.55

26-day prediction (Nov 1, 2020, to Nov 26, 2020)
MAPE 25.2% 2.84% 0.89%
RMSE 429,147.3 59,699.84 11,607.61
14-day prediction (Nov 1, 2020, to Nov 14, 2020)
MAPE 10.67% 0.95% 0.95%
RMSE 131,542 10,785.85 9696.08
12-day prediction (Nov 15, 2020, to Nov 26, 2020)
MAPE 4.89% 1.12% 2.51%
RMSE 298,989.9 64,079.85 149,981.4
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4.2 � USA

The cumulative number of confirmed cases in the USA as of December 31 was 
20,098,800. Judging from the past trend, the cumulative number of confirmed cases 
in the USA has shown a trend of exponential growth since the end of October. The 
actual number of confirmed cases in the USA in January 31 fall in the range of the 
predicted value with a buffer level of 0 to 0.9, and it is most close to the predictive 
result with a buffer level of 0.55 (Fig. 14).

4.3 � France

The cumulative number of confirmed cases in France as of December 31 was 
2,620,425. Judging from the past trend, the growth rate of cumulative confirmed 

Fig. 9   France Government Response Stringency Index and Mobility Index. Note: The red line depicts the 
changes in France’s Stringency Index and the orange line depicts the changes in France’s Mobility Index. 
Since the end of October, France has strengthened control measures and people have actively responded 
to these policies

Table 5   Comparison of model 
accuracy in France (from Nov 9, 
2020, to Nov 26, 2020)

Note: Applying a buffer level in the FGM (1,1) can enhance the pre-
dictive accuracy of the model, and the predictive accuracy of FGM 
(1,1) is better than that of ARMA model

Model FGM FGM ARMA
Δ = 0.25

18-day prediction (Nov 9, 2020, to Nov 26, 2020)
MAPE 6.68% 3.3% 4.75%
RMSE 691,477.58 351,298.14 461,733.24

516 Journal of Healthcare Informatics Research (2021) 5:497–528



1 3

cases in France has decreased since the mid-late November. The actual number of 
confirmed cases in the France falls in the range of the predicted value with a buffer 
level of 0 to 0.9 (Fig. 15).

Fig. 10   United States Government Response Stringency Index and Mobility Index (October 22, 2020, 
to November 22, 2020). Note: The red line depicts the changes in America’s Stringency Index and the 
orange line depicts the changes in America’s Mobility Index. Since the end of October, there is no signif-
icant increase in the Mobility Index, which means that Americans do not respond actively to the control 
measures

Fig. 11   Brazil Government Response Stringency Index and Mobility Index (October 22, 2020, to 
November 22, 2020). Note: The red line depicts the changes in America’s Stringency Index and the 
orange line depicts the changes in Brazil’s Mobility Index. Since the end of October, the Stringency 
Index and Mobility Index of Brazil remain stable
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4.4 � UK

The cumulative number of confirmed cases in the UK as of December 31 was 
2,488,780. Judging from the past trend, the growth rate of cumulative confirmed 
cases in the UK has increased since the mid-December. The actual number of con-
firmed cases in the UK in January 31 fall in the range of the predicted value with a 
buffer level of 0 to 0.9, and it is most close to the predictive result with a buffer level 
of 0.9 (Fig. 16).

4.5 � Germany

The cumulative number of confirmed cases in Germany as of December 31 was 
1,756,248. Judging from the past trend, the cumulative number of confirmed cases 
in Germany has shown a trend of exponential growth since the end of October. The 
actual number of confirmed cases in Germany in January 31 is most close to the pre-
dictive result with a buffer level of 0.9, which is consistent with our finding (Fig. 17).

4.6 � Italy

The cumulative number of confirmed cases in Italy as of December 31 was 
2,107,166. Judging from the past trend, the growth rate of cumulative confirmed 
cases in Italy has decreased since the end of October. The actual number of con-
firmed cases in Italy in January 31 falls in the range of the predicted values, and 
it is most close to the predictive result with a buffer level of 0.9 (Fig. 18).

Fig. 12   India Government Response Stringency Index and Mobility Index (October 22, 2020, to Novem-
ber 22, 2020). Note: The red line depicts the changes in America’s Stringency Index and the orange 
line depicts the changes in India’s Mobility Index. Since the end of October, The Stringency Index and 
Mobility Index of India remain stable
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Fig. 13   Predictive result of cumulative confirmed cases in Japan. Note: The green line depicts the 
changes of actual cumulative confirmed cases and the other three lines depicted the changes of predictive 
cumulative confirmed cases using different FGM (1,1) model. FGM (1,1) with buffer level of 0 means 
that we do not apply the buffer level in the FGM (1,1). FGM (1,1) with buffer level of 0.55 means that 
we apply a buffer level of 0.55 in the FGM (1,1). FGM (1,1) with buffer level of 0.9 means that we apply 
a buffer level of 0.9 in the FGM (1,1)

Fig. 14   Predictive result of cumulative confirmed cases in the USA. Note: The green line depicts the 
changes of actual cumulative confirmed cases and the other three lines depicted the changes of predictive 
cumulative confirmed cases using different FGM (1,1) model. FGM (1,1) with buffer level of 0 means 
that we do not apply the buffer level in the FGM (1,1). FGM (1,1) with buffer level of 0.55 means that 
we apply a buffer level of 0.55 in the FGM (1,1). FGM (1,1) with buffer level of 0.9 means that we apply 
a buffer level of 0.9 in the FGM (1,1)
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4.7 � Brazil

The cumulative number of confirmed cases in Brazil as of December 31 was 7,681,032. 
Judging from the past trend, the cumulative number of confirmed cases in Brazil has 
shown a trend of exponential growth since the end of October. The cumulative number 
of confirmed cases officially announced in Brazil in January 31 is most close to the pre-
dictive result with a buffer level of 0.9. However, due to the limited testing ability in the 
early stage, the actual number of the cumulative confirmed cases may be closer to the 
predicted value provided by FGM (1,1) with a buffer level of 0 (Fig. 19).

4.8 � India

The cumulative number of confirmed cases in India as of December 31 was 10,286,234. 
Judging from the past trend, the cumulative number of confirmed cases in India has 
shown a trend of exponential growth since the end of October. However, the actual data 
in India did not fall within our forecasts, mainly due to the limited COVID-19 testing 
speed in India mentioned above. It can be observed that in late January, the number of 
daily confirmed cases is growing at an almost fixed rate, probably due to limited testing 
speed, resulting in an underestimation of confirmed cases (Fig. 20).

4.9 � Argentina

The cumulative number of confirmed cases in Argentina as of December 31 was 
1,625,514. Judging from past trends, the cumulative number of confirmed cases in 

Fig. 15   Predictive result of cumulative confirmed cases in France. Note: The green line depicts the 
changes of actual cumulative confirmed cases and the other three lines depicted the changes of predictive 
cumulative confirmed cases using different FGM (1,1) model. FGM (1,1) with buffer level of 0 means 
that we do not apply the buffer level in the FGM (1,1). FGM (1,1) with buffer level of 0.55 means that 
we apply a buffer level of 0.55 in the FGM (1,1). FGM (1,1) with buffer level of 0.9 means that we apply 
a buffer level of 0.9 in the FGM (1,1)
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Fig. 16   Predictive result of cumulative confirmed cases in the UK. Note: The green line depicts the 
changes of actual cumulative confirmed cases and the other three lines depicted the changes of predictive 
cumulative confirmed cases using different FGM (1,1) model. FGM (1,1) with buffer level of 0 means 
that we do not apply the buffer level in the FGM (1,1). FGM (1,1) with buffer level of 0.55 means that 
we apply a buffer level of 0.55 in the FGM (1,1). FGM (1,1) with buffer level of 0.9 means that we apply 
a buffer level of 0.9 in the FGM (1,1)

Fig. 17   Predictive result of cumulative confirmed cases in Germany. Note: The green line depicts the 
changes of actual cumulative confirmed cases and the other three lines depicted the changes of predictive 
cumulative confirmed cases using different FGM (1,1) model. FGM (1,1) with buffer level of 0 means 
that we do not apply the buffer level in the FGM (1,1). FGM (1,1) with buffer level of 0.55 means that 
we apply a buffer level of 0.55 in the FGM (1,1). FGM (1,1) with buffer level of 0.9 means that we apply 
a buffer level of 0.9 in the FGM (1,1)
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Fig. 18   Predictive result of cumulative confirmed cases in Italy. Note: The green line depicts the changes 
of actual cumulative confirmed cases and the other three lines depicted the changes of predictive cumula-
tive confirmed cases using different FGM (1,1) model. FGM (1,1) with buffer level of 0 means that we 
do not apply the buffer level in the FGM (1,1). FGM (1,1) with buffer level of 0.55 means that we apply 
a buffer level of 0.55 in the FGM (1,1). FGM (1,1) with buffer level of 0.9 means that we apply a buffer 
level of 0.9 in the FGM (1,1)

Fig. 19   Predictive result of cumulative confirmed cases in Brazil. Note: The green line depicts the 
changes of actual cumulative confirmed cases and the other three lines depicted the changes of predictive 
cumulative confirmed cases using different FGM (1,1) model. FGM (1,1) with buffer level of 0 means 
that we do not apply the buffer level in the FGM (1,1). FGM (1,1) with buffer level of 0.55 means that 
we apply a buffer level of 0.55 in the FGM (1,1). FGM (1,1) with buffer level of 0.9 means that we apply 
a buffer level of 0.9 in the FGM (1,1)
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Fig. 20   Predictive result of cumulative confirmed cases in India. Note: The green line depicts the 
changes of actual cumulative confirmed cases and the other three lines depicted the changes of predictive 
cumulative confirmed cases using different FGM (1,1) model. FGM (1,1) with buffer level of 0 means 
that we do not apply the buffer level in the FGM (1,1). FGM (1,1) with buffer level of 0.55 means that 
we apply a buffer level of 0.55 in the FGM (1,1). FGM (1,1) with buffer level of 0.9 means that we apply 
a buffer level of 0.9 in the FGM (1,1)

Fig. 21   Predictive result of cumulative confirmed cases in Argentina. Note: The green line depicts the 
changes of actual cumulative confirmed cases and the other three lines depicted the changes of predictive 
cumulative confirmed cases using different FGM (1,1) model. FGM (1,1) with buffer level of 0 means 
that we do not apply the buffer level in the FGM (1,1). FGM (1,1) with buffer level of 0.55 means that 
we apply a buffer level of 0.55 in the FGM (1,1). FGM (1,1) with buffer level of 0.9 means that we apply 
a buffer level of 0.9 in the FGM (1,1)
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Argentina has increased slowly since the end of October. The actual number of con-
firmed cases in Brazil in January 31 fall in the range of the predicted value with 
buffer levels from 0 to 0.9, and it is most close to the predictive result with a buffer 
level of 0 (Fig. 21).

4.10 � Model Accuracy for Different Countries

We forecast the cumulative number of confirmed cases in Japan, the USA, France, 
the UK, Germany, Italy, Brazil, India, and Argentina on January 31, including about 
402,417 in Japan, 27,271,051 in the USA, 3,096,515 in France, 4,130,429 in the 
UK, 2,389,240 in Germany, 2,523,042 in Italy, 9,250,362 in Brazil, 11,368,243 in 
India, and 1,944,242 in Argentina. Table  6 reports the predictive accuracy of the 
January test set (from January 1 to January 14) for different countries. The predic-
tive accuracy is calculated in both MAPE and RMSE. FGM (1,1) with buffer lev-
els show a strong capacity to predict the cumulative confirmed cases in these coun-
tries. The MAPEs of the test sets in these countries are less than 5%.

5 � Conclusion

In this paper, we adopt the rolling FGM (1,1) to predict the cumulative number of con-
firmed cases. FGM is one of the forefront methods in grey system modeling. It makes 
full use of known information under the condition of less data environment and has an 
excellent performance in predicting the future trend. We have a marginal contribution 
on proposing the concept of buffer level based on the general form of WBO. Combin-
ing buffer level with FGM in an appropriate way can improve the forecasting accuracy. 
The example of Italy, France, and the USA shows that government measures require 
the active cooperation of the public and often have a time lag when they are effec-
tive. Only when a government increases its stringency and the public observe the order 
can the spread of COVID-19 be slowed down. The practical significance of this paper 
lies in the comprehensive consideration of government control measures and public 
response in the prediction.

Our main marginal contribution lies in the concept of buffer level, which takes into 
account both government control measures and public response in predicting cumulative 
confirmed cases. In practice, we find that only when government control measures are 
in place and people response actively to these measures can the spread of COVID-19 be 

Table 6   Model accuracy (from Jan 1, 2021, to Jan 31, 2021)

Note: This table shows our predictive accuracy for the test set from January 1 to January 31, and the 
MAPE of the test set in these countries is less than 5%

Coun-
try

USA France UK Ger-
many

Japan Italy Brazil India Argentina

MAPE 
(%)

1.626 1.23 3.204 2.229 2.444 1.27 0.753 1.716 0.762

RMSE 453,012.06 48,079.37 128,784.87 61,606 9546.47 34,108.64 73,211.53 263,899.79 13,966.52
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slowed down. Appropriate use of buffer level according to government stringency and 
mobility can improve the predictive accuracy of FGM (1,1). Buffer levels are obtained 
from countries’ historical data, which can be used to calculate the predicted value in vari-
ous scenarios. We predict the cumulative confirmed cases in various countries with buffer 
levels of 0.55 and 0.9. Based on the Government Response Stringency Index and Mobil-
ity Index in December, we forecast the most likely results at the end of January. Compared 
with the actual data in January, FGM (1,1) with buffer level has high predictive accuracy.

Based on rolling FGM (1,1) with different buffer levels and indices in Decem-
ber, we forecast the cumulative number of confirmed cases in Japan, the USA, 
France, the UK, Germany, Italy, Brazil, India, and Argentina from January 1 to 
31. The conclusion indicates that countries around the world should cooperate to 
control the second wave of the COVID epidemic as soon as possible.
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