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INTRODUCTION 
 

Osteosarcoma is the most common malignant bone 

cancer and tends to be diagnosed in children and 

adolescents. Distal femur (43%), proximal tibia (23%), 

and humerus (10%) are the most common locations [1]. 
Significant pain and swelling of influenced bones are 

essential features, and OS could induce pathological 

characteristics in some situations. The overall survival 

rates are 67% after 2 years, 49% after 5 years, and 42% 

after 10 years [2]. It is noticeable that 15% to 20% of 

OS patients have metastasized at the diagnosis stage, 

and the survival outcomes of these patients are poor 

[2, 3]. Therefore, in addition to the current clinical and 

pathological methods for evaluating the cancer survival 

risk, novel and effective molecular biomarkers are 

urgently needed to promote individualized treatment for 

OS patients.  
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ABSTRACT 
 

Osteosarcoma (OS) is the most common bone cancer, mainly diagnosed in children and adolescents. So far, no 
reliable molecular biomarkers have been identified to effectively evaluate OS prognosis and immune infiltration. 
Herein, we curated transcriptome profiles and clinical information from the publicly available OS cohorts to 
establish an immune-related prognostic signature. Besides, immunotherapeutic cohorts of urothelial cancer and 
melanoma patients were also employed to infer immunotherapy prediction roles of the identified signature. 
Lymphocytes infiltration, immune response-related pathways and signatures in the microenvironment were 
assessed according to distinct risk subgroups. Based on the univariate Cox analysis and further feature selection 
implemented by the LASSO regression model in the TARGET cohort, a 21-immune-gene signature was identified 
by combing the expression values and corresponding coefficients. We observed that the low risk score of this 
signature was significantly linked with the preferable survival outcome (Log-rank test P < 0.001). The consistent 
results of better prognoses of the low-risk group were also obtained in subsequent two validation cohorts. 
Immunology analyses showed that favorable immune infiltration and elevated enrichment of immune response 
signals may contribute to the better outcome of the low risk OS subgroup. The immunotherapeutic efficacy 
analyses demonstrated that low-risk patients harbored significantly enhanced response rates and improved 
immunotherapy survival outcomes. Together, our established signature could evaluate survival risk and represent 
the immune microenvironment status of OS, which promotes precision treatment and provides a potential 
biomarker for prognosis prediction and immunotherapy efficacy assessment. 
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The therapy for osteosarcoma has advanced from 

amputation to limb-sparing surgery with implants [4]. 

Recently, the emergence of immunotherapies, such as 

adoptive cellular therapy, vaccination, and immune 

checkpoint blockade agents, has been becoming a 

promising treatment strategy [5, 6]. Several studies have 

demonstrated the encouraging findings of programmed 

cell death 1 (PD-1) and its ligand blockade therapy in 

both a humanized OS model and the lung metastases of 

OS [7, 8]. Nevertheless, in a randomized clinical trial 

conducted by Tawbi et al. [9], only 1 of 22 patients (5%) 

with OS responded to pembrolizumab, an anti-PD-1 

agent. Recently multiple studies have emphasized the 

vital roles of tumor immune microenvironment on cancer 

tumorigenesis, progression, and treatment [10–12]. 

Indeed, immunotherapy efficacy depends on the anti-

tumor immunocompetence of infiltration lymphocytes in 

the microenvironment [4]. The elevated activity of 

infiltration lymphocytes could induce the transformation 

of cancer cells from cold to hot by activating the immune 

system, which markedly enhanced tumor cytotoxicity and 

achieved high cure rates with minimal side effects [13]. 

However, there has been no suitable implement based on 

immune-related genes to effectively assess the tumor 

microenvironment and guide survival outcome or 

immunotherapeutic response of OS patients. Therefore, it 

is useful to construct a robust immune-relevant signature 

for evaluating the microenvironment status, survival 

risks, and treatment effects of OS patients. 

 

In this study, we focused on establishing an immune 

signature with prognosis assessment and immune infiltration 

prediction based on the curated immune-related genes from 

the Immunology Database and Analysis Portal (ImmPort) 

database [14]. The transcriptomic expression profiles and 

clinical characteristics from the Therapeutically Applicable 

Research to Generate Effective Treatments (TARGET) 

project, Gene Expression Omnibus (GEO) database, and the 

Cancer Genome Atlas (TCGA) project were used for 

discovery and validation. We then calculated whether this 

signature was connected with prognosis and tried to figure 

out the association of the signature risk score with 

microenvironment-related indexes in OS. And finally, to 

elucidate the immunotherapeutic roles of the identified 

signature, we evaluated the abilities of this immune 

signature in determining immune responders from immune 

checkpoint inhibitors (ICI) treatment. Findings from this 

work would provide clues for guiding prognosis and 

tailoring immunotherapy strategies of OS patients. 

 

RESULTS 
 

Construction of immune-related risk signature in OS 

 

Considering that the TARGET cohort is a special 

database for OS and contains the largest samples size. 

We therefore selected it as the discovery cohort to 

explore the immune-relevant signature that is linked with 

the survival risk of OS patients. The univariate Cox 

regression analysis was conducted in all of 1793 immune 

genes for the TARGET cohort, and a total of 328 

prognostic genes were determined (all P < 0.05, 

Supplementary Table 1). The 328 immune prognostic 

genes were subsequently subjected to the LASSO 

regression model with 10-fold cross-validation setting to 

obtain a better regression model. The LASSO coefficient 

profile was generated against the log(k) sequence, and 

the minimize k method led to 21 optimal coefficients 

(Figure 1A and 1B). Finally, a developed model with 21 

immune-related genes reached the optimal regression 

efficiency to speculate the prognostic ability. 

 

The determined immune-relevant genes involved in 

antigen processing and presentation (PSMC4), 

cytokines (STC2, TNFRSF11B, CORT, GAL, CMTM1, 

IL7, GCG), cytokine receptors (SSTR1, TNFRSF21, 

FGFRL1, SDC3, IL13RA2), chemokines (SEMA3E), 

antimicrobials (IL22, TMPRSS6, PPARG), BCR 

signaling pathway (CD79A, IGLV1-51, IGKVID-33), 

and TCR signaling pathway (TRAV9-2). Moreover, we 

established an immune risk signature to assess the risk 

score of each patient by combing the 21 genes mRNA 

expression levels and their corresponding coefficients 

weighted by the LASSO method (Figure 1C, 

Supplementary Table 2). A heatmap of the determined 

21 genes expression profile and the scatterplot of 

overall survival with corresponding risk scores for OS 

were shown in Figure 1C. 

 

The prognostic ability of the identified immune 

signature 

 

To explore the immune risk signature contribute to OS 

prognosis evaluation, we partitioned the samples of the 

TARGET cohort into a low-risk subgroup (n = 42) and 

a high-risk subgroup (n = 43) by applying the median 

risk score as the cut-off value. We observed that OS 

patients with the low-risk scores were significantly 

connected with a preferable prognosis as compared with 

those in the high-risk group (Log-rank test P < 0.001; 

Figure 2A). This connection remained still significant in 

the multivariate Cox model with age, sex, and tumor 

site taken into account (HR: 0.02, 95% CI: 0.00–0.14, P 

< 0.001; Figure 2B). 

 

To confirm that the 21-gene-based immune signature 

classifier harbored a similar prognostic ability in 

distinct populations, we further validate this connection 

in the GSE21257 cohort with 53 OS samples. In the 
corroboration dataset, we also observed that patients of 

low-risk group exhibited a favorable survival outcome 

than those in the high-risk group (Log-rank test P = 
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0.013; Figure 2C). Multivariate Cox regression model 

further demonstrated that the immune-related signature 

could serve as an independent indicator for OS 

prognosis even adjusting for clinical confounding 

factors (HR: 0.32, 95% CI: 0.13–0.81, P = 0.023; 

Figure 2D). 

 

We also curated 262 sarcoma samples from the 

TCGA cohort to further corroborate the prognostic 

value of the identified immune signature. 

Consistently, the significantly better survival 

outcome was observed in patients with low-risk 

scores under univariate Kaplan-Meier analysis (Log-

rank test P = 0.007; Figure 2E) and multivariate Cox 

regression model (HR: 0.61, 95% CI: 0.40–0.91, P = 

0.007; Figure 2F). ROC curves of the identified 

immune signature risk scores of the 3 cohorts used in 

this study (TARGET cohort area under curve [AUC]: 

0.951; GSE21257 cohort AUC: 0.623; TCGA 

sarcoma cohort: 0.701) were illustrated in 

Supplementary Figure 1. 

 

The identified immune signature predictive of 

lymphocyte infiltration and immune response 

 

Since the risk signature was identified based on the 

immune-related genes, we hypothesized that its 

existence may be associated with lymphocyte 

infiltration, signaling pathways enrichment, and 

immune response. Therefore, we achieved a multiple-

group boxplot by using ssGSEA to infer and visualize 

the relative infiltration levels of 31 immune cell 

subpopulations in low-risk versus high-risk subgroups 

from the TARGET cohort (Figure 3A). Anti-tumor 

 

 
 

Figure 1. Development of the immune-related risk signature. (A) Regression coefficient profiles of the prognostic immune genes 

generated by the LASSO model in the TARGET cohort. (B) Partial likelihood deviance representation of distinct gene combination in LASSO 
regression. The red dots indicated the partial likelihood of deviance values, the gray lines indicated the standard error (SE), the two vertical 
lines on the left and right respectively indicated optimal values by minimum criteria and 1-SE criteria. (C) Heatmap of the 21 immune-
related genes within the identified immune signature and the risk score curve based on the LASSO coefficients. OS patients were stratified 
into high-risk and low-risk subgroups with the median risk score.  
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lymphocyte subtypes, like central memory CD4+ and 

CD8+ T cells, effector memory CD8+ T cells, cytotoxic 

cells, and monocytes were markedly enriched in 

patients with the low-risk scores (all P < 0.05). 

However, the regulatory T cells (Treg), which belong to 

pro-tumor leukocytes, were exhibited decreased 

infiltration in the low-risk subgroup (P < 0.01). 

Furthermore, GSEA analysis against the OS gene 

expression data and Hallmark reference datasets 

demonstrated the biological signaling pathways 

associated with this immune signature. Genes involved 

in interferon γ response, interferon α response, and 

inflammatory response signaling pathways were 

remarkably enriched in patients from the low-risk group 

(Figure 3B–3D). 

 

The three well-known signatures, including IFNγ 

response, T cell-inflamed GEP, and cytolytic activity 

signatures were identified to be associated with 

immunogenicity and immunotherapy response. Herein, 

we utilized these three signatures to investigate the 

association between the novel determined signature and 

immune response. In the TARGET cohort, the 

significantly elevated enrichment of T cell-inflamed 

signature (Figure 3E), IFNγ signature (Figure 3F), and 

cytolytic activity signature (Figure 3G) was noticed in 

the low-risk subgroup (Wilcoxon rank-sum test all P < 

0.001). These findings suggested that OS patients with 

the reduced enrichment of this immune signature may 

be more responsive to immunotherapy. 

 

The immune signature for the prediction roles of 

immunotherapy efficacy 

 

Immune checkpoint inhibitors (ICI) treatments 

represented by anti-PD-1/PD-L1 or anti-CTLA-4 agents 

have dramatically improved the survival outcome of 

advanced cancer patients. We therefore retrospectively 

acquired the transcriptomic expression profiles and 

clinicopathologic characteristics from an anti-PD-L1-

treated cohort (Imvigor210) of advanced urothelial 

cancer (UC), so as to evaluate the link between the 

identified immune risk signature and immunotherapy 

efficacy. In this UC ICI cohort, patients with the low-

risk scores harbored a significantly prolonged survival 

outcome as compared with those in the high-risk group 

(Log-rank test P = 0.015; Figure 4A). The link between 

low-risk signature scores and better ICI prognosis still 

existed in the multivariate Cox model with multiple 

clinical factors adjusted (HR: 0.66, 95% CI: 0.51–0.87, 

 

 
 

Figure 2. The constructed immune risk signature was linked with OS prognosis. Kaplan-Meier survival curves according to distinct 

immune signature subgroups in (A) the TARGET discovery cohort, (C) GSE21257 cohort, and (E) TCGA sarcoma cohort. (B, D, F) Forest plot 
representation of the multivariate Cox regression models delineated the connection between immune risk signature and prognosis in the 
three datasets. Clinical confounding factors were taken into consideration.  
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P = 0.003; Figure 4B). The significantly elevated 

response rate of ICI treatment was also detected in 

patients of low-risk subgroup (30.2% vs. 15.4%, 

Fisher exact test, P = 0.004, Figure 4C; Kruskal-

Wallis H test, P < 0.001, Figure 4D). Further analysis 

demonstrated that the markedly enhanced tumor 

mutation burden (TMB) and neoantigen burden (NB) 

were both observed in OS patients with the low 

 

 
 

Figure 3. The risk signature predictive of immune infiltration and immunotherapy response indicators. (A) A total of 31 

lymphocytes infiltration in low-risk versus high-risk subgroups was evaluated by the Angelova et al. algorithm. Pathways involved in 
immune response, such as (B) interferon γ response, (C) interferon α response, and (D) inflammatory response were markedly enriched in 
OS patients with low-risk signature scores. The elevated enrichment of immunotherapy efficacy predictors of (E) T cell-inflamed signature, 
(F) IFNγ signature, and (G) cytolytic activity signature were also connected with low-risk scores. 
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risk scores, which are closely predictive of 

immunotherapy outcome (Wilcoxon rank-sum test 

both P < 0.001; Figure 4E and 4F). 

 

Another immunotherapeutic cohort of advanced/ 

metastatic melanoma patients (treated with anti-PD-1/ 

PD-L1 or anti-CTLA-4 agents) was also curated for 

validating the ICI predictive roles of the immune risk 

signature. In this melanoma population, we observed 

that patients in the low-risk group exhibited both 

significantly extended overall survival (OS) and 

progression-free survival (PFS) outcomes (Log-rank 

test P = 0.019 and 0.021, respectively; Figure 5A and 

5B). Under multivariate-adjusted analysis, these 

connections remained still significant even controlling 

for sex, stage, and therapy type (OS: HR, 0.51, 95% CI, 

0.30–0.87, P = 0.016, Figure 5C; PFS: HR, 0.59, 95% 

CI, 0.38–0.93, P = 0.028, Figure 5D). Conformably, the 

higher proportion of ICI-responsive melanoma patients 

was also noticed in the low-risk subgroup (49.2% vs. 

30.0%, Fisher exact test P = 0.039; Figure 5E). The 

above results indicated that the immunotherapy efficacy 

may be evaluated by using the newly identified 

immune-related risk signature. 
 

DISCUSSION 
 

It has long been known that the tumor immune 

microenvironment is a crucial mediator in tumor 

initiation and progression [15], however, these 

perspectives have not generated a propounding influence 

on routine clinical practice. This emphasizes the vital 

roles of the tumor microenvironment in predicting OS 

patients’ survival risk. In this research, we constructed a 

robust immune-related prognostic signature based on 21 

immune genes in the discovery cohort and subsequently 

validated its efficacy in two independent datasets. The 

identified signature could divide OS patients into two 

subgroups represented distinct lymphocyte infiltration 

levels and immunotherapy response factors. Importantly, 

in the additional ICI-treated cohorts, this signature was 

demonstrated that its low-risk scores were markedly 

 

 
 

Figure 4. The roles of the immune signature in evaluating ICI treatment efficacy for advanced urothelial cancer (UC). (A) 

Kaplan-Meier survival plots of low-risk versus high-risk subgroups in the anti-PD-L1-treated UC cohort. (B) Forest plot of the multivariate 
Cox regression models with sex, ECOG score, smoking status, and immune phenotype taken into account to exhibit the association of the 
identified immune signature with ICI survival. (C) The proportion of therapeutic advantages to anti-PD-L1 therapy in low versus high-risk OS 
subgroups. (D) Distribution of immune signature risk scores in patients with distinct ICI treatment effect. (E) Tumor mutation burden and 
(F) neoantigen burden distribution in low-risk versus high-risk OS subgroups with the genomic data from UC immunotherapy cohort.  
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connected with the preferable ICI responses and 

outcomes. Therefore, this newly determined signature 

may serve as a potential surrogate for the survival 

prediction and immunotherapy efficacy evaluation of OS. 

 

This study revealed that the immune risk signature was 

linked with OS patients’ survival outcome and this 

association still reached statistical significance even 

adjusting for clinical confounding variables. More 

importantly, our risk signature was obtained based on 

immune-relevant genes and demonstrated the 

connections with immunotherapy predictors of IFNγ 

response, T cell-inflamed signature, and cytolytic 

activity signature. Considering the important roles of 

these three signatures in predicting the clinical 

benefits to ICI treatments [16, 17], we hypothesized 

that OS patients with low-risk signature scores were 

more likely responsive to immunotherapy agents. 

Actually, in the ICI cohort of advanced urothelial 

cancer (UC), the low-risk scores were identified to 

connect with the elevated TMB and neoantigen 

burden, which were two well-known predictors of ICI 

efficacy. Nevertheless, the association of low-risk 

scores with high mutational and neoantigen burden 

was not observed in the melanoma ICI cohort 

(Supplementary Figure 2). Indeed, the better ICI 

outcomes of patients with low-risk signature scores 

were noticed in both UC and melanoma cohorts. 

These findings suggested that the established immune 

risk signature was contributed to identifying 

immunotherapy responders; however, the underlying 

mechanisms may not include the genomic mutational 

burden. 
 

Recently, multiple studies with a focus on immunology 

characteristics have changed the orientations to the 

clinical tumor areas. Individual featured immune cells, 

such as CD4+ and CD8+ T cells have been demonstrated 

the prognosis prediction implications and drug 

treatment roles for patients diagnosed with OS by 

coupling with distinct signaling pathways and specific 

regulators [18–20]. Comprehensive knowledge has 

 

 
 

Figure 5. The roles of the immune signature in evaluating ICI treatment efficacy for melanoma. (A) Overall survival (OS) rate 
and (B) progression-free survival (PFS) rate differences of low- and high-risk groups were illustrated by Kaplan-Meier survival curves. 
Multivariate Cox regression models were conducted with sex, stage, and treatment type taken into account to elucidate the connections of 
the immune signature with (C) OS and (D) PFS outcomes. (E) The proportion of melanoma ICI responders in patients with low-risk versus 
high-risk signature scores was illustrated.  
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revealed the immunosuppression roles of regulatory T 

cells in multiple cancer types [21, 22]. The lymphocyte 

subtypes evaluation methods (e.g., CIBERSORT [23] 

and Angelova et al. method [24]) were frequently 

employed to characterize the immune infiltration 

landscape and calculate the connection with treatment 

effects. Our research leveraged the algorithm proposed 

by Angelova et al. and revealed that elevated central 

memory T cells (CD4 and CD8+), effector memory 

CD8+ T cells, cytotoxic cells, and reduced suppressive 

regulatory T cells infiltration were markedly detected in 

patients with low-risk scores. Moreover, signaling 

circuits with respect to the IFNγ and α responses, and 

inflammatory responses were markedly enriched in the 

low-risk subgroup, indicating that the identified 

immune risk signature was a superior predictive 

indicator for OS immune infiltration. 

 

Recently several studies have also been established the 

immune-related signatures or discovered the prognosis-

related immune genes in OS [25–27]. Wen et al. 

developed a tumor microenvironment-related risk 

model and employed the model score to stratify OS 

patients into two distinct subgroups. By using the 

differential analysis of the identified two OS groups, 3 

genes (i.e., COCH, MYOM2, and PDE1B) were 

determined to construct the immune signature to 

evaluate the survival outcomes of OS patients [25]. 

Another study also developed an immune-related risk 

model based on 12 long non-coding RNAs and 3 

immune genes. After dividing OS patients into high- 

and low-risk subpopulations, the authors observed that 

the low-risk subgroup exhibited a markedly improved 

prognosis and the preferable immune infiltration [26]. 

Similarly, Zhang et al. used the differential immune-

relevant genes to construct a risk prognosis model and 

found that OS patients with low-risk scores harbored a 

better survival outcome and a favorable immune 

infiltration [27]. All these 3 studies provided stronger 

biomarkers for clinical OS prognosis prediction and 

treatment. Nevertheless, the lack of immunotherapy 

efficacy validation for the identified risk signatures or 

models may be a limitation. Our study also employed 

the immune-related genomic data to identify a risk 

signature, and importantly, we further verified its 

potential implications in survival evaluation and 

immunotherapy effect to guarantee clinical utilization. 

 

However, there are several limitations in our research. 

First, transcriptome level analysis could not perfectly 

reflect the immune infiltration state. Second, the findings 

derived from this genomic association analysis lack in 

vitro experimental validation. Finally, owing to the lack of 
OS cohorts with gene expression profiles being tested by 

ICI agents, we are unable to corroborate the connection 

between the identified immune signature and the 

immunotherapeutic efficacy. Therefore, investigations 

based on our discoveries must be done carefully. 

 

In summary, this study determined a novel immune-

related risk signature that can not only evaluate the OS 

patients’ prognosis and immune infiltration degree but 

also predict the immunotherapeutic responsiveness. 

This novel signature can be clinically employed for the 

selection of OS patients with improved survival 

outcomes, personalized treatment based on the immune 

risk scores, and the enrollment of OS patients who are 

suitable to receive ICI agents. Nevertheless, prospective 

validation studies are needed to verify the significance 

of this immune signature. 

 

MATERIALS AND METHODS 
 

Collection of genomic data and clinical information 

 

Gene expression profiles and clinical characteristics of 85 

OS samples were retrospectively acquired from the 

TARGET project, which was defined as the discovery 

cohort. For the validations, 53 OS samples and 262 

sarcoma samples respectively derived from the GSE21257 

cohort and TCGA project were employed. The detailed 

clinical features and sequencing platforms were shown in 

Supplementary Table 3. Two immunotherapeutic cohorts 

with gene expression data were utilized to confirm the ICI 

roles of the identified immune signature. A total of 348 

patients with advanced urothelial cancer in the IMvigor210 

cohort [28], which was treated with atezolizumab (anti-

PD-L1 agents), were collected; and their transcriptome 

data and clinical indexes were acquired from 

http://research-pub.gene.com/IMvigor210CoreBiologies. 

Another immunotherapy cohort contained 121 melanoma 

samples [29], which received anti-PD-1/PD-L1 or 

combination treatments, was also curated for further 

validating the risk signature response to ICI treatments. 

The detailed clinical characteristics of the two ICI cohorts 

were illustrated in Supplementary Table 4 for urothelial 

cancer and Supplementary Table 5 for melanoma. The list 

of comprehensive immune-related genes, containing a total 

of 1793 genes, was obtained from the ImmPort database 

[14] and shown in Supplementary Table 6. 

 

Construction of the immune signature by the 

LASSO regression model 

 

Univariate Cox regression analysis was used to determine 

the prognostic immune genes based on the expression 

profiles of 1793 genes in the TARGET cohort. After 

obtaining the above prognosis-related genes, the LASSO 

regression model with 10-fold cross-validation 

(implemented by R glmnet package) was performed to 

identify the final genes mostly contributive to the survival 

model. By combing the identified specific gene expression 

http://research-pub.gene.com/IMvigor210CoreBiologies
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values and corresponding coefficient, the immune risk 

signature was obtained. In the subsequent analyses, 

patients were stratified into the high-risk and low-risk 

subgroups with the median risk score of the immune 

signature as cut-off value.  

 

Quantify lymphocyte infiltration and immunotherapy 

response predictor enrichment 

 

A study published by Angelova et al. proposed an 812-

immune-metagene to conclude distinct tumor 

infiltration of 31 immune cell subtypes and depict a 

comprehensive immune landscape [24]. In this work, by 

applying the specific feature genes (Supplementary 

Table 7) that belong to distinct immune cells, we 

calculated the infiltration scores of each cell type for 

each sample. CIBERSORT is the most frequently used 

method to evaluate lymphocyte infiltration in cancer 

research [23]; nevertheless, in the discovery cohort (i.e., 

TARGET dataset), a majority of samples could not 

obtain a spendable estimation value. We therefore 

employed Angelova et al. algorithm to evaluate immune 

infiltration. 

 

Recent several studies have demonstrated the crucial 

roles of microenvironment-based signals for assessing 

cancer immunotherapy efficacy. The IFNγ-related 

signature, which is a signal locates in the central site of 

the antitumor immune and predicts the clinical response 

to PD-1 blockade [16]. T cell-inflamed gene expression 

profiles (GEP) signature, which is consisted of 18 

inflammatory regulators linked with immune response 

[16]. Cytolytic activity signature [17] is defined based 

on the transcriptomic expression levels of two vital 

cytolytic modulators, GZMA and PRF1, which are 

markedly upregulated upon CD8+ T cell activation [30] 

and during productive clinical responses to anti-CTLA-

4 and anti-PD-L1 treatment [31, 32]. According to the 

representative genes of the above signatures 

(Supplementary Table 8), we inferred the enrichment 

scores for each sample and compared them in low-risk 

versus high-risk OS subgroups. 

 

GSEA and GSVA 

 

Differential expression analysis of low- versus high-risk 

groups was conducted with the limma package [33]. 

The calculated t statistics of all genes were extracted 

and subsequently as input to perform gene set 

enrichment analysis (GSEA), which is embedded in the 

fgsea R package. Signaling pathways acquired from the 

Hallmark database were utilized as the annotation and 

reference circuits. The false discovery rate (FDR) and 
normalized enrichment score (NES) were calculated 

based on 1 million permutations. Single sample gene set 

enrichment analysis (ssGSEA) method within the 

GSVA package [34] was used to evaluate the 

enrichment scores of collected immune cells and 

signatures based on the specific feature gene panels.  

 

Definition of mutation burden and ICI responders in 

the immunotherapy cohorts 

 

Tumor mutation burden (TMB) and neoantigen 

burden (NB) were defined as the log2 transformation 

of total mutation counts and neoantigen counts, 

respectively. For defining patients who responded to 

ICI treatments, patients with complete response (CR) 

or partial response (PR) were regarded to be 

efficacious to immunotherapy, and the rest were non-

responders. 

 

Statistical analyses 

 

R software (version 4.0.2) was utilized to perform all 

related calculations and plots. Gene expression 

profiles of identified 21 immune genes illustrated by 

heatmap were achieved with pheatmap R package. 

Kaplan-Meier method was applied to produce 

survival curves and the Log-rank test to compare the 

differences. Multivariate Cox regression model with 

clinical confounding factors taken into account was 

conducted under R forestmodel package. The 

relationship of two distinct groups with categorical 

variables was evaluated with Fisher exact test, while 

the continuous variable was Wilcoxon rank-sum test. 

Association between multiple subgroups and 

continuous variables was calculated with the Kruskal-

Wallis H test. Two-sided P values less than 0.05 were 

considered to be statistically significant unless a 

particular specification. 

 

Data availability 

 

All data used in this study are acquired from publicly 

available OS cohorts. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. ROC curves illustration of the identified immune signature risk scores of the 3 cohorts included in 
this study. 
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Supplementary Figure 2. The distribution of (A) TMB and (B) neoantigen burden in low-risk versus high-risk subgroups in the melanoma 
immunotherapy cohort. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1, 4, 5, 6, 7 and 8. 

 

Supplementary Table 1. Results of univariate Cox regression analysis of all immune-related genes based on the gene 
expression data from the TARGET cohort. 

 

Supplementary Table 2. The extracted immune-related genes and corresponding coefficients from LASSO regression 
model in the TARGET cohort. 

Gene Coefficient 

STC2 0.141522237 

TNFRSF11B 0.098754475 

CORT 0.086711381 

IL22 0.084649801 

GAL 0.069818606 

PSMC4 −0.013177704 

CD79A −0.014491145 

SEMA3E −0.017349815 

IGLV1-51 −0.021744664 

CMTM1 −0.0494132 

SSTR1 −0.054281399 

TNFRSF21 −0.057043444 

TMPRSS6 −0.065932207 

FGFRL1 −0.074868654 

IGKV1D-33 −0.075750338 

IL7 −0.078764237 

TRAV9-2 −0.110319916 

SDC3 −0.118469971 

IL13RA2 −0.125900341 

GCG −0.183788709 

PPARG −0.205915021 

 

Supplementary Table 3. Summary of three osteosarcoma datasets included in this study. 

Datasets Platforms Sample size 

TARGET Human Exon ST Array (Affymetrix) 85 

GSE21257 Illumina human-6 v2.0 expression beadchip 53 

TCGA Illumina RNAseq HTSeq 262 

Total   400 

 

Supplementary Table 4. Clinical features and immunotherapy information of advanced urothelial cancer cohort. 

 

Supplementary Table 5. Clinical features and immunotherapy information of advanced melanoma cohort. 

 

Supplementary Table 6. The list of curated immune-related genes. 
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Supplementary Table 7. Representative feature genes of 31 distinct immune infiltration cells. 

 

Supplementary Table 8. Feature gene panels of 3 immunity and immunotherapy relevant signatures. 

 


