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Abstract
Activation of Src Family Kinase (SFK) signaling is required for the increase in endothelial

permeability induced by a variety of cytokines and growth factors. However, we previously

demonstrated that activation of endogenous SFKs by expression of dominant negative C-

terminal Src Kinase (DN-Csk) is not sufficient to decrease endothelial adherens junction

integrity. Basal SFK activity has been observed in normal venular endothelia and was not

associated with increased basal permeability. The basal SFK activity however was found to

contribute to increased sensitivity of the venular endothelium to inflammatory mediator-

induced leakage. How SFK activation achieves this is still not well understood. Here, we

show that SFK activation renders human dermal microvascular endothelial cells susceptible

to low doses of TNF-α. Treatment of DN-Csk-expressing cells with 50 pg/ml TNF-α induced

a loss of TEER as well as drastic changes in the actin cytoskeleton and focal adhesion pro-

teins. This synergistic effect was independent of ROCK or NF-κB activity. TNF-α-induced

p38 signaling was required for the synergistic effect on barrier function, and activation of the

p38 MAPK alone was also able to induce changes in permeability only in monolayers with

active SFKs. These results suggest that the activation of endogenous levels of SFK renders

the endothelial barrier more susceptible to low, physiologic doses of TNF-α through activa-

tion of p38 which leads to a loss of endothelial tight junctions.

Introduction
The regulation of endothelial permeability is a critical part of the inflammatory response. Dur-
ing inflammation, endothelial cells (EC) must allow an increased passage of fluid, macromole-
cules and leukocytes to the affected tissues. However, an excessive increase in permeability may
lead to systemic vascular leakage resulting in edema and a loss of organ function. Multiple sig-
naling pathways act in coordination to ensure not only a controlled increase in permeability
but also a prompt resealing of the barrier. It is well accepted that phosphorylation of tyrosines
in adherens junction proteins and an increase in actin-myosin contractility are two main
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mechanisms leading to a quick loss of endothelial intercellular adhesions and thus an increase
in vascular permeability [1–4]. In addition, mechanisms such as NF-κB-dependent transcrip-
tional regulation are known to contribute to the loss of barrier function hours after treatment
with proinflammatory cytokines such as TNF-α [5–7]. The relative importance of each path-
way (cell contraction, transcriptional regulation and adherens junction phosphorylation) is
still a matter of debate and the level of crosstalk between these signaling mechanisms is poorly
understood.

In vivo, the loss of vascular barrier function can be induced by multiple factors, including
VEGF, IL-6, IL-1β and TNF-α. For example, TNF-α is elevated during infection and inflamma-
tion and has been suggested to mediate the increase in vascular leakage after acute respiratory
distress syndrome and sepsis [8, 9]. TNF-α plasma concentration is tightly regulated in vivo
and is kept at very low concentrations in healthy humans. A literature survey shows that nor-
mal TNF-α plasma levels are well below 20 pg/ml [10, 11] and increase to 100–200 pg/ml dur-
ing infection [12–14], only reaching 500–1000 pg/ml at the peak of severe septic shock [14]. In
vitro studies suggesting that TNF-α can act alone to increase permeability primarily use con-
centrations of TNF-α ranging from 5–20 ng/ml. However, the levels of circulating cytokines
are generally a poor predictor for vascular barrier loss. Clinical data have provided results sug-
gesting that elevated levels of TNF-α are not always associated with increases in vascular per-
meability and, conversely, increases in vascular permeability are not necessarily associated with
high plasma levels of TNF-α. For example, psoriasis is characterized by endothelial gap forma-
tion and hyperpermeability in dermal microvasculature [15, 16]. However, Arican et al [10]
reported that, in psoriatic patients, TNF-α plasma concentration reached 25.7±10.62 pg/ml.
Conversely, high concentrations of TNF-α as observed in some infectious diseases [11, 13] are
not accompanied with widespread endothelial barrier loss. These findings would suggest that a
second pathway may be needed for TNF-α-induced changes in endothelial permeability.
Indeed, the ability for two mediators to contribute to changes in vascular permeability through
the contribution of different signaling pathways was demonstrated by Clauss et al [17] who
demonstrated that VEGF-induced increase in permeability was dependent on a transmem-
brane form of TNF-α.

One major signaling pathway that contributes to proinflammatory mediator–induced
decreases of endothelial barrier function is the activation of Src Family Kinases (SFKs) [3, 4].
Inhibition of SFK activity prevents edema formation in animal models [18–20] and in vitro
research demonstrated that multiple pro-edemagenic stimuli promoted the activation of SFKs
and tyrosine phosphorylation of VE-cadherin [21–26]. SFK inhibitors not only inhibited the
AJ proteins' phosphorylation, but also protected monolayers from increased permeability [24–
27], suggesting that SFK activity plays a critical role in regulating endothelial barrier function.
Although a role for SFKs in the regulation of permeability is well established, recent publica-
tions suggest a new paradigm concerning how SFKs integrate with other signaling pathways to
cause mediator-induced changes in endothelial cell permeability [26, 28–31]. We have reported
that activation of endogenous SFKs, by removing Csk-mediated repression of SFK activity, is
not sufficient to induce a loss of barrier function in human dermal microvascular endothelial
cells (HDMEC), despite a strong phosphorylation of VE-cadherin and several other SFK target
proteins [26]. Moreover, we did not observe a reduction in VE-cadherin binding to either p120
or β-catenin upon SFK activation [26]. Consistent with our findings, Orsenigo et al [28]
reported that venular endothelial cells show increased basal activation of Src compared to
arteries, which correlated with higher levels of VE-cadherin phosphorylation at tyrosines 658
and 685, yet no change in basal permeability itself. Rather, the authors found that this differ-
ence renders the venular endothelium more susceptible to pro-edemagenic mediators. In addi-
tion, Wessel et al [29] elegantly demonstrated that vascular permeability and transendothelial
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migration require complex VE-cadherin phosphorylation patterns. Similarly, Sidibe et al
recently showed estrous cycle-dependent VE-cadherin Y685 phosphorylation in mice, an event
that was associated with normal physiology and vascular remodeling, rather than vascular leak-
age [30]. The same group showed that non-phosphorylatable Y685F knock-in mice display
increased edema in uteri and ovaries [31]. Our previous results, together with the above-men-
tioned findings, strongly support a model in which other signaling molecules need to act con-
currently with SFK activation in order to promote endothelial permeability. Thus, there is a
clear need to fully understand the effects of SFK activation in resting and inflamed endothelia.

The experiments described in this manuscript were designed to test the hypothesis that SFK
activation renders ECs susceptible to levels of TNF-α that are similar to those observed in the
plasma of patients with an inflammatory response. We show that TNF-α and SFKs act syner-
gistically to increase endothelial permeability. By using techniques that allowed us to activate
individual signaling pathways independent of mediator induced receptor activation, we dem-
onstrate that SFKs can cooperate with low levels of p38 activation, similar to those induced by
low levels of TNF-α, to disrupt endothelial barrier function.

Materials and Methods

Cell culture
HDMEC were isolated from neonatal foreskin by incubating the obtained cells with magnetic
beads coated with an antibody to CD31 (Invitrogen) as described previously [26]. HLMEC and
HUVEC were obtained from Lonza. HDMEC and HLMEC were grown in EGM-2 MV
(Lonza) and HUVEC were grown in EGM-2 (Lonza). Cells were used for experiments between
passages 5 and 10. For all experimental protocols, cells were seeded at 105 (HLMEC and
HDMEC) or 4x104 cells/cm2 (HUVEC) and incubated for 48–72 h prior to any treatment to
obtain mature cell-cell junctions.

Antibodies and reagents
TNF-α was obtained from R&D Systems. Doxycycline was fromMP Biomedicals. SB203580
was fromMillipore. BAY 11–7082 was from Selleck Chemicals. Y-27632, BSA, and FITC-BSA
were from Sigma-Aldrich. The following antibodies were used for Western blot and/or immu-
nofluorescence: pY419 Src (#2101), pS82 HSP27 (#2401), HSP27 (#2402) and pT180Y182
p38 (#4511) were obtained from Cell Signaling; pY118 paxillin (#ab75740) from Abcam; Src
(GD11) and anti-pY (4G10) fromMillipore; Csk (# sc-286), FAK (#sc-557), p38 (#sc-535) and
VE-cadherin (#sc-6458) from Santa Cruz Biotechnology; paxillin (#612405) from BD Biosci-
ences; claudin 5 (#34–1600), pY773 ITGB3 (#44-876G), pY397 FAK (#44-624G) and pY861
FAK (#44-626G) from Life Technologies; pS15 HSP27 (#2231–1) from Epitomics. Anti
pT18S19 MLC was described previously [32].

Viral Constructs
Dominant negative Csk adenovirus containing a lysine to arginine substitution at position 222
(DN-Csk) was a generous gift from Dr. S. Tanaka (Faculty of Medicine, University of Tokyo)
[33]. The cDNA encoding FLAG-tagged MKK6E [34] (Addgene plasmid 13518) was cloned
into pENTR11 and transferred to doxycyclin-inducible lentiviral expression vector pINDU-
CER22 (a generous gift from Dr. Thomas Westbrook, Baylor College of Medicine) [35] via
Gateway cloning (Invitrogen). All adenoviral infections were accompanied by a control GFP
and/or LacZ infection with a multiplicity of infection at or above the greatest multiplicity of
infection used in the experimental groups.
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Electrical Cell-Substrate Impedance Sensor (ECIS)
Monolayer permeability was determined by measuring changes in electrical resistance using
ECIS (Applied BioPhysics). Cells were seeded onto 8W10E cultureware precoated with 0.1%
gelatin and incubated for 3 days. The electrical impedance across the monolayer was measured
at 1 V, 4000 Hz AC and then used to calculate resistance by the manufacturer’s software. Data
is presented as a plot of electrical resistance versus time.

Albumin clearance assay
HDMEC were seeded at confluence on 0.4 μm pore transwell chambers (Corning) and incu-
bated 48–72 h prior to the experiments. Then, cells were infected and treated as indicated in
the figures. After treatments, cells were incubated in medium devoid of phenol red and con-
taining an excess (5 mg/ml) of non-labeled albumin in both chambers. Then, 0.5 mg/ml FITC-
labeled albumin was added to the upper chamber. Sixty minutes later, fluorescence in the lower
chamber was measured in a multiwell fluorometer (BioTek) and compared to a FITC-albumin
standard curve (0.08–40 μg/ml).

Gel Electrophoresis and Immunoblotting
Cells grown on 6 or 12-well plates were scraped after lysis with 250 μl of Laemmli buffer con-
taining the following protease and phosphatase inhibitors: Complete protease inhibitor mix-
ture (Roche Applied Science), PhosSTOP phosphatase inhibitor mixture (Roche Applied
Science), 0.1 M NaF and 0.1mM pervanadate (Sigma-Aldrich). After boiling, a total of 20 μl of
cell lysate per lane was loaded on standard SDS-PAGE gels and transferred to nitrocellulose
membranes (Bio-Rad). Immunoblots were performed by blocking the membranes with 3%
nonfat dry milk or 5% BSA in PBS/Tween and incubating overnight at 4°C with respective pri-
mary antibodies. Secondary anti-mouse, anti-rabbit, or anti-goat antibodies conjugated with
peroxidase (Jackson ImmunoResearch Laboratories) were incubated for 1 h at room tempera-
ture. Membranes were developed using Clarity (Bio-Rad) or SuperSignal West Pico or Femto
(Pierce) chemiluminescent substrate and a LAS-3000 imaging system (Fujifilm).

Immunofluorescence Microscopy
Immunofluorescence studies were performed by seeding 80,000 cells on 8-well μ-slide cham-
bers (Ibidi) or 8-well glass culture slides (BD Falcon) precoated with 0.1% gelatin. Three days
after seeding, cells were infected with adenovirus to express LacZ or DN-Csk, or treated as indi-
cated. Cells were then fixed with 4% paraformaldehyde (Affymetrix) in PBS for 30 min at 4°C,
washed twice with PBS, and processed for immunofluorescence at room temperature. Briefly,
cells were permeabilized with 0.1% Triton X-100 (Sigma) in Tris-buffered saline (TBS-TX) for
15 min, treated with Image-IT FX signal enhancer (Invitrogen) for 30 min and then blocked
with 5.5% bovine serum in TBS-TX. Antibodies (described above) were incubated for 2 h at
room temperature. After washes in TBS-TX, secondary anti-goat, anti-rabbit, or anti-mouse
antibodies conjugated with Alexa Fluor 488, Alexa Fluor 594, or Alexa Fluor 647 (Invitrogen)
were incubated for 1 h at room temperature in the presence or absence of Alexa Fluor 488- or
Alexa Fluor 594-conjugated phalloidin and 4,6-diamidino-2-phenylindole (DAPI, Invitrogen).
When required, slides were mounted using Fluoromount aqueous mounting medium (Sigma-
Aldrich) and #1.5 glass coverslips (Thermo Scientific). Images were obtained using a Zeiss
Axio Observer Z1 inverted microscope or a Leica SPE confocal microscope and analyzed using
the manufacturer’s software.
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Fluorescence quantification
Individual channels of raw Zeiss images were exported to 16-bit grayscale TIFF files without
any prior adjustments to contrast or brightness. TIFF files were loaded onto ImageJ/Fiji. Pear-
son’s colocalization measurements were performed using the Coloc 2 plugin version 2.1.0
(http://imagej.net/Coloc_2). For nuclear fluorescence intensity measurements, the DAPI chan-
nel was used to create a binary mask that was processed for particle analysis. The individual
ROI obtained from this step were then used to obtain the average fluorescent intensity for the
phosphorylated p38 channel. A square ROI of the same size in each image was used for back-
ground subtraction.

Statistical Analyses
ECIS data at single time points from multiple independent experiments were pooled for statis-
tical analysis. Graphs are presented in S6 Fig as mean ± SEM (n = 6–12). Experiments contain-
ing multiple groups were analyzed by one-way or two-way ANOVA followed by Dunnett or
Tukey post-hoc tests, respectively. In experiments with only two group comparisons, the data
was analyzed using a two-tailed Student’s T-test. A p<0.05 was considered statistically
significant.

Results
Initial experiments were performed to determine the effect of TNF-α treatment at and above
concentrations found in the plasma of patients with diverse inflammatory and infectious dis-
eases [10, 11, 13, 14]. We found that TNF-α treatment induced a dose-dependent loss of trans-
endothelial electric resistance (TEER) in confluent HDMEC monolayers (Fig 1A). A dose of

Fig 1. TNF-α-dependent loss of monolayer resistance in HDMEC does not depend on SFK activity. A, Three days after
cells were seeded at confluence on 8W10E ECIS electrodes, complete growth media was replaced by EBM-2 containing 0.3%
FBS and incubated for another 16 hours. Then, cells were treated with different amounts of TNF-α (as shown). TEER at 4 kHz
was measured every 5 minutes for at least 20 hours post-treatment.B, Cells were treated as in A, except cells were pretreated
with either DMSO (vehicle) or PP2 (SFK inhibitor) for 30 minutes prior to TNF-α addition. Notice the lack of response to TNF-α
doses of 50 pg/ml or below as well as the inability of PP2 to prevent the loss of barrier function induced by a high TNF-α dose.
Results are representative of at least three independent experiments performed in duplicate. Bar graphs with data presented as
mean±SEM and statistical analysis of TEER for the 20 h time point are shown in S6A and S6B Fig.

doi:10.1371/journal.pone.0161975.g001
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500 pg/ml TNF-α induced a significant drop in TEER, with doses of 5–10 ng/ml causing maxi-
mal decrease in TEER over a 20 hour period. In contrast, a dose of 50 pg/ml TNF-α did not
promote significant changes in TEER (Fig 1A) or albumin clearance (Fig 2C). Surprisingly, the
loss of barrier function induced by 500 pg/ml of TNF-α was not sensitive to pharmacological
SFK inhibition by PP2 (Fig 1B).

The levels of tyrosine phosphorylation in endothelial cells may vary and, at least in
HUVEC, have been shown to depend on the time post-confluency [36]. We consistently
observed low levels of basal SFK activity and total tyrosine phosphorylation in post-confluent
HDMEC. In order to mimic the basal activation observed in venous cells, we overexpressed a
dominant negative form of the SFK inhibitory kinase Csk (DN-Csk) [26, 33]. Consistent with
our previous report, adenoviral delivery of DN-Csk did not induce a significant loss of endo-
thelial resistance, despite high levels of Src activation and overall tyrosine phosphorylation
(Figs 2A and 3). In some experiments, however, we observed a small increase in the permeabil-
ity of HDMECs expressing DN-Csk that did not reach statistical significance (Fig 2C). We
then tested whether constitutive SFK activity renders these cells more susceptible to a treatment
with TNF-α. As shown in Fig 2, we observed a marked decrease in barrier function when
HDMEC expressing DN-Csk were challenged with 50 pg/ml TNF-α, as measured by ECIS (Fig
2B) and protein permeability (Fig 2C). The decrease in TEER produced by low dose TNF-α (50
pg/ml) in the presence of DN-Csk (LD-TNF/DN-Csk) was completely abrogated by pretreat-
ment with PP2, showing the importance of SFK activation to this response (Fig 2D). Interest-
ingly, this sensitization may be unique to certain endothelial subtypes, as HDMEC, but not
HLMEC or HUVEC (S1 Fig), showed an increased permeability after DN-Csk infection and
low-dose TNF-α treatment. Immunofluorescent staining against VE-cadherin and ZO-1 shows
the appearance of gaps in the monolayer only in cells challenged with the dual treatment (S2A
and S2B Fig). Furthermore, LD-TNF/DN-Csk cells showed markedly reduced levels of claudin
5 at the cell-cell junctions (S2C Fig). This finding is consistent with recent observations by
Clark et al that treatment of HDMEC with a high dose of TNF-α can promote the loss of junc-
tional claudin 5 [6]. The low dose of TNF-α alone was unable to displace junctional claudin 5.
Surprisingly, expression of DN-Csk alone promoted claudin 5 aggregation at the cell-cell bor-
ders. The significance of this behavior is unknown (S2C Fig).

TNF-α can promote an increase in stress fibers in endothelial cells [37, 38], and a shift in
actin distribution from a peripheral actin ring to stress fibers has been associated with increased
permeability in response to multiple edemagenic factors [39, 40]. High dose TNF-α-induced loss
of barrier function, however, appears to be independent of actin stress fiber formation [41, 42].
To better understand how TNF-α promoted an increase in monolayer permeability in the con-
text of activated SFK, we performed immunofluorescence stainings to determine if SFK activa-
tion was able to alter the TNF-α-induced increase in actin stress fibers. As shown in Fig 3A,
TNF-α-treated HDMEC display long and thin stress fibers that span the cell body. In contrast,
DN-Csk-expressing cells did not show an increase in stress fibers, but instead had a thicker
peripheral actin ring that colocalized with active Src staining. Surprisingly, LD-TNF/DN-Csk
cells contained thick and short actin bundles. These bundles contained large amounts of paxillin
and active Src at their ends (Fig 3A). This increase in colocalization of pY416-Src and paxillin
was statistically significant as determined by Pearson’s colocalization coefficient (Fig 3B). These
actin bundles were also decorated with phosphorylated MLC, suggesting an active contraction
(S3 Fig). Despite this finding, pharmacological inhibition of ROCK activity by pretreatment with
Y27632 was unable to prevent the loss of resistance in LD-TNF/DN-Csk cells (Fig 4A), despite
completely preventing the formation of the actin bundles (Fig 4B). This result thus suggests that
although this dual treatment can induce a drastic rearrangement of the actin cytoskeleton, this
cytoskeletal change is not required for the increased permeability.
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The transcription factor family NF-κB has also been shown to mediate TNF-α-induced
endothelial barrier breakdown, possibly through a loss of junctional claudin 5 [5–7]. We thus
sought to test whether NF-κB activity was responsible for the loss of barrier function in
LD-TNF/DN-Csk cells. Pretreatment of these cells with 1 μM BAY 11–7082 abrogated TNF-α-
induced increase in ICAM-1, a well-known NF-κB effector gene in endothelial cells (Fig 5A).
Despite this inhibition, BAY 11–7082 pretreatment was unable to prevent the increase in per-
meability in LD-TNF/DN-Csk cells (Fig 5B), allowing us to exclude NF-κB activation as the
mechanism downstream.

Fig 2. Constitutive activation of SFKs through expression of DN-Csk renders HDMEC susceptible to
low doses of TNF-α. Cells were seeded at confluence and incubated for 72 hours. Then, growth media was
replaced by low serummedia and cells were infected with adenovirus to express either LacZ (control) or
DN-Csk. After another 16 h, cells were treated with low-dose TNF-α. A, Western blot analysis demonstrating
the increased tyrosine phosphorylation at multiple SFK substrates. B, TEERmeasurements on ECIS
electrodes.C, FITC-Albumin permeability assay on Transwell chambers.D, TEER of cells pretreated with
either DMSO or PP2 for 30 minutes prior to TNF-α addition. Results are representative of at least three
independent experiments. Notice that the synergistic effect of DN-Csk expression concurrently with a low-
dose TNF-α can be prevented by the SFK inhibitor PP2. Data presented as mean±SEM (each experiment
performed in duplicate). Asterisk, p<0.05 (Two-way ANOVA and Tukey’s multiple comparison post-hoc test).
Bar graphs with data presented as mean±SEM and statistical analysis of TEER for the 20 h time point
corresponding to B and D are shown in S6C and S6D Fig respectively.

doi:10.1371/journal.pone.0161975.g002
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P38MAPKmay also mediate edemagenic signaling in endothelial cells [17, 32, 43, 44].
Thus, we sought to determine whether p38 activation mediated the loss of resistance in
LD-TNF/DN-Csk cells. As shown in Fig 6A and 6B, TNF-α treatment induced the

Fig 3. Csk inhibition alters the actin remodeling induced by TNF-α treatment.Cells were seeded at confluence and
incubated for 72 hours. Then, growth media was replaced by low serummedia and cells were infected with adenovirus to
express either LacZ (control) or DN-Csk. After another 16 h, cells were treated with low-dose TNF-α. Cells were fixed at 6 h
post TNF-α treatment. A, Immunofluorescence microscopy was performed to detect pY419 Src, paxillin and F-actin
(phalloidin). Nuclei were counterstained with DAPI. B, Pearson’s coefficient was calculated to assess the level of
colocalization between active SFK and paxillin signals in DN-Csk-expressing cells. Asterisk, p<0.05 (Student’s T test, 6 fields
per condition). Note the drastic relocalization of active Src from the cell-cell junctions to cell-matrix adhesions upon dual
DN-Csk and TNF-α treatments, together with a loss of cortical actin and the appearance of short and thick actin bundles.
Results are representative of at least four independent experiments.

doi:10.1371/journal.pone.0161975.g003
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phosphorylation of both p38 and its downstream effector HSP27. This activation was indepen-
dent of the status of SFK activity. Moreover, inhibition of p38 activity by pretreatment with
SB203580 abrogated the increase in permeability in LD-TNF/DN-Csk cells (Fig 6C and 6D),
demonstrating that p38 kinase activity is required for this effect.

The results shown above suggest that p38 activity is required for the loss of barrier function.
To test whether activation of this kinase is sufficient to promote a loss of barrier function, we
generated lentivirus coding a doxycycline-inducible, FLAG-tagged MKK6E construct
(iMKK6E). MKK6 is a kinase upstream of p38 and expression of this phosphomimetic mutant
promotes constitutive p38 activation [34]. Addition of doxycycline to iMKK6E cells rapidly
induced MKK6E expression (S4 Fig) and p38 activation (Fig 7A, 7E and 7F). Doxycyclin-medi-
ated expression of this construct, however, was not able to promote an increase in permeability
of HDMEC (Fig 7B and 7D), thus suggesting that, similarly to SFK activation, p38 activity is
required, but not sufficient to induce a loss of barrier function. We then used this construct to
interrogate whether concurrent p38 and SFK activation were then sufficient to promote a per-
meability increase. As shown in Fig 7B and 7D, this dual activation promoted a drastic loss of
monolayer resistance in the absence of any external edemagenic stimulus. This was due to the
expression of the iMKK6E construct, as addition of doxycycline to cells not infected with the
lentivirus did not affect endothelial resistance even at a dose ten times higher (Fig 7C). The p38
pathway is known to promote cytoskeletal changes through the MAPKAP2-dependent phos-
phorylation of HSP27 [45, 46]. Consistent with a lack of involvement of the actin cytoskeleton,
however, the dual p38/SFK activation promoted the formation of monolayer gaps and a
marked loss of junctional VE-cadherin (Fig 7E and S5A Fig) but did not induce a loss of
peripheral actin or an increase in stress fibers (S5B Fig).

Fig 4. Blockade of actin stress fiber formation by ROCK inhibition does not prevent LD-TNF/DN-Csk-induced loss of barrier function.Cells were
seeded at confluence and incubated for 72 hours. Then, growth media was replaced by low serummedia and cells were infected with adenovirus to
express either LacZ (control) or DN-Csk. After another 16 h, cells were pretreated with DMSO (vehicle) or Y-27632 (ROCK inhibitor) for 30 minutes prior to
TNF-α addition. A, TEERmeasurements on ECIS electrodes. Notice the lack of effect of Y-27632 treatment on the loss of TEER in LD-TNF/DN-Csk cells.
Data presented as mean±SEM. B, Cells were fixed 24 h after TNF-α treatment and IF was performed to detect VE-cadherin and F-actin (phalloidin). Nuclei
were counterstained with DAPI. Notice that the formation of actin bundles that can be observed in DMSO-treated cells is absent in Y-27632-treated cells.
Results are representative of at least three independent experiments performed in duplicate. Bar graph (mean±SEM) and statistical analysis of TEER for
the 20 h time point corresponding to A is shown in S6E Fig.

doi:10.1371/journal.pone.0161975.g004
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Discussion
Although it is well accepted that endothelial SFK activation plays an important role in the regu-
lation of vascular permeability, the mechanisms that ultimately lead to the loss of barrier func-
tion are still under investigation [3, 4]. Activation of SFKs is required for VEGF-induced
permeability both in vitro and in vivo [18–21, 25, 26], but we previously showed that activation
of endogenous SFKs alone is not sufficient to induce a loss of barrier function [26]. The finding
that SFK-mediated tyrosine phosphorylation is required, but not sufficient, to increase endo-
thelial monolayer permeability implies that other signaling pathways work in conjunction with
SFK activation to disrupt endothelial monolayer integrity. Thus, we hypothesized that SFK
activity may act by modulating the response to other edemagenic signals. In fact, Orsenigo et al
showed that venules that responded to a bradykinin challenge had higher basal SFK activity
and VE-cadherin phosphorylation levels [28]. Moreover, the authors showed that SFK inhibi-
tion prevented the increase in vascular permeability after bradykinin treatment. However, the
vessels with increased SFK activation did not show basal leakiness, demonstrating that SFK
activation in vivo is also insufficient to promote leakiness. Based onWestern blot and immuno-
fluorescence data, HDMEC show low levels of SFK activation in vitro under non-stimulated
conditions. In this manuscript, we increased basal SFK activity using DN-CSK in these cells to
interrogate in vitro whether crosstalk between SFK and TNF-α signaling mediated an increase
in endothelial permeability.

We show that SFK activation in HDMEC renders these cells susceptible to a treatment with
50 pg/ml TNF-α. This dose was unable to promote a loss of monolayer resistance in the
absence of SFK activation. Importantly, this is a dose that is within the range of circulating con-
centrations of TNF-α in patients with diverse inflammatory diseases [10, 11, 13, 14].

Fig 5. NF-κB is dispensable for the loss of barrier function in LD-TNF/DN-Csk cells.Cells were seeded at confluence
and incubated for 72 hours. Then, growth media was replaced by low serummedia and cells were infected with
adenovirus to express either LacZ (control) or DN-Csk. After another 16 h, cells were pretreated with DMSO (vehicle) or
BAY 11–7082 (NF-kB inhibitor) for 30 minutes prior to TNF-α addition. A, Quantification of three independent Western blot
experiments demonstrating that BAY 11–7082 is able to prevent ICAM-1 expression in LD-TNF/DN-Csk cells after 8 h of
treatment with TNF-α. B, TEERmeasurements on ECIS electrodes. Notice the lack of effect of BAY 11–7082 treatment
on the loss of TEER in LD-TNF/DN-Csk cells. Results are representative of three independent experiments performed in
duplicate. Data presented as mean±SEM. Bar graph (mean±SEM) and statistical analysis of TEER for the 20 h time point
corresponding to B is shown in S6F Fig.

doi:10.1371/journal.pone.0161975.g005
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Understanding how other signaling can modulate the endothelial response to these low levels
of TNF-αmay inform us about critical pathophysiological mechanisms during inflammation.
The higher basal levels of SFK activation in venular endothelial cells may explain at least in
part why post-capillary venules are particularly sensitive to edemagenic stimuli. Proinflamma-
tory factors such as TNF-α activate multiple pathways, making it difficult to assess the relative
importance of each. Using a combination of viral construct delivery and pharmacological treat-
ment, we showed that SFK can act synergistically with p38MAPK to promote an increase in
vascular permeability. Neither inhibition of ROCK signaling or NF-κB transcriptional activity
were able to prevent the loss of monolayer integrity in LD-TNF/DN-Csk cells. Both pathways
have been shown to mediate edemagenic factor-induced barrier function loss. In contrast to
other stimuli, ROCK/MLC-dependent actin reorganization has been shown to be dispensable
for TNF-α-induced increase in endothelial permeability [41, 42]. We found this to be true also
in the context of constitutive SFK activation. NF-κB inhibition, on the other hand, prevented
TNF-α-induced loss of barrier function in endothelial cells [5–7]. Our results thus support the
notion that signaling pathway crosstalk may drastically affect the mechanisms downstream of
TNF-α.

As mentioned previously, the circulating levels of TNF-α in the plasma of many patients
with inflammatory conditions do not exceed 200 pg/ml [10–14]. Some vascular beds, such as

Fig 6. p38 activity is required for the increased permeability in LD-TNF/DN-Csk cells.Cells were seeded at confluence and incubated for 72
hours. Then, growth media was replaced by low serummedia and cells were infected with adenovirus to express either LacZ (control) or DN-Csk.
A, 16 h later, cells were treated with low dose TNF-α for 15 or 30 minutes and assayed for p38 phosphorylation byWestern blot. B, Cells were
treated with low or high dose TNF-α and assayed for p38 and SFK activity 30 minutes post-treatment (as measured by pY-Src, pY-FAK and
pS-HSP27) by Western blot.C, Cells were pretreated for 30 minutes with either DMSO (vehicle), SB203580 (p38 inhibitor) or Y-27632 (ROCK
inhibitor), treated as in A, and assayed for pS82-HSP27 byWestern blot.D, Cells were pretreated with either DMSO or SB203580 30 minutes prior
to TNF-α addition and then TEER was measured on ECIS electrodes for an additional 20 hours. Data presented as mean±SEM. Notice that p38
inhibition reversed the loss of barrier function in LD-TNF/DN-Csk cells. Results are representative of at least three independent experiments
(n = 2–4 per experiment). Bar graph and statistical analysis of TEER for the 20 h time point corresponding to C is shown in S6G Fig.

doi:10.1371/journal.pone.0161975.g006
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Fig 7. Concurrent activation of p38 and SFK pathways is sufficient to promote an increase in monolayer permeability. Pre-confluent
monolayers of HDMECwere infected with lentivirus containing active FLAG-tagged MKK6 construct (iMKK6E) under the control of an inducible
promoter. These cells were reseeded and allowed to become confluent for 3 days. Then, confluent iMKK6E-HDMECmonolayers were infected
with adenovirus to express either LacZ or DN-Csk. After an additional incubation of 24 h, cells were treated with or without doxycycline to induce
the expression of MKK6E in low serummedia. A, Cells were then lysed 18 h later and assayed for SFK and p38 signaling byWestern blot,
demonstrating independent pathway activation.B, TEER was measured on ECIS electrodes in cells treated as in A.C, Cells expressing either
LacZ or DN-Csk were treated with different concentrations of doxycycline and TEER was measured on ECIS electrodes for 24 h.D, FITC-Albumin
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the pulmonary endothelium, may be exposed to much higher local concentrations during
acute respiratory distress syndrome [47]. We found that, at least in HDMEC, the signaling
mediators required for the increased endothelial permeability in the context of SFK activation
and low TNF-α concentrations differ from those required by high levels of TNF-α alone. Our
results differ from those obtained by Angelini et al [24], who reported that TNF-α treatment of
endothelial cells induced tyrosine phosphorylation and that PP2, an inhibitor of Src activity,
inhibited the increase in permeability produced by 100 U/ml TNF-α (equivalent to the 5 ng/ml
dose used here). Surprisingly, we did not detect any changes in SFK activation after TNF-α
addition. This discrepancy could be attributed to the fact that these authors added vanadate, a
tyrosine phosphatase inhibitor, to the cells 20 minutes prior to collecting lysates. This would
suggest that the endogenous phosphatases could maintain low levels of tyrosine phosphoryla-
tion despite an increase in kinase activity produced by TNF-α. Heterogeneity of endothelial
cells may also explain the discrepancy, as we observed differences between dermal microvascu-
lar cells and lung microvascular cells or umbilical vein cells. Angelini et al [24] tested SFK
dependency on human pulmonary artery endothelial cells. In fact, Piegeler et al recently
showed that high dose TNF-α can promote Src activation in human lung microvascular endo-
thelial cells [48, 49], further suggesting that the endothelial response to TNF-αmay depend on
the organ of origin of the cell cultures.

The identity of the main SFK member(s) responsible for the observed mechanism remains
unknown. SFK members can exert complex, overlapping and even opposing activities. Except
for their “unique region” near the amino terminus, the sequence and structure of the 8 SFK
members are highly conserved (reviewed in [50]). This high homology is in part responsible
for the ample redundancy in SFK members activation and downstream signaling [50]. This is
highlighted by the seminal discoveries that Src, Fyn or Yes deficiency have only modest pheno-
types [51–53], several double knockouts die perinatally or have stronger phenotypes [53–56]
and a triple knockout (“SYF”mice) is embryonically lethal [57]. SFK activation and inactiva-
tion is tightly controlled by positive and negative phosphorylation events at Y419 and Y530
(human Src numbering), respectively [50, 58]. c-Src terminal kinase (Csk) is the main kinase
known to promote SFK inactivation by phosphorylating Y530 [reviewed by Okada [59]]. In
contrast to the redundancy observed among SFK members, Csk is present as a single gene in all
animal phyla [59] and global Csk deficiency promotes constitutive SFK activation and is
embryonically lethal [60, 61]. Conditional Csk knockout strategies successfully activated SFK
specifically in cells from lymphocytic [62, 63], epidermal [64, 65] and neural crest [66] origin.
To our knowledge, there are no published reports of endothelial-specific SFK or Csk knockouts
and little is known about the relative contributions of each SFK member in endothelial perme-
ability. Of note, Src and Yes have been shown to promote a loss of barrier function in some
models [67, 68] but not others [24], while Lyn appears to be required to sustain the endothelial
barrier [69] and Fyn has been shown to promote both increased permeability [68] as well as
barrier function recovery [70].

The molecular targets downstream of the synergistic action of p38 and SFKs in HDMEC are
still unknown. While our results suggest that the actin cytoskeleton rearrangement observed is

permeability assay on Transwell chambers 18 h after doxycycline addition. Data presented as mean±SEM. Asterisk, p<0.05 (Two-way ANOVA
and Tukey’s multiple comparison post-hoc test). Note the synergistic action to promote an increase in endothelial permeability. Results are
representative of at least three independent experiments. E, Cells were fixed 18 h after doxycycline addition and stained for phosphorylated
(pT180Y182) p38 and VE-cadherin. Nuclei were counterstained with DAPI. Note the nuclear localization of phospho-p38 in cells treated with
doxycycline. Results are representative of at least three independent experiments performed in duplicate. F, Nuclear (pT180Y182) p38
fluorescence intensity was quantified from three fields from each treatment. Bar graphs and statistical analyses of TEER for the 20 h time point
corresponding to B and C are shown in S6H and S6I Fig.

doi:10.1371/journal.pone.0161975.g007
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not required for the increase in permeability, we cannot exclude the possibility of other, more
subtle changes mediating the barrier breakdown. Alternatively, SFK activity may modulate the
transcriptional response to an inflammatory stimulus, ultimately leading to barrier loss.
Recently, Clark et al showed that TNF-α induces a biphasic response in endothelial cells [6].
NF-κB-mediated transcriptional activity was required for the prolonged increase in monolayer
permeability in this model. We observed a very similar response in TNF-α-treated HDMEC.
After treatment, the cells displayed a variable resistance for the first 4–5 hours and a marked
decrease immediately following this phase. It is tempting to speculate that this second phase in
LD-TNF/DN-Csk cells also requires transcriptional activity. In contrast to the observations by
Clark et al, who examined the mechanisms of higher doses of TNF-α, LD-TNF/DN-Csk-
induced increase in permeability was not dependent on NF-κB, suggesting that other transcrip-
tion factor(s) may be required downstream of this synergistic stimulus. In either case, TNF-α-
mediated loss of barrier function was associated with a relocalization of VE-cadherin and clau-
din 5 away from the cell-cell junctions. Loss of junctional claudin 5 was apparent even in
regions with normal levels of junctional VE-cadherin, so it is tempting to hypothesize that the
claudin 5 loss might be an earlier event. Direct activation of p38 in the context of DN-Csk
expression appears to promote a more dramatic loss of junctional VE-cadherin than the
observed loss in LD-TNF/DN-Csk cells, suggesting that the MKK6E construct may not mimic
perfectly TNF-α signaling in the presence of activated SFKs. Any potential differences in down-
stream signaling remain to be determined.

Signaling crosstalk between SFK activation and inflammatory receptor stimulation may
allow endothelial cells to selectively respond to edemagenic stimuli. A two-hit model can
enable the fine spatial and temporal specificity of vascular permeability. Receptor signaling
modulation may also explain the hyperpermeability and endothelial gap formation in dermal
microvasculature in psoriatic patients [15, 16] even with TNF-αplasma concentrations typi-
cally below 50 pg/ml [10]. Understanding the complexity and diversity of the signaling path-
ways regulating vascular permeability in different inflammatory conditions may allow us to
better prevent and manage vascular leakage and the ensuing organ damage.

Supporting Information
S1 Fig. DN-Csk does not increase the sensitivity of HLMEC or HUVEC to low dose TNF-α.
A,HLMEC were seeded at confluence and incubated for 72 hours. Then, growth media was
replaced by low serum media and cells were infected with adenovirus to express either LacZ
(control) or DN-Csk. After another 16 h, cells were treated with low-dose TNF-α. TEER was
measured on ECIS electrodes for 24 h. B,HUVEC were seeded at confluence and incubated for
24 hours. Then, growth media was replaced by low serum media and cells were infected with
adenovirus to express either LacZ (control) or DN-Csk. After another 16 h, cells were treated
with low-dose TNF-α. TEER was measured on ECIS electrodes for 24 h. C,D, Resistance values
at 20 h post-treatment were compared by 2-way ANOVA. Data in this figure comprise raw
intensity values of three independent experiments performed in duplicate for each cell type.
(PDF)

S2 Fig. The increase in permeability in LD-TNF/DN-Csk cells correlates with the formation
of gaps in the monolayer. Cells were seeded at confluence and incubated for 72 hours. Then,
growth media was replaced by low serum media and cells were infected with adenovirus to
express either LacZ (control) or DN-Csk. After another 16 h, cells were treated with low-dose
TNF-α. Cells were fixed at 24 h post TNF treatment. A, Immunofluorescence microscopy was
performed to detect VE-cadherin and ZO-1. Nuclei were counterstained with DAPI. Note the
formation of monolayer gaps with reduced presence of ZO-1 and VE-cadherin in LD-TNF/
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DN-Csk cells (arrows). B, Fluorescence intensity profiles of linear ROI as shown in A. Notice
the lack of junctional ZO-1 signal in LD-TNF/ DN-Csk cells. VE-cadherin signal intensity var-
ied with location within the cell-cell junction but is lost at gap sites. C, Immunofluorescence
and confocal microscopy to detect VE-cadherin and claudin 5. Nuclei were counterstained
with DAPI. Arrows mark the sites of monolayer gaps and arrowheads mark regions of claudin
5 loss without any obvious loss of junctional VE-cadherin or gap formation. Results are repre-
sentative of at least three independent experiments.
(PDF)

S3 Fig. Actin bundles in LD-TNF/DN-Csk cells are decorated by phosphorylated MLC.
Cells were seeded at confluence and incubated for 72 hours. Then, growth media was replaced
by low serum media and cells were infected with adenovirus to express either LacZ (control) or
DN-Csk. After another 16 h, cells were treated with low-dose TNF-α. Cells were fixed at 24 h
post TNF treatment and immunofluorescence microscopy was performed to detect phosphory-
lated (pT18pS19) myosin light chain and F-actin (phalloidin). Nuclei were counterstained with
DAPI. Note the strong colocalization of F-actin bundles and phosphorylated MLC in LD-TNF/
DN-Csk cells. Results are representative of at least three independent experiments.
(PDF)

S4 Fig. FLAG-tagged MKK6E expression in Dox-treated iMKK6E cells. A, Pre-confluent
monolayers of HDMEC were infected with lentivirus containing active FLAG-tagged MKK6
construct (iMKK6E) under the control of an inducible promoter. These cells were reseeded
and allowed to become confluent for 3 days. Then, confluent iMKK6E-HDMECmonolayers
were treated with varying concentrations of doxycycline to induce the expression of MKK6E in
low serum media. Cells were lysed 24 h after doxycycline addition and blotted to detect the
FLAG tag, as well as phosphorylated and total p38 and HSP27. B, Cells were infected with
0.1 μl/ml lentivirus and cultured as in A. Then, confluent iMKK6E-HDMECmonolayers were
infected with adenovirus to express either LacZ or DN-Csk. After additional 24 h of incubation,
cells were treated with or without doxycycline to induce the expression of MKK6E in low
serum media at different time points and lysed 24 h later. Shown are blots to detect FLAG tag,
Csk and phosphorylated and total p38.
(PDF)

S5 Fig. Dual activation of p38 and SFK pathways promotes monolayer gaps but does not
lead to radial stress fiber formation. Pre-confluent monolayers of HDMEC were infected
with lentivirus containing active FLAG-tagged MKK6 construct (iMKK6E) under the control
of an inducible promoter. These cells were reseeded and allowed to become confluent for 3
days. Then, confluent iMKK6E-HDMECmonolayers were infected with adenovirus to express
either LacZ or DN-Csk. After an additional incubation of 24 h, cells were treated with or with-
out doxycycline to induce the expression of MKK6E in low serum media. Cells were fixed 18 h
after doxycycline addition and stained for VE-cadherin (A) or active (pY416) Src and F-actin
(phalloidin) (B). Nuclei were counterstained with DAPI. Note the lack of radial stress fibers or
actin bundles in all four conditions. Results are representative of three independent experi-
ments. Bars: 50 μm (A) and 5 μm (B).
(PDF)

S6 Fig. Statistical analysis of ECIS data at 20 h post-treatment. Data presented as mean
±SEM of at least three independent experiments combined. Panels A-H correspond to Figs 1A,
1B, 2B, 2D, 4A, 5B, 6C and 7C respectively. A, One-way ANOVA with Dunnett post-hoc com-
parison against control. B, Unpaired T test of TNF-α-treated cells in the presence of either
DMSO or PP2. C-H, Two-way ANOVA and Tukey’s multiple comparison post-hoc test.
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Asterisks denote p<0.05, while n.s. denote a non-significant change (p>0.05).
(PDF)
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