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Cardiovascular disease is a major cause of mortality worldwide. The advent of human-induced
pluripotent stem cells (hiPSCs) technology have enabled the reliable generation of individual-derived
cardiomyocytes (CMs) [1]. Together with improvements in CM isolation techniques in culture [2]
and the increased scalability of CM production from hiPSCs [3], hiPSC-CMs hold great promises
in cardiopathological disease modelling and autologous tissue transplantation. However, as it is
widely known, hiPSC-CMs more closely resemble CMs in the embryonic or fetal stages, and are
immature in terms of marker expressions, electrophysiological properties, ultrastructural features and
metabolic signature. Pertaining to this last feature, immature CMs prefer to use glycolysis for their
energy metabolism, as opposed to β-oxidation of fatty acids [4]. This immature phenotype of newly
derived hiPSC-CMs limits their immediate applications, and a prolonged culture period necessary
for better maturation is neither logistically nor economically ideal. A number of strategies have been
employed to hasten the maturity of hiPSC-CMs, which includes the addition of thyroid hormone T3,
the bioengineering of culture environment or scaffolds, the application of mechanical stimuli [5,6] and
other genetic/epigenetic manipulations [7].

In their recent report in Cells, Horikoshi and colleagues [8] differentiated hiPSCs into CMs
using a rather standard protocol involving glycogen synthase kinase-3 and Wnt signaling inhibitors,
and purified troponin T-positive CMs using a lactate-containing medium [2]. The authors then switched
the hiPSC-CMs into either a control medium with glucose (RPMI 1640 with B-27 supplement) or
a “maturation” media (DMEM with no glucose, supplemented with amino acids, insulin, transferrin,
selenium solution, taurine and some components of B27) that contained linoleic acid/oleic acid with
albumin. Compared to hiPSC-CMs kept for seven days in the control medium, those cultured in
the maturation medium adopted a more prolonged, rod-like morphology, and their more organized
troponin T staining pattern exhibited sarcomere-type striations. Ultrastructural analyses showed
that these cell clusters also have better organized myofibrils, with a visibility of muscle fiber Z-lines
that are seemingly aligned with those of adjacent fibers. Importantly, these have a larger number
of mitochondria associated with the forming myofibrils. Gene expression profiling also indicated
that hiPSC-CMs cultured in the maturation media have higher levels of mature CM-related genes,
including those encoding ion channels and the cardiac ryanodine receptor RYR2 (which regulates
sarcomeric Ca2+), as well as the key metabolic transcription regulator peroxisome proliferator-activator
receptor alpha (PPARα) (a major regulator of genes involved in fatty acid β-oxidation). Thus, in terms
of morphology and transcript profile, hiPSC-CMs cultured in the fatty acid-enriched maturation media
appeared much more “sarcomerically” mature than those kept in a glucose-based media.

How did the above translate into the metabolic capacity of the mature hiPSC-CMs? The authors
measured and showed that the mature hiPSC-CM populations have a significantly higher oxygen
consumption rate (OCR), indicating that these cells have either an increased mitochondrial maturity or
an enhanced mitochondrial oxidative capacity. Furthermore, when cells were given palmitate, mature
hiPSC-CMs displayed a larger change than the control hiPSC-CMs in both basal and maximal OCR.
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This palmitate-induced OCR in matured hiPSC-CMs is abolished by the fatty acid oxidation inhibitor
etomoxir, but not by 2-deoxyglucose inhibition of glycolysis. Matured hiPSC-CMs thus appear much
more capable of utilizing exogenous palmitate for energy than the control iPSC-CMs. Interestingly,
assessments of glycolytic flux parameters via measurements of the extracellular acidification rate
(ECAR) indicated that ECAR levels in terms of glycolysis, glycolytic capacity, and glycolytic reserve
were all significantly higher in mature hiPSC-CMs. These mature hiPSC-CMs, despite their fatty acid
utilizing capability, are thus not impaired in terms of glycolytic capacity, and could readily switch to
glucose as an energy substrate when necessary.

The findings of Horikoshi and colleagues, as the authors claimed, showed that fatty acid-containing
maturation medium can promote hiPSC-CMs to undergo maturation [8]. As the supplements used in
the control and maturation medium are not equal, the authors were careful in pointing out the caveat
of potential maturation enhancing roles by taurine, carnitine, and selenium. However, the authors’
findings are indeed very much in line with a flurry of other recent reports indicating that fatty acids
could enhance hiPSC-CMs maturation [9–11]. That a simple substitution of fatty acids for glucose
in the culture medium could have such a significant maturation effect on hiPSC-CMs is certainly
an encouraging advance. Clearly this change is easier and cheaper to implement compared to
methods involving sophisticated scaffold engineering, constant mechanical stimulation, or complex
genetic/epigenetic manipulations. A question that was not pointedly addressed by Horikoshi and
colleagues in their report is the underlying mechanism as to how a fatty acid-enriched, no-glucose
medium could induce hiPSC-CMs maturation. PPARα is known to play a critical role in cardiomyocyte
maturation, and PPARα agonists have been shown to promote cardiomyocyte maturation [12,13].
Furthermore, glucose is known to suppress the expression of PPARα [14]. As a fatty acid sensing
transcriptional regulator [15], PPARα’s induction and activity by added fatty acids could thus
conceivably underlie the transformation of immature iPSC-CMs towards a more mature phenotype.
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