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Tendon ruptures are a great burden in clinics. Finding a proper graft material as a substitute for tendon repair is one of the main
challenges in orthopaedics, for which the requirement of a biological scaffold would be different for each clinical application. Among
biological scaffolds, the use of decellularized tendon-derived matrix increasingly represents an interesting approach to treat tendon
ruptures. We analyzed in vitro and in vivo studies focused on the development of efficient protocols for the decellularization and for
the cell reseeding of the tendon matrix to obtain medical devices for tendon substitution. Our review considered also the proper
tendon source and preclinical animal models with the aim of entering into clinical trials. The results highlight a wide panorama
in terms of allogenic or xenogeneic tendon sources, specimen dimensions, physical or chemical decellularization techniques, and
the cell type variety for reseeding from terminally differentiated to undifferentiated mesenchymal stem cells and their static or
dynamic culture employed to generate implantable constructs tested in different animal models. We try to identify the most efficient
approach to achieve an optimal biological scaffold for biomechanics and intrinsic properties, resembling the native tendon and

being applicable in clinics in the near future, with particular attention to the Achilles tendon substitution.

1. Introduction

Tendon ruptures, frequently associated with tendinopathy,
and both tendon retractions and extensive loss after trauma
represent a great burden in surgical reconstruction. The most
commonly affected tendons are the finger and hand flexors
and extensors [1, 2], the rotator cuff [3], and the Achilles
tendon [4]. In particular, acute Achilles tendon ruptures have
an increasing incidence of 18 per 100,000 [5]. Overall, these
injuries are directly combined with high health and socioeco-
nomic costs and long-term postoperative rehabilitation and
indirectly with the loss of productivity.

Tendon repair is a slow process in order to reestablish
the tendon fiber continuity and the functional physiological
mechanism. Their poor ability in healing is commonly due to
the low cell density (5%), scarce oxygen and nutrient supply,
and abnormal collagen deposition [6] that together lead to
scar tissue formation and adhesion, thereby impairing the
normal tissue function. Indeed, the functionality of tendon
biomechanics is primarily related to their complex matrix

architecture. According to these premises, finding a suitable
graft material as a substitute for tendon reconstruction is
one of the main challenges in orthopaedics. To reproduce
the biomechanical and biochemical properties similar to
the native tissue structure, a tendon substitute should have
specific biological properties, including biocompatibility,
absence of inflammatory or immune response, and a close
interaction with tendon cells, as well as adequate mechanical
properties [7]. Wide tendon damage needs to be repaired by
large amounts of synthetic or biological tissue substitutes.
In view of this, novel approaches for tendon substitution
have been recently proposed and marketed for clinical use,
including synthetic biomaterials or biological grafts [8].
Nevertheless, synthetic materials for tendon defects have pro-
vided poor results with regard to the healing and mechanical
properties [7]. Thus, biological grafts, including auto-, allo-
, and xenografts, have been widely investigated to satisfy
the aforementioned required features for an adequate tendon
repair, and, nowadays, they represent the gold standard for
tendon repair [7]. Autografts are of limited availability of
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the dimension and sites of harvest, with high donor site
morbidity and prolonged surgical time [9]. Allografts from
cadavers are at higher risk of disease transmission and might
induce a chronic immune response requiring immunosup-
pressive approaches [9]. During the last twenty years, decel-
lularization protocols of allografts and xenografts have been
investigated to remove the cell-related immunogenicity by
preserving the integrity of collagen structure and the bio-
logical characteristics of the tendon matrix. In particular,
the use of animal-derived xenografts offers great amounts of
collectable tissue with the possibility to produce commercial
scaffolds from different collagen structures [7, 8].

Several decellularization methods, including physical,
chemical, and enzymatic ones and combinations of these
techniques, have been described [10]. Most of the published
studies describe the production of decellularized tissue scaf-
folds derived from nonhomologous anatomical sites (e.g.,
intestinal submucosa, dermal patch, and pericardium). How-
ever, decellularized matrix derived from site-specific homol-
ogous tissue may be more suitable than a non-site-specific
source, in particular when referring to musculoskeletal tis-
sues due to their structural and biomechanical properties
[11]. In fact, homologous sources better provide a site-specific
extracellular matrix (ECM) offering a valid scaffold to host
cell ingrowth and to highly respond to tensile loading typical
of the native tendon [9]. While the tendon is a complex three-
dimensional structure consisting of well-organized collagen
fibers, the tissue-specific decellularized matrix may provide a
suitable and natural scaffold with the same native orientation
of collagen fibers that has not been synthetically created in
the laboratory yet [9]. The current challenge is to develop
xenogeneic biological matrices that offer apparent advantages
over both synthetic and human-derived scaffolds in view of
minimal morbidity and suitable mechanical properties.

This review provides an overview of in vitro and in
vivo studies on decellularization procedures of tendon tissue
derived from animals or humans. In particular, we analyzed
the efficacy of decellularization techniques followed or not by
cell reseeding to identify the most suitable approach to obtain
a functional natural tendon substitute that can be translated
from preclinical models to clinics for tendon replacement.

2. Methods: Inclusion Criteria

The literature search was performed in PubMed database,
by considering articles published in English from 2000 until
April 2015, as depicted in Figure 1. The search strategy was
conducted by searching “decellularization, decellularized,
acellularization, acellularized” combined with the keyword
“tendon” (Figure 2). Review articles were used to complete
our study by including publications that were not present on
the PubMed database according to our searching criteria. Our
search was focalized both on decellularization protocols in
order to obtain a pure matrix from tendon tissue eventually
reseeded with a cell source and on the functionality of
the biological scaffold after in vivo implantation. With this
strategy, we found 77 studies. Twelve studies were excluded
because of concerning the decellularization of tissue other
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FIGURE 1: Cumulative number of publications over years. Publica-
tion trend from January 2000 until April 2015 on studies performing
both in vitro and in vivo tendon tissue decellularization.

than tendons. Of the remaining sixty-five studies, sixteen
studies were excluded because of concerning decellulariza-
tion of tendon-bone grafts, tendon decellularization until
matrix powdering or hydrogeling, and commercial products
of which the decellularization techniques are not described.
Finally, five studies were not included because of describing
allografts, in vitro cell culture unrelated to decellularized
matrix, and bioactive sutures related to tendon repair but
not with tendon substitution or augmentation. Finally, review
articles were also excluded. In conclusion, a total of 40 studies,
28 in vitro and 12 in vivo, were included in this review of the
literature. The review results are reported in Tables 1 and 2 for
the in vitro and in vivo published studies, respectively. To give
a global overview of the most employed reagents, cell sources,
and construct analyses, we present pie charts in Section 3.
The pie chart percentages were calculated by considering the
number of papers employing the aforementioned parameters.

3. Results and Discussion

3.1. Tendon Sources and Specimen Dimensions. In this review,
we considered studies that have used tendons derived from
different mammalians as biological scaffolds. Most of the
analyzed articles described decellularization protocols on
flexor, patellar, or Achilles tendons harvested from rabbits
[11-22], rats [23, 24], or evolutionary less developed species
like chicken [25], before of human [26-32], or other animal
tissues such as from canine [33-39], porcine [40-44], equine
[45-48], and bovine tendons [49]. Figure3 displays the
distribution of tendon sources from different species. In most
cases, the dimensions of the native tendon tissue for the
decellularization are reported as surface area ranging from
0.45 to 12 cm”® (mean 3.21 + 3.24 cm®), tissue length ranging
from 1to 8 cm (mean 3.25+ 1.80 cm), or tissue thickness with
values ranging from 0.08 to 5mm (mean 1.16 + 1.40 mm).
Some authors left undefined the scaffold sizes [15, 16, 24, 33,
42] or thickness [11, 12, 17, 18, 21-24, 26-32, 34, 41]. Many of
these studies are not intended to produce a scaffold for human
use. Despite this, the production of a scaffold of adequate
dimensions for tendon replacement in humans is considered
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FIGURE 2: Research strategy. Flow chart of selection process.

challenging and relevant for clinical application, particularly
regarding the Achilles tendon reconstruction.

3.1.1. Observation on Tendon Sources and Dimensions. The
clinical use of decellularized biological scaffolds imperatively
requires any host adverse responses, safety, proper dimen-
sions, and adequate availability. Importantly, the ultimate
species—providing organs for xenotransplantation—should
consider anatomical-physiological and ethical concerns, as
well as accessibility related to breeding and slaughtering.
Studies using tendons from humans [26-32] should be
considered cautiously because of the aforementioned prob-
lems such as limited availability from cadavers and risks of
disease transmission. Furthermore, the quality and structural
organization of the tendon matrix could be influenced by
donor age, anatomical site, and loading history [50]; thus
the quality control of the source material might play an
important role in the success of the graft. Tendons derived
from inferior species, including chicken [25], rat [23, 24], and
rabbit [11-22], have limited dimensions and amounts to be
used as clinical substitutes, though these animals are useful
to test the efficacy of decellularization protocols. Moreover,
according to the common slaughter procedures for chicken
and rabbits, the tendon harvesting is not possible due to the
lack of slaughter waste products. Thus, dedicated subjects
need to be scarified for this purpose with correlated ethical

issues. Canine tendons have appropriate dimensions, yet the
use of dog [33-39] native tissues on a large scale is not prac-
tical and could be also subjected to ethical issues. For these
aforementioned reasons, the large availability in terms of
quantity and dimensions of tendon sources from commonly
slaughtered animals as pigs [40-44], equine [45-48], and
bovine [49] could be a valid choice. Despite the apparent
advantages in using pigs as donor species, it retains a great
variety of transmittable pathogens to humans [51]. According
to this, equine xenografts are becoming even more used for
reconstructive surgery [7, 8], due to a significantly inferior
presence and often geographically limited zoonotic diseases
[52].

Among several types of tendon in humans that need
to be repaired, the Achilles tendon is one of the largest
collagen structures that undergoes severe injuries. Moreover,
it is also the most studied tendon in terms of biomechanical
and structural properties [53-56]. Thus, the aforementioned
features make the Achilles tendon a challenging structure to
be replaced, and it could be considered as a benchmark in
generating a tendon substitute. Thus, obtaining a performing
decellularized tendon matrix for its substitution requires big
efforts to get close to the native dimensions, preserving the
functional biomechanical and structural properties. Most
of the studies included in this review focused on decellu-
larization processes of small tendon portions because they
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FIGURE 3: Tendon sources. The pie chart shows the relative distri-
bution of species from which tendons have been harvested to be
decellularized.

were aimed at optimizing the decellularization protocols.
Although these approaches led to interesting results in terms
of cell component removal, they could not be necessarily ade-
quate for greater-sized specimens. Only a few studies worked
with suitable tendon dimensions [28, 41, 43] to be used in
clinics. The increased resistance of decellularization detergent
penetration or of cell colonization during recellularization
represents two limitations in processing large tendon speci-
mens. These problems were widely described by authors who
performed static approaches for both the decellularization
and the reseeding processes with particular reference to the
thickness of the tissue [25, 43]. To overcome these hindrances,
two studies carried out innovative strategies such as dynamic
techniques [41], tissue surface scoring, or superficial cutting
[28]. Specifically, Lee et al. [41] described tension and torsion
stimuli to improve the detergent penetration, ameliorat-
ing also the biomechanical properties of the decellularized
matrix. With the same purpose, Woon et al. [28] proposed
surface scoring of the tendon to create a breach for both the
cell penetration and the attachment, demonstrating the
treatment effectiveness. However, all these techniques present
some limitations in terms of weakening the decellularized
tendon matrix.

3.2. The Panorama of Decellularization Protocols and Cell
Reseeding Strategies for Tendon Tissue. Several physical or
chemical treatments have been described for tendon decellu-
larization to obtain an antigen-free ECM that could support
biomechanical loading similar to the native healthy tendons.
Physical treatments are the most commonly used to interrupt
the binding of resident cells to the collagen matrix and
to disrupt the cell membrane. These treatments include
mechanical forces, like ultrasonication [43], and repeated
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freeze-thaw cycles at —20/80°C [10, 11, 13-21, 26, 27, 29-
39,44-46,48]. These latest treatments are the most frequently
used and can be associated with or followed by freeze-thaw
cycles in liquid nitrogen [20, 35, 36, 39, 44, 45, 57]. Chemical
treatments can directly start in fresh samples without any
previous cycles of freezing and thawing [11, 13, 25, 26, 29, 42,
43, 45] and are commonly used to degrade cell components,
remains, and antigens. In particular, chemicals act on cell
cytoplasm, nuclear membrane, and lipid/protein interactions.
Nonionic (Triton X100) [11-14, 17, 18, 21-24, 31, 33, 34, 40,
42, 45], ionic (Sodium Dodecyl Sulfate, SDS) [11, 13, 15,
16, 19, 23, 26, 31, 42, 43, 45, 46, 48, 49], and zwitterionic
(Tributyl Phosphate, TBP) [13, 19, 23, 31, 42, 46] detergents
are the most employed agents to obtain a complete tendon
decellularization. These reagents can be used either alone
or in combination to increase their effect [11, 13, 23, 42,
46]. Hypotonic and hypertonic solutions or EDTA buffers
are frequently used with physical [13, 27, 28, 31, 32, 49] or
chemical treatments in order to better lysate cells [27-30,
32, 40]. EDTA can also be coupled with specific inhibitors
(aprotinin and leupeptin) to reduce the protease release that
damages the ECM structure [26, 43]. Because tendons have
a well-organized, compact structure, the collagen matrix
permeability to detergents and reseeded cells needs to be
improved by means of acid solutions (e.g., peracetic, acetic,
hydrochloridric, and sulfuric acids) [25, 27-30, 32, 42] or by
scoring or perforating the tendon surface with multiple slits
[28, 34]. Moreover, in order to allow extrinsic cells to migrate
into the acellular scaffold, some authors performed various
intensities of ultrasonication with the aim of producing a
microscopically more open porous matrix without damaging
the overall architecture of the scaffold [43]. Frequently, enzy-
matic treatments were associated with physical and chemical
protocols. Enzymatic substances like Trypsin were frequently
combined with EDTA [11, 14, 17, 18, 21, 22, 24, 25, 33, 34,
40, 46, 48], with collagenase type I [12, 41], or with chemical
treatments [11] to disrupt peptide bonds at 37°C. Importantly,
in order to avoid a host immune response, endonucleases
(RNAse and DNAse) are commonly used to complete the
decellularization process cleaving the RNA and DNA remains
(13, 25, 26, 35-39, 43, 44, 46, 48, 57]. Only 27.5% of the
analyzed studies carried out a comparison among different
decellularization protocols allowing a deeper insight into the
efficacy of chemical treatments [11, 13, 19, 23, 27, 31, 40, 42,
43,45, 46]. In Figure 4, the most frequently used reagents and
detergents are displayed for a better comprehension.

About 80% of studies analyzed in this review performed
cell reseeding of the decellularized tendon tissue using
different kinds of cells belonging to the mesenchymal lineage
(bone-marrow- [21,34-36, 39, 46-48, 57], adipose- [17,18, 21,
26, 28, 30, 32, 45], or tendon-derived stromal cells [44, 57]) or
the fibroblastic lineage (tenocytes [11, 12, 14, 18, 20-22, 24, 30,
40, 43, 47] and dermal [15, 16, 19, 27, 30, 31, 37] and tendon
sheath fibroblasts [11, 17, 21]), as depicted in Figure 5. The
number of cells used for reseeding was differently reported
as cells/cm?® or cells/mL and varied from 2 x 10* to 4 x 10°
(mean 8 X 10°+ 1.3 x 10%) and from 1 x 10° to 2 x 107 (mean
2.6 x10°+ 4 x 10°), respectively. Cell reseeding was performed
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FIGURE 4: Reagents and detergents. The pie chart shows the per-
centage of physical, chemical, enzymatic, or associated detergents
employed for tendon decellularization.
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FIGURE 5: Cell sources. The pie chart shows the relative distribution
of cell sources used to reseed the decellularized matrix.

through the static (72%) or dynamic cultures (28%) using
simple rotating [16, 21, 26, 27, 29, 30, 39] and cyclic strain
cultures [39, 48] or specific commercial bioreactors [14,17] for
a culture time ranging from 24 hours to 8 days (mean 10+11.6
days).

3.2.1. Investigations to Assess the Decellularization and Recellu-
larization of Tendon Matrix. Specific analytical investigations
are normally performed to verify the efficacy of the decel-
lularization protocols or the capability of the decellularized
tissues to be efficiently colonized by cells. Among various
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analyses that were commonly performed either in vitro or
after in vivo implantation, the most employed techniques
to verify the intrinsic and biomechanical qualities of the
construct were represented by histology (Haematoxylin and
Eosin [11-14, 16-19, 21-29, 31-51], Masson’s Trichrome [26,
44, 46], Alcian Blue [26, 40], Prussian Blue [45], Nuclear Fast
Red [40], SYTO Green [17, 27, 28, 30-32], and DAPI [24, 25,
37, 40, 41, 43, 45]) and mechanical testing (ultimate tensile
strength and elastic modulus [12-14, 17, 18, 20, 23, 27, 28, 31-
34, 38, 39, 42, 43, 46, 48, 49, 57], stiffness [16, 19, 25, 29, 35,
37, 41, 44], and elongation [16]), respectively. Furthermore, to
detect the presence of residual cells in decellularized tissues
or reseeded constructs, DNA content [12,14,17,19, 25-28, 30—
32, 34, 37, 40, 41, 44-48, 57] was performed as principal
investigation together with other interesting analyses, such
as electron microscopy (SEM [25, 33, 37, 39, 41, 42, 44, 46,
49, 57] and TEM [28, 44, 45]) and labeling-based imaging
to discriminate viable cells [11, 20, 27, 28, 31, 32, 34-36, 39,
40, 42, 43, 45, 46, 57]. Proteoglycans and collagen fibers
are the principal components of the tendon ECM and their
conservation within a decellularized/recellularized scaffold is
mandatory. For this reason, biochemical assays [19, 27, 31,
37, 40-44, 46-48] or gene expression analyses [35, 36, 44,
47] (collagen types I and III, tenomodulin, scleraxis, and
cartilage oligomeric matrix protein), frequently associated
with immunohistochemical investigations [20, 26, 28, 30, 32,
43], have been performed to analyze their content within
the treated constructs. Animal models have been used to
define the inflammatory and immune response upon scaffold
implantation through specific immunohistochemical analy-
ses [29], as well as through the detection of inflammatory
matrix metalloproteinases (MMP2, MMP3, and MMP13) 35,
36]. Only one study analyzed directly in vivo the construct
integration within native tissue after implantation by using
the magnetic resonance [38]. In Figure 6, the distribution of
typical analyses of decellularized/recellularized constructs is
resumed.

3.2.2. Observation on Decellularization and Reseeding Proto-
cols. The ultimate goal of a decellularization process is to
obtain a scaffold wholly free of cellular components, thus
avoiding any host immune reaction. In addition, the removal
of remaining reagents is mandatory to contain the inflam-
matory response after transplantation. Thus, one of the most
useful and employed approaches to contain the inflammatory
reaction to biological scaffolds is the use of endonucleases
(DNAse and RNAse) able to remove potential cell remaining
from the decellularized matrix. Anyway, with the aim of
controlling these adverse host responses, aggressive decel-
lularization protocols were frequently performed with a
high risk to compromise the natural collagen structure and
mechanical properties of the scaffold. None of the in vitro
studies analyzed have investigated the inflammatory and
immunogenic properties of the obtained scaffolds. According
to this premise, an interesting approach might be the in vitro
analyses of inflammatory cytokines (TNF-« and interleukins)
and cytotoxicity or the immune response in peripheral blood
mononuclear cell tests. Only few in vivo studies correctly
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FIGURE 6: Construct analyses. The pie chart shows the relative
distribution of analyses performed to assess the quality of the
decellularization and reseeding of the tendon matrix.

evaluated the inflammatory response by means of histology
[20, 21, 25, 30, 36] or immunohistochemistry (B-cells,
macrophages) [30], confirming a mild to moderate reaction
towards the implanted scaffold within orthotopic [16, 21, 36]
but not heterotopic [25, 30] sites. Tischer et al. [16] attributed
the partial necrosis and the abundant mononuclear cell
infiltration within the fibroblast-reseeded matrix to the ionic
detergent (SDS) employed to decellularize the tendon. Kryger
et al. [21] demonstrated that acellularized tendons reseeded
with various autologous cells behave immunologically like
native tendon grafts without the inflammatory response that
occurred in allogenic tendons. Omae and colleagues [35,
36] evaluated the gene expression of MMP3 and MMPI3
after the in vitro reseeding and orthotopic implantation in
vivo, demonstrating a higher expression in reseeded tendon
with respect to the decellularized ones. Nevertheless, the
histological analysis did not show any inflammatory cell
infiltration in either seeded or unseeded constructs at day 14
after orthotopic implantation.

An important limitation in creating biological vital scaf-
folds is related to the time necessary to repopulate the decel-
lularized matrix with proper cells, particularly concerning
the primary cell lines. Indeed, the primary problem with
reseeded matrix is the lag time required for graft preparation
prior to implantation starting from the biological material
collection through the cell isolation and expansion to the
final, functional graft colonization. This temporal limitation
is mostly perceived in traumatic acute tissue damage rather
than chronic injuries. A cell-based approach for tendon
restoration by means of reseeded grafts has been extensively
demonstrated as an effective strategy [5]. In this context,
an unresolved debate exists on the most effective but less
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time-consuming cell type for functional tendon graft devel-
opment to be used in clinics. In fact, among several cell
types used to reseed tendons, the most popular are the
mesenchymal stem cells (MSCs) associated with long-term
culture or cells derived from terminally differentiated tissues
(tenocytes, fibroblasts, etc.) with a quicker proliferation rate.
Despite the supposed advantages in using high proliferative
cells, employing autologous tenocytes or fibroblasts requires
invasive harvesting with high patient morbidity without
taking advantage of immunomodulatory effects. In addition,
the easier harvest of great amounts of mesenchymal stem
cells from bone marrow or adipose tissue and approved
standard procedures for their isolation better support the use
of these cells. Moreover, the immunomodulatory properties
of mesenchymal stem cells are well known and exploited in
the treatment of therapy-resistant graft-versus-host disease
[58]. This peculiar feature of MSCs may play a role in the
maintenance of implanted scaffold tolerance and control both
the autoimmunity and the inflammatory responses.

Another important issue after the graft reseeding is the
viability of seeded cells and their capability in colonizing
the scaffold after implantation. Most of the analyzed studies
demonstrated a good cell repopulation mainly on the surface
of the implanted scaffold after 2 to 8 weeks [21, 22, 28, 32, 36,
44]. Only one author declared a good cellular penetration into
the core graft up to 20 weeks after implantation [11].

All vertebrate tendons are relatively similar in elastic
modulus (EM), though reported EM varies widely from
very low values (160 MPa) to exceeding values (2000 MPa)
[59]. Thus, the data interpretation of the analyzed studies
becomes difficult due to the different methodologies and
measurements performed. The biomechanical properties of
decellularized or reseeded tendon matrix need to be main-
tained similar to the native tissue. Taking into account the
basal mechanical properties of human tendons could be a
useful benchmark to evaluate the scaffold quality. In the liter-
ature, the biomechanical values of human tendons are widely
described with a variable EM from 816+218 MPa to 1673 MPa
for the Achilles [60] and flexor digitorum profundus tendons
[61], respectively. Otherwise, the UTS ranges consistently
from 40 to 100 MPa [62], or differently reported as 1189 +
496 N [63]. Aiming at a suitable biological scaffold derived
from tendon to tendon substitution in human medicine,
xenografts represent promising materials. According to this,
most of the studies focused the attention on the protocol opti-
mization in tendons derived from various animals without
considering the translatability of the final construct. In partic-
ular, decellularizing tendons derived from laboratory [12-24]
or small animals [33-39, 57] clearly might not be useful for
human use because tissues of these species are not available as
commercial products, though they represent a valid approach
in research and the results obtained from these studies are
still highly relevant. Differently, tendons derived from large
animals like pigs [40-44], horses [45-48], bovine [49], or
humans [26-32] fit better for this purpose. This concept is
particularly true whether considering the final dimensions
and biomechanical features of the decellularized or reseeded
scaffolds. The studies that processed porcine tendons showed
poor biomechanical properties of the native tissue compared
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to the human basal values [41-44], despite being suitable in
terms of dimension. Among the few studies performed on
equine tendons, only Youngstrom and colleagues [46, 48]
carried out biomechanical tests on native and decellularized
tissue, demonstrating inferior properties in terms of EM and
failure stress. The analysis of only two similar studies does
not allow drawing a firm conclusion on the suitability of
equine tendons. Studies performed on the human-derived
flexor digital tendons demonstrated that this tissue could be
suitable as xenograft in terms of both the EM and UTS falling
within the parameters of normal values [27, 28, 30, 31], with
the exception of the values reported in the study conducted by
Schmitt and colleagues [32]. Some studies working on rabbit
tendons [12-14, 17, 18] confirmed that this species has suitable
UTS and EM basal values compared to humans. Hence,
rabbit tendons are valid candidates to investigate innovative
strategies to obtain tendon-derived matrix in the research
field, even though they cannot be implantable xenografts.

The decellularization and/or reseeded protocols used to
create tendon-derived matrix grafts vary widely throughout
the literature, making the comparison of the efficacy of
different approaches complex. Indeed, only some in vitro
studies compared more than two protocols [11, 13, 19, 23, 27,
31, 40, 42, 43, 45, 46], but they differed a lot in terms of
starting treatment (fresh or frozen), chemical or enzymatic
agents, and concentrations for the decellularization protocols.
In addition, the strategy to reseed the matrix is commonly
performed by employing different cell sources, types, and
days of culture. From these studies emerges the fact that TBP
[23, 42] and SDS are the most efficacious reagents to obtain
a performing decellularized tendon matrix. An interesting
approach to ameliorating the action of chemical detergents
in the compact collagen structure of tendons is the use of
the peracetic acid (PAA) that acts on the permeability of
the matrix permitting a greater penetration of the reagents
[25, 27-30, 32]. Thanks to the PAA activity, the total amount
and concentration of detergents could be drastically reduced.
In fact, the use of harsh decellularization methods might
determine damage of the collagen ultrastructure, impairing
the biomechanical properties of the decellularized matrix.
Conversely, applying a mild decellularization could not fully
remove the cell component. Therefore, few studies combined
the use of ion and zwitterionic detergents with protease
inhibitors such as aprotinin and leupeptin [26, 43] to prevent
the matrix disruption by proteases.

An appropriate terminal sterilization of the biological
scaffold is mandatory to eliminate endotoxins and bacterial,
viral, or prion presence [64], while preserving the struc-
tural, biochemical, and mechanical properties of the ECM.
According to the literature, a valid sterilization approach is
the use of hybrid methods both to sterilize the scaffold and
to preserve the biomechanics [65]. Most of the sterilizing
techniques use acids (e.g., PAA) or solvents for in vitro
studies, although they are not sufficient for the clinical
translatability as the sterilization required for medical devices
needs to achieve sterility insurance levels of 107® (SAL6) [66].
Other sterilization methods are approved for clinical use, that
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is, ethylene oxide [39, 57], gamma, and electron beam irradia-
tion, though some authors showed undesirable host immune
responses to these processes [67-69]. In the last few years,
an alternative and recently approved sterilization method of
biological grafts for clinical use is the supercritical carbon
dioxide [66, 70]. Due to the intrinsic differences in the ECM
composition of various tissues, decellularization agents, time
of exposure, and terminal sterilization techniques should be
deeply investigated.

3.3. Animal Models for Tendon Repair with Decellularized
Matrix. Only 12 studies verified the performances of the
decellularized constructs unseeded or cell reseeded in animal
models. The defect size and surgical techniques used to
allocate the grafts are resumed in Table 2. In particular,
most of them (67%) described an orthotopic implantation in
rabbits [16, 18, 21, 22, 36, 38] and only two studies described
an orthotopic implantation in rat Achilles tendon defects [24,
44]. Furthermore, some authors performed subcutaneous
implantations of the constructs in mice and rats to investigate
both the host inflammatory and the cell-mediated immune
responses to detergent remains of decellularization process
(25,28, 29, 32, 44]. In our analysis, we found a high variability
of the time points after implantation that were commonly
longer in orthotopic models ranging from 2 to 30 weeks
(mean 8.4 + 7.2) than in heterotopic sites, of which the
subcutaneous implantation protracted for 1 to 4 weeks (mean
2.7+1.2). Although investigations at different time points are
detrimental to evaluate the tendon-tendon integration and
the host immune response, the comparison of results among
various studies becomes difficult for the aforementioned
variability.

3.3.1. Observation on Preclinical Animal Models. In the lit-
erature, different species are described as suitable models to
study tendon ruptures and tears in terms of the physiopathol-
ogy and tissue regeneration. Among them, nonhuman pri-
mates and dogs were frequently used for this purpose in the
past, but the ethical issues and the public opinion decreased
their employment in preclinical research [71-73]. Differently,
horses, goats, and sheep represent the elective models due to
proper dimensions, qualities, and biomechanics of the flexor
tendon structure [74-77]. Anyway, the special management,
handling, and high costs of these models constitute a limita-
tion for their use. Laboratory animals, like mice and rats, have
several advantages as preclinical models. They are very pro-
lific obtaining high numbers for experimental studies; they
can be easily handled and are with reduced economic impact.
Furthermore, their genome has been completely sequenced
showing a high genetic homology to humans (80-90%), thus
permitting creating transgenic models of tendinopathy to
study its pathogenesis [78]. Nevertheless, their small dimen-
sions, in particular that of mice [79], represent the major
limitation to testing novel therapeutic approaches for tendon
augmentation and/or laceration. The highest balance in terms
of tendon structure, physiology, cellular component, and
biomechanics compared to humans can be found in rabbits
[80-82]. This species merges appropriate tendon size with an
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easy handling and controlled costs that make rabbits the most
proper animal models to investigate biological tendon graft
features before the human use [11-22]. More importantly, the
animal models are widely employed to verify the integration
of the decellularized matrix within the orthotopic site of
implantation. Most of the analyzed studies evaluated the inte-
gration of the tissue engineered tendon grafts in a rabbit
model of anterior cruciate ligament [16] or tendon defect
replacement [18, 21, 22, 36, 38] by means of histological,
biomechanical, or molecular investigations. Only one study
assessed the graft integration in a rat model of Achilles tendon
defect [24]. Overall, these studies reported weaker biome-
chanical properties after 8-10 weeks of implantation com-
pared to the native tissue [16, 18, 38]. Histologically, a mild to
severe inflammatory response was detected after the implan-
tation of reseeded tendon matrix [16, 21, 24, 38]. One group
evaluated the expression of tenogenic genes after implan-
tation, reporting higher expression in the reseeded tendon
matrix when compared to the decellularized matrix [36].

4. Conclusions

The purpose of the present review is to critically analyze
the recent literature on tendon-derived biological scaffolds
highlighting the principal features to develop a functional
tendon device, since the final goal of regenerative medicine
and tissue engineering is to translate the tendon restoration
to clinics. In particular, we focused on the proper tendon
source and dimensions, the safety of the device in terms of
host integration, response, and biodegradability related to the
common applied protocols for decellularization. Moreover,
reseeding and sterilization techniques as well as the adequate
mechanical proprieties of the biological product were dis-
cussed. More importantly, we evaluated the importance and
pertinence of preclinical animal models related to the type
and site of tendon injury before evidence based clinical trials.

Biological scaffolds have been increasingly involved in
regenerative medicine and tissue engineering because there
is no better way to replace a tissue with its homologous
structure. Currently, the use of decellularized tendon appears
to be an interesting approach for the treatment of tendon
ruptures and tears, being the most adequate structure to
guide the regeneration of the injured tissue by preserving
the complex matrix architecture. The collagenous structure
of decellularized tendons is effectively an ideal environment
to encourage cell incorporation, metabolism, and matrix
synthesis. The purpose of any decellularization protocol is to
successfully remove cellular components and nucleic resid-
ual, thereby minimizing modifications on the arrangement,
biological activity, and mechanical properties of the matrix.
Therefore, the ideal tendon graft is a nonimmunogenic,
readily acquired ECM with mechanical properties resembling
the native tendon features. Up to the present, synthetic
biomaterials have not demonstrated appropriate mechanical
properties suitable for orthotopic implantation. Conversely,
the biological grafts seem to have more appropriate structure
and features to be employed for tendon repair. Indeed, xeno-
geneic tissues, such as dermis, small intestine submucosa, and
pericardium, have become popular commercial scaffolds for
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this purpose as widely demonstrated in the literature [7, 8, 83—
86]. Despite the optimal integration, the biocompatibility
with the host tissues, and the augmentation function of the
commercial biological scaffolds, these products possess low
mechanical properties unable to support the physiological
loading to be used as tendon substitutes. Moreover, the
procedures adopted to decellularize commercial biological
scaffolds are commonly protected by an industrial knowhow
that impedes the reproducibility and the direct comparison
of the protocols.

There are also several limitations in comparing
approaches and techniques presented in the literature, even
if the aim of their research is the same. In fact, drawing a
conclusion is an almost impossible challenge if we consider
the use of tendon derived from several species, the different
dimensions of the tissue treated with mechanical methods
or chemical detergents at different concentrations, and the
use of a variety of cell types cultured either in static or in
dynamic conditions to recreate implantable constructs tested
in different animal models. This potentially raises a concern
about the impact of this analysis for further methodology
development.

The ultimate animal species—providing tissue for xeno-
transplantation—should have some characteristics consistent
with the clinical use. The limited risks of disease transmission,
the appropriate dimensions, and the large availability inde-
pendent of ethical concern are mandatory. Equine tendon
xenografts could meet the requirements thanks to an inferior
and geographically limited zoonosis, proper dimension, and
biomechanical characteristics similar to human tendons and
being the tissue harvest related to slaughter waste products.
Moreover, the development of a tissue substitute derived
from equine might also be employed in the reconstruction
of tendon injuries commonly occurring in athletic horses or
pets, thus creating a commercial product that can be also sold
in the veterinary market. As emerged from our review, only
few studies investigated equine tendon as source and none
of them appears to demonstrate an adequate DNA removal.
Thus, further evidences are required to support the use of this
species.

As emerged from our analysis, efficient decellularization
protocols require a combination of physical, enzymatic, and
chemical treatments to eliminate as much of cellular residues
as possible to make the construct safe for transplantation.
From these studies emerges the fact that TBP and SDS are
the most efficacious reagents to obtain a performing decel-
lularized tendon matrix, while preserving the mechanical
properties of the native tendon. An interesting approach to
ameliorate the final product characteristics is the association
of these reagents with endonucleases (RNAse or DNAse) in
order to avoid immunogenicity caused by cell residues and
the use of protease inhibitors (aprotinin and leupeptin) to
prevent matrix disruption or weakening by proteases. Also
the removal of reagent remaining is mandatory to contain the
inflammatory response; hence supplementary investigations
could be done to verify the construct biocompatibility such as
the evaluation of cytotoxicity or proinflammatory cytokines
release.
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The ECM structure might become more compact or more
inhomogeneous in response to decellularization treatments;
thus the use of detergents like PAA could promote cell pene-
tration and migration through the matrix improving scaffold
permeability. PAA is also frequently used as a sterilizing
detergent even though it is not an approved method for the
clinical translatability. From a clinical point of view, it will be
important to further investigate a sterilization method able
to achieve sterility insurance levels without compromising
biomechanical and biocompatible features of the scaffold.

The biological scaffolds derived from decellularized ten-
don are often reseeded with different cell types to recreate
implantable constructs either in static or in dynamic culture
conditions. Tenocytes, fibroblasts, bone-marrow- (BMSCs),
adipose- (ASCs), and tendon-derived (TSPCs) stromal cells
are all possible candidates for tissue engineering approaches.
Despite that, the use of BMSCs is encouraged because of
their advantageous characteristics, requiring less invasive
harvesting procedures and their immunomodulatory features
being favorable for transplantation with respect to cells
isolated from other tissues. As the goal of decellularizing
tendons apparently is to reseed them with host cells before
implantation, one of the most challenging aspects is opti-
mizing the cell invasion of such a dense tissue like tendon.
Thus, the use of bioreactors supports the cell penetration
and distribution within the matrix structure to accelerate the
in vitro production of biological constructs able to better
support the host integration and functionality after implan-
tation while maintaining viable the reseeded cells.

The obtained implantable tendon devices have been
successfully implanted in preclinical animal models to recon-
struct experimentally induced tendon damage or tissue loss.
In the literature, different species are described as proper
models to study the physiopathology and regeneration path-
way of this tissue, but the highest balance compared to
humans’ features can be found in rabbits, merging appropri-
ate tendon size with contained costs and an easy handling.
However, the best choice of animal model depends on the
research question and expected results in terms of tendon
rupture and repair and scaffold integration.

In conclusion, the detection of a proper extracellular
matrix as a tissue substitute able to deliver viable autologous
cells and eventually biological agents might be a promising
approach in the regeneration of injured tendon. However, it
will be critical to standardize decellularization or reseeding
protocols to obtain reproducible products able to become a
near-term clinical reality.
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