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Abstract: Recent studies have revealed the importance of the interaction effect in cardiac research.
An analysis would lead to an erroneous conclusion when the approach failed to tackle a significant
interaction. Regression models deal with interaction by adding the product of the two interactive
variables. Thus, statistical methods could evaluate the significance and contribution of the interaction
term. However, machine learning strategies could not provide the p-value of specific feature interac-
tion. Therefore, we propose a novel machine learning algorithm to assess the p-value of a feature
interaction, named the extreme gradient boosting machine for feature interaction (XGB-FI). The first
step incorporates the concept of statistical methodology by stratifying the original data into four
subgroups according to the two interactive features. The second step builds four XGB machines with
cross-validation techniques to avoid overfitting. The third step calculates a newly defined feature
interaction ratio (FIR) for all possible combinations of predictors. Finally, we calculate the empirical
p-value according to the FIR distribution. Computer simulation studies compared the XGB-FI with
the multiple regression model with an interaction term. The results showed that the type I error
of XGB-FI is valid under the nominal level of 0.05 when there is no interaction effect. The power
of XGB-FI is consistently higher than the multiple regression model in all scenarios we examined.
In conclusion, the new machine learning algorithm outperforms the conventional statistical model
when searching for an interaction.

Keywords: interaction; machine learning; cross-validation; XGB

1. Introduction

Recent studies of the interaction effect in cardiac research successfully discovered
crucial findings. Electromagnetic interactions between implanted cardioverter defibrillators
and left ventricular assist devices were examined [1]. An interaction between arousals and
ventilation during Cheyne–Stokes respiration in heart failure patients was reported [2].
Kawashima [3] showed that there was a significant interaction in mortality between treat-
ment effect (percutaneous coronary intervention (PCI) and coronary artery bypass grafting
(CABG)) and the presence or absence of heavily calcified lesions (HCLs) (Pinteraction = 0.005).
Another study [4] estimated the risk of death related to ventricular arrhythmia in time-
updated models. This study examined the interaction between heart failure etiology
and the effect of sacubitril/valsartan. Hazard ratio in patients with an ischemic etiology
was 0.93 (0.71–1.21) versus 0.53 (0.37–0.78) in those without an ischemic etiology (p for
interaction = 0.020). Therefore, developing a novel algorithm to detect the interaction effect
is beneficial for cardiology and various research fields.

Regression analysis detects interaction between two independent variables by the
product of the two independent variables Y = β0 + β1X1 + β2X2 + β3X1X2. Testing
whether the slope of the interaction term (β3) is equal to zero determines the significance of
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this interaction term. When the p-value is less than the significance level of 0.05, we declare
that the interaction is significant [5].

Compared with conventional statistical approaches, machine learning algorithms
improve the predictive accuracy by fitting the model with a tremendous training process [6].
Driven by big data, a machine learns if its performance at tasks improves with experience [7].
When building a model using machine learning techniques, the first step is to stratify
the data into two independent subsets: the training and testing sets. The training data
create datasets only used to train the hyperparameters. As a result, the optimized model
parameters are estimated based on the training data. The testing data are not included in
the training process but only evaluate the trained machine or model. To avoid overfitting,
the K-fold cross-validation (CV) is the ideal solution [8,9], where the CV error could be
measured by accuracy, mean square error (MSE), and F1 Score [10].

Among the learning algorithms, there are unsupervised and supervised learning. Un-
supervised machine learning only examines the associations between a set of predictors [7],
for which the principal components analysis (PCA) [11] is the most popular method. In
contrast, supervised machine learning deals with a dependent variable or the outcome of
interest. For supervised learning, regression for a continuous outcome variable and classifi-
cation for a categorical outcome are carried out through three primary applications—the
generalized linear model (GLM) [12], the logistic regression model [13], and the support
vector machine (SVM) [14].

In addition to the SVM, tree-based designs are the most popular due to simple ap-
plications and interpretations. Random forest could provide feature importance through
decision trees [15]. The algorithm of decision trees was examined in 2001 by Breiman [16],
showing that a type of ensemble method is a collection of multiple weak classifiers to
produce a robust classifier [17]. Classification and regression tree (CART) is a decision tree
for predictive classification and continuous value [18] that adopts the binary division rule.
There are only two branches each time a division is generated, and the Gini index could
determine which branch is the best. The random forest model is a popular and powerful
tool for classification problems [16].

Instead of using the bagging technique in random forest models, the gradient boosted
decision tree (GBDT) [19] builds one decision tree at a time to fit the residual of the trees
that precede it to increase the predictive ability. The extreme gradient boosting (XGB)
machine [20] extends the GBDT and allows more hyperparameters that regulate the effect
estimates and produce incredible predictive power.

Recent research (Wright, Ziegler, and König [21]) suggested that the tree model could
not pick two interaction variables (features) at the beginning in simulating multiple different
interactions. It is an internal node, especially when the marginal effect of the interaction
variable is small. Although the tree model can handle partial interaction effect, such
modification is easily affected by the marginal effect. In addition, a random forest is
composed of many decision trees. When building the trees, the random forest only selects
some variables as the nodes. As a result, each tree may not include the interaction variables,
and the prediction could be biased.

Since the tree-based design has the most intuitive structure to deal with interactions,
this research aims to develop an algorithm to evaluate the statistical significance of a feature
interaction by modifying the data structure of the XGB machine. The new approach is
named the extreme gradient boosting machine for feature interaction (XGB-FI).

2. Materials and Methods

The training and testing sets contain 80% and 20% of the data, respectively. Assuming
there is only a single two-way interaction, the XGB-FI algorithm has five steps with 10-fold
cross-validation to avoid overfitting:

1. Build the XGB machine using the original dataset without the two interactive features
(noted as XGB−X1−X2) and obtain the root-mean-squared error (RMSE);

2. Stratify the original data into four subgroups according to the two interactive features;
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3. Build separate XGB machines for each of the four stratified subsets and then average
the four RMSEs (noted as XGB+4 stratum);

4. Calculate a newly defined feature interaction ratio (FIR) for all possible combinations

of predictors as FIR = Mean RMSE o f XGB+4 stratum
RMSE o f XGB−X1−X2 ;

5. Declare significance or obtain the empirical p-value using the threshold (Q1 − 1.5 × IQR),
where Q1 is the first quartile (25th percentile), and IQR is the interquartile range, according
to the empirical FIR distribution.

It is worth noting that the above algorithm adopts the same hyperparameter of the
XGB by grid search using the whole data with every feature. The learning rate is 0.05. The
number of trees is 300. The early stopping round is 10. The maximum depth of a tree is 6.
The rest hyperparameters are default settings.

In the first step, the XGB machine is built using the original dataset without the two
interactive features. We denoted the model as XGB−X1−X2. This model estimates the
interaction effect’s impact since the XGB machine failed to incorporate the two variables
and the interaction term in the analysis.

In the second step, a concept of stratification is adopted that eliminates the impact of
interactions [22]. Assuming the two interactive predictors are dichotomous, the original
data are stratified into four subsets. If one or two predictors are continuous, the median is
the threshold to dichotomize the predictor. In this way, there is no need to consider whether
the distribution is normal or symmetric. Other than the median, one could consider the
mean, the first or third quartile, or any arbitrary percentile to dichotomize the predictors.
As a result, Figure 1 displays the data structure of the XGB-FI, and the (XGB 1) to (XGB 4)
are separately fitted to the four subsets with the same hyperparameters.
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Figure 1. The data structure of the XGB-FI.

Note:
XGB 1 : X1 ≥ median and X2 ≥ median

XGB 2 : X1 ≥ median and X2 < median

XGB 3 : X1 < median and X2 ≥ median

XGB 4 : X1 < median and X2 < median

In the third step, we implement another four XGB machines within each stratum and
then derive the mean of the four RMSEs. It is worth noting that the four subsets do not
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contain the two variables with feature interaction (X1 and X2.). We denoted this model as
XGB+4 stratum. The result of this model contains the improvement or gain by removing the
interaction effect but not the main effect of the two interactive variables.

In the fourth step, we define the feature interaction ratio (FIR) as

FIR =
Mean RMSE o f XGB+4 stratum

RMSE o f XGB−X1−X2

The denominator of the FIR represents the RMSE not controlling for interaction and
the main effect of X1 and X2. In contrast, the numerator is correctly adjusted for feature
interaction but not the main effect. As a result, the difference between the numerator and
the denominator is only the interaction effect.

As the numerator represents the gain of treating the interaction impact, the smaller
FIR indicates a more substantial interaction effect. This step calculates numerous FIRs for
all possible combinations of interactions. If the total number of predictors is K, there are
CK

2 = K!
2!(K−2)! combinations.

The last step declare statistical significance with the threshold: (Q1 − 1.5 × IQR),
where Q1 is the first quartile (25th percentile), and IQR is the interquartile range, according
to the empirical FIR distribution of CK

2 = K!
2!(K−2)! combinations. Suppose the interaction

term of the particular interest leads the FIR below the threshold. In that case, we declare
that the feature interaction is statistically significant, which means that it is unlikely to
occur by chance. The percentile of FIR seems to estimate the empirical p-value for the
feature interaction. However, we discovered that the 95th percentile obtained from the
empirical distribution did not provide the correct significance level. Therefore, we used a
nonparametric threshold for outliers in the box plot.

Simulation Study

The computer simulation was conducted by Python version 3.7.7. We used the “mul-
tivariate_normal function” in the “NumPy” package to generate six correlated variables,
then the “normal function” generated 10 independent noise variables. The covariance
matrix determines the relationship between Y and the 15 predictors (X1, · · · , X15). Figure 1
shows the Heat map of the 16 variables.

The correlation coefficient between the two interactive features (X1 and X2) is 0.8. Both
X1 and X2 have a correlation coefficient of 0.3 with the outcome variable Y. Marginal effects
(X3, X4 and X5) have a correlation coefficient of 0.5 with Y, and the correlation among the
three marginal effects is 0.2. Therefore, (X3, X4 and X5) has a higher impact on Y than
(X1 and X2). Correlation among the noises (X6 to X15) is zero, and they are uncorrelated
with any variable in the dataset, including the outcome variable Y. Figure 2 is the heatmap
of the correlation coefficients that displays the correlation structure of simulated data.
Data management and analysis tools used the “pandas” and “scikit-learn” packages. The
samples sizes are 500 and 1000. Since there are 15 predictors, the fourth step created a total
of C15

2 = 15!
2!13! = 105 FIRs.

Notably, the simulated data have no interaction effect, although X1, X2, and Y are
correlated. The interaction effect is added when both the values of X1 and X2 are higher than
their medians. The interaction effect has three different settings. The first setting assumes a
mild interaction effect. Thus, the interaction is randomly assigned to individuals according
to the normal distribution with the mean 0.5 and variance 1. We added normal (1,1) for a
moderate effect, and a considerable interaction has the extra value of normal (2,1).

In addition to the correlation structure in Figure 2, we conducted more scenarios
to examine the impact of marginal effects. Table 1 shows different correlation structures
between Y and the predictors. We aimed to determine whether the magnitude of asso-
ciation between the marginal effects (X3, X4, X5) and the outcome Y would modify the
performance of the two interactive features (X1, X2).
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Table 1. Different correlation structures between Y and the predictors.

Correlation Coefficient Corresponding to Y

X1, X2 X3, X4, X5

Scenario 1 0.3 0.3
Scenario 2 0.5 0.5
Scenario 3 0.5 0.8
Scenario 4 0.8 0.8

3. Results

Computer simulation has 100 repetitions for each scenario. Under the null hypothesis
of no interaction between X1 and X2, the FIR never exceed the threshold of (Q1 − 1.5× IQR).
In Figure 3, we can see that only X4 and X5, X3 and X4, and X3 and X5 have reached the
threshold. Although too conservative, the XGB-FI demonstrated a valid type-I error under
the 5% significance level.

Power simulations for the XGB-FI with a sample size of 1000 are displayed in
Figures 4–6. The first bar in the horizontal axis represents the power of detecting fea-
ture interaction between X1 and X2. Other bars are type-I errors since there were no
interactions for other predictors. With a sample size of 500 (1000), the statistical power of
the XGB-FI is 14% (23%), 62% (77%), and 79% (94%) for the mild, moderate, and consid-
erable interaction effects. The results revealed that statistical power increases when the
interaction effect becomes more significant. In addition, when the sample size increases
from 500 to 1000, statistical power rises accordingly. The power comparisons of multiple
regression are added in Tables 2 and 3 with different sample sizes. The 95% confidence
interval for each scenario is displayed in parenthesis. The XGB-FI consistently has higher
statistical power to identify feature interaction than the regression models.
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Table 2. Power comparisons between the XGB-FI and multiple regression with sample size 500.

Interaction Effect

Mild Moderate Considerable

XGB-FI 0.14 (0.07, 0.21) 0.62 (0.52, 0.72) 0.79 (0.71, 0.87)
Multiple regression 0.04 (0.002, 0.078) 0.20 (0.12, 0.28) 0.52 (0.42, 0.62)

Table 3. Power comparisons between the XGB-FI and multiple regression with sample size 1000.

Interaction Effect

Mild Moderate Considerable

XGB-FI 0.23 (0.15, 0.31) 0.77 (0.69, 0.85) 0.94 (0.89, 0.99)
Multiple regression 0.12 (0.06, 0.18) 0.41 (0.31, 0.51) 0.85 (0.78, 0.92)

From Table 4, it can be inferred that the XGB-FI is consistently more powerful in all
scenarios. Although the magnitude of association between the marginal effects (X3, X4, X5)
and the outcome Y changes the power of the two interactive features (X1, X2), the superior-
ity of the XGB-FI is consistent. Regarding the type-I error simulations, the FIR of (X1, X2)
does not show any significant result in 100 repetitions. Although the estimated Type-I error
is too conservative, it is a valid test for identifying the interaction effect.

Table 4. Power comparison under Scenarios 1 to 4.

Magnitude of Interaction Effects

Scenarios Mild Moderate Considerable

1 XGB-FI 0.94 1 1

Multiple regression 0.04 0.37 0.69

2 XGB-FI 0.95 1 0.98

Multiple regression 0.09 0.43 0.88

3 XGB-FI 0.23 0.8 0.96

Multiple regression 0.1 0.4 0.88

4 XGB-FI 1 1 0.95

Multiple regression 0.12 0.35 0.85
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4. Discussion

In this research, we proposed a novel algorithm to assess the significance level of a
feature interaction based on a modified structure of the XGB machine. In addition, we
defined a new feature interaction ratio (FIR). We also explicitly indicated the threshold
to declare significance based on the empirical distribution of all null interactions in the
set of predictors. Computer simulations confirm that the XGB-FI has a valid type-I error
rate under the null hypothesis of no interaction effect. Most importantly, the XGB-FI
outperforms the conventional regression model in detecting the interaction effect.

The limitation of XGB-FI is that at least 15 predictors are required to generate the null
distribution of FIR for all possible interactions. If the data contain less than 15 features,
then the combination of potential interactions is less than 105, and the probability of
declaring significance drops accordingly. More predictors would result in a more reliable
null distribution of the FIRs and assure the statistical power of the XGB-FI. Although
the simulations assume continuous features, scenarios for categorical or ordinal feature
interactions are intuitive.

This research focused on a two-way feature interaction. However, a higher-order
interaction such as a three-way interaction could adopt similar concepts. Future studies
could carry out the empirical distribution of the FIRs and declare significance or assess the
p-value under a higher-order interaction effect.

Similar to a previous study [23], simulations were conducted with 100 repetitions
for each situation. More repetitions could obtain more accurate estimates. However, all
scenarios yielded zero type-I error estimates. In addition, the power of XGB-FI is much
higher than the multiple regression. The 95% confidence interval of the empirical power
estimates for the XGB-FI is significantly different from that of the multiple regression.
Therefore, more repetitions would not alter the scientific discoveries, and 100 repetitions
are satisfactory in this study.

In computer simulations, we adopted a similar approach in our recent research [24] and
generated data according to the multivariate normal distribution. A variance–covariance
matrix describes the correlation of the predictor and outcome variables. However, there
are numerous ways of simulating datasets. For example, the outcome variable could be
generated by a function of predictors [25]. In this way, a more complicated structure for
feature interaction could be assessed, which would be a prudent topic for future research.

Although this study used simulated data, the XGB-FI could be implemented in cardiac
research or other fields. The discovery of more complicated interaction effects will benefit
tremendous clinical applications.

The limitation of this research is that we only simulated continuous predictors and
outcomes. However, feature interaction is a very complex and nuanced area of study.
There are other combinations with nominal and ordinal variables that introduce feature
interaction, the nature of the interaction, the localization of the interaction effect, or the
range of effect. Therefore, the XGB-FI may not be the optimal strategy without considerable
research, and a future study is highly desired.
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