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Abstract: The aim of this work is to study the properties of nanostructured (1 − x)ZrO2 − xCeO2

composite ceramics, depending on the content of oxide components, as well as to establish the
relationship between the phase composition of ceramics and strength properties. The choice of
(1− x)ZrO2 − xCeO2 composite ceramics as objects of study is due to the great prospects for using
them as the basis for inert matrix materials for nuclear dispersed fuel, which can replace traditional
uranium fuel in high-temperature nuclear reactors. Using X-ray diffraction, it was found that
the variation of the oxide components leads to phase transformations of the Monoclinic-ZrO2 →
Monoclinic − Zr0.98Ce0.02O2/Tetragonal − ZrO2 → Tetragonal − Zr0.85Ce0.15O2 → Tetragonal −
ZrCeO4/Ce0.1Zr0.9O2 type. As a result of mechanical tests, it was found that the formation of
tetragonal phases in the structure of ceramics leads to strengthening of ceramics and an increase
in crack resistance, which is due not only to an increase in the crystallinity degree, but also to the
effect of dislocation hardening associated with a decrease in grain size. It has been established that
a change in the phase composition due to phase transformations and displacement of the ZrO2

phase from the ceramic structure with its transformation into the phase of partial replacement of
Zr0.85Ce0.15O2 or Ce0.1Zr0.9O2 leads to the strengthening of ceramics by more than 3.5–4 times. The
results of resistance to crack formation under single compression showed that the formation of the
ZrCeO4 phase in the structure of ceramics leads to an increase in the resistance of ceramics to cracking
by more than 2.5 times.

Keywords: composite ceramics; zirconium dioxide; dislocation hardening; mechanical testing; phase
transformations; materials for nuclear power

1. Introduction

As it is known, one of the priority tasks in the development of nuclear energy is the
development of new types of nuclear fuel, which can significantly increase the productivity
of nuclear installations by increasing the degree of fuel burnup [1–3]. The main criteria
for new types of nuclear fuel are: (1) the possibility of operation in a wide temperature
range; (2) high hardness and strength of fuel cells; (3) high resistance to the processes of
phase transformations, as well as thermal expansion; (4) resistance to radiation damage
and their accumulation during operation [4,5]. Additionally, an important factor in the
development of new types of nuclear fuel is given to the possibility of replacing traditional
uranium fuel with plutonium, the interest in which lies in the possibility of eliminating
the accumulation of transuranium elements, uranium decay products, and radioactive
waste [6–8]. The use of plutonium fuel, in turn, makes it possible to eliminate a number
of problems, including those associated with the accumulation of decay products and
transuranium elements [9,10].
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One of the types of new fuel is fuel elements based on dispersed nuclear fuel [11,12].
This fuel is based on the possibility of using plutonium placed in an inert matrix, which
makes it possible to remove part of the heat, as well as absorb most of the radiation damage
caused both by nuclear reactions with neutrons and by the resulting decay products [13–15].
Inert matrices are usually based on oxide ceramics or microparticles, such compounds
as ZrO2, MgO, CeO2, BeO, Al2O3, etc. [16–20]. The choice of these oxide ceramics is
due to their resistance to external influences, as well as physicochemical and structural
characteristics. Thus, for example, in a number of works it was shown that the use of oxide
ceramic microparticles makes it possible to reduce the degree of radiation damage, and the
obtained results of the kinetics of radiation defects and their accumulation make it possible
to predict the scope and potential service life [21,22].

One of the promising materials in this direction of using them as inert matrix materials
are zirconium dioxide microparticles, which have high mechanical strength and insulating
characteristics [23–25]. However, according to a number of experimental studies, one
of the disadvantages of these structures is their low resistance to phase polymorphic
transformations under the action of irradiation, which negatively affects their strength
and thermal parameters. One of the ways to increase the resistance of ZrO2 ceramics to
radiation damage, as well as to mechanical softening as a result of external influences, is
doping them with oxide compounds that have protective or reinforcing properties, the
combination of which makes it possible to increase the strength of ZrO2, and the possibility
of obtaining two-phase ceramics by nanosized particles opens up prospects in area of
inert matrices and their application [26–28]. Interest in nanosized ceramics is also due
to the possibility of increasing strength by changing the dislocation density, as well as to
interboundary effects associated with the presence of several phases in the structure. The
most promising dopants among oxide ceramics are cerium oxide (CeO2) or magnesium
oxide (MgO), which have excellent properties, and in combination with the properties
of ZrO2, it makes it possible to create new two-phase ceramics with high resistance to
external influences [29,30].

Based on this, the purpose of this work is to study the properties of ZrO2-CeO2
composite ceramics depending on the content of the oxide components, as well as the effect
of varying the components on the strength properties of the synthesized ceramics. The
choice of CeO2 as a dopant is due to its protective properties, which provide an increase in
the resistance of composite ceramics to external influences, and also have a significant effect
on the strength properties. At the same time, as was shown in a number of works [31–33],
the use of CeO2 as a dopant makes it possible to increase not only the strength properties,
but also significantly change the resistance to radiation damage, since this material has an
increased resistance to radiation embrittlement and swelling. Additionally, the protective
properties of CeO2 will make it possible in the future to reduce the rate of polymorphic
transformations in zirconium dioxide, which, as is known from a number of works [34,35],
are characteristic of this type of ceramics under radiation exposure.

2. Experimental Part

To obtain (1 − x)ZrO2 − xCeO2, Sigma Aldrich (St. Louis, MO, USA) ZrO2 and CeO2
powders were used, which have a chemical purity of 99.95% and grain sizes of no more than
1 µm. The x variation was 0.05, 0.10, 0.15, 0.25, and 0.50. Synthesis of (1 − x)ZrO2 − xCeO2
composite ceramics was carried out in two stages. The initial mixtures were weighed in
certain ratios with a total mass of the mixture of 10 g, which was subsequently subjected
to mixing.

At the first stage, the selected powders were weighed, followed by mechanochemical
grinding in a PULVERISETTE 6 planetary mill (Fritsch international, Idar-Oberstein, Ger-
many) in a tungsten carbide cup for 1 h at a grinding speed of 400 rpm. After grinding, the
resulting mixtures were subjected to dispersion and separation into portions for further
thermal annealing. At the same time, the analysis of the obtained mixtures showed that
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they do not contain any impurities associated with the processes of mixing in a glass of
tungsten carbide.

The second stage consisted in thermal sintering of the obtained samples at a temper-
ature of 1500 ◦C for 1 h in a SNOL muffle furnace, at a heating rate of 10 ◦C/min and
a cooling time of 24 h to reach room temperature.

The study of phase transformations depending on the content of the components was
investigated using the method of X-ray phase analysis by taking diffraction patterns in
the range of 2θ = 20–90◦ and subsequent interpretation of the observed changes using the
PDF-2 (2016) database. X-ray diffraction patterns were taken on a D8 Advance ECO X-ray
diffractometer (Bruker, Germany). To analyze the structural parameters, as well as their
changes, the Diffrac EVA v.4.2 program code was used.

The study of the strength properties of ceramics was investigated using the indentation
method to determine the hardness values of ceramics and their changes depending on the
phase composition, as well as the single compression method to determine the resistance
to cracking.

3. Results and Discussion

Figure 1 shows the results of the analysis of morphological features of synthesized
(1 − x)ZrO2 − xCeO2 ceramics depending on the concentration of CeO2 in the composition.

As can be seen from the data presented, a change in the composition of the ceramic
components leads to an increase in the degree of grain size homogeneity, as well as their
decrease. At the same time, for samples with a CeO2 concentration of 0.05–0.15, there
are clear differences in grain size and shape, which indicates that the ceramic structure is
a mixture of two phases with different properties.

Figure 2 shows X-ray diffraction patterns of the studied samples of synthesized
(1 − x)ZrO2 − xCeO2 composite ceramics with a variation of the x component. The pre-
sented diffraction patterns are typical for polycrystalline well-crystallized samples, and the
observed changes in diffraction lines indicate that phase transformations are observed in
the composition of ceramics depending on the concentration of the components.
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In the case of a CeO2 dopant content of 0.05, the main diffraction reflections observed
in the diffraction pattern correspond to the ZrO2 monoclinic phase, with the spatial syngony
P21/c(14). At the same time, the shape of diffraction reflections, as well as the ratio of
the areas of diffraction reflections and background radiation, which reflects the degree of
structural ordering, which amounted to more than 89%, indicates a rather high crystallinity
degree of the synthesized samples. Additionally, in this case, the presence of any low-
intensity reflections characteristic of other phases, including the CeO2 phase or substitution-
type phases, is not observed. An analysis of the structural parameters for the ZrO2 phase
showed that the crystal lattice parameters were a = 5.10953 Å, b = 5.18829 Å, c = 5.29281 Å,
β = 98.950◦, V = 138.6 Å3. At the same time, the differences in the crystal lattice parameters
of the experimentally obtained and card values from the database (PDF-01-070-2491) may
be due to mechanical deformation processes associated with mechanochemical mixing and
subsequent thermal annealing.

With an increase in the CeO2 component concentration from 0.05 to 0.1, a shift
in the main reflections characteristic of the Zr0.98Ce0.02O2 type substitution phase with
a monoclinic type of crystal lattice and the P21/c(14) spatial syngony, the same as for the
ZrO2 phase, is observed in the structure of the synthesized ceramics. At the same time,
the formation of this phase is due to the processes of partial replacement of zirconium
ions by cerium ions, followed by phase transformation. Additionally, a detailed analysis
of these samples revealed the presence of low-intensity reflections characteristic of the
ZrO2 tetragonal phase, the content of which is no more than 6% of the total structure. The
presence of reflections characteristic of the tetragonal phase indicates that the addition
of cerium oxide in small amounts initiates not only the processes associated with the
formation of a substitution phase of the Zr0.98Ce0.02O2 type, but also the processes of poly-
morphic transformations of the Monoclinic-ZrO2 → Tetragonal-ZrO2 type. The occurrence
of polymorphic transformations of this type may be due to the partial replacement of
zirconium ions by cerium ions, which leads to an increase in the number of vacancies and
free zirconium ions, the presence of which makes it possible to initiate the formation of the
ZrO2 tetragonal structure.

In the case of samples with a concentration of CeO2 equal to 0.15 in the composition
of the initial ceramics, no significant changes in the form of the formation of new phases
were found, whereas the main processes of phase transformations are associated primarily
with an increase in the ZrO2 phase with a tetragonal type of crystal lattice, the content of
which was more than 30%.

With an increase in the concentration of CeO2 from 0.15 to 0.25, another process of
phase transformations is observed, combined with a polymorphic transformation of the
monoclinic type of the crystal structure into a tetragonal one. At the same time, the main
phase dominating in the composition of ceramics with a CeO2 concentration of 0.25 is the
tetragonal Zr0.85Ce0.15O2 substitution phase with the P42/nmc(137) spatial system. The
formation of this phase is due to the presence of a high content of CeO2 in the composition
of the initial mixture subjected to mechanical mixing and subsequent thermal annealing,
which, as was shown earlier for lower concentrations, leads to the formation of substitution
phases and polymorphic transformations of the Monoclinic-ZrO2 → Tetragonal-ZrO2
type. In this case, the processes of polymorphic transformations due to the presence of a
large amount of cerium in the structure are also accompanied by substitution processes
with subsequent formation of the Zr0.85Ce0.15O2 phase. At a CeO2 concentration of 0.5,
two tetragonal phases ZrCeO4 and Ce0.1Zr0.9O2 are observed in the structure.

Figure 3 shows the diagram of phase transformations and the percentage of all estab-
lished phases depending on the concentration of CeO2 in the composition of ceramics. The
change in the crystal structure with an increase in the concentration of CeO2 is primar-
ily due to the processes of partial replacement of zirconium ions by cerium ions, which
leads to the formation of phases characteristic of structures similar to substitutional solid
solutions with a nonstoichiometric Zr/Ce ratio in the composition. Secondly, an increase
in the concentration of CeO2 in the structure at high concentrations of 0.25–0.5 leads to
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the formation of complex oxides of the ZrCeO4 type, as well as a transformation of the
monoclinic→ tetragonal structure type.
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As can be seen from the data presented in the phase composition diagram, the pro-
cesses of phase transformations of the monoclinic → tetragonal structure type can be
divided into the following stages depending on the concentration of CeO2 in the composi-
tion of ceramics. The first stage is characterized by the nucleation of the ZrO2 tetragonal
phase at a CeO2 content of 0.1; at the same time, the formation of this phase is also ac-
companied by the dominance of the Zr0.98Ce0.02O2 substitution phase with a monoclinic
type of crystal lattice. With an increase in the CeO2 concentration, the formation of the
Zr0.85Ce0.15O2 phase is observed, which, at a CeO2 concentration of 0.20, leads to the for-
mation of a single-phase ceramic with a tetragonal crystal structure. With an increase in
the CeO2 concentration to 0.25, the formation of two phases ZrCeO4 and Ce0.1Zr0.9O2 with
a tetragonal type of crystal lattice is observed in the ceramic structure, the content of which
is approximately equal. Based on the obtained diffraction patterns, the following phase
transformations were established depending on the concentration of the components in ce-
ramics: Monoclinic-ZrO2 →Monoclinic − Zr0.98Ce0.02O2/Tetragonal – ZrO2 → Tetragonal
− Zr0.85Ce0.15O2 → Tetragonal − ZrCeO4/Ce0.1Zr0.9O2.

Table 1 presents the results of changing the crystal lattice parameters depending on
the phase composition of the synthesized (1 − x)ZrO2 − xCeO2 ceramics.

As can be seen from the data presented, a change in the phase composition of ceramics
leads to an increase in the crystal lattice parameters, which is typical for processes associated
with phase transformations and substitution effects, leading to the formation of new phases.

Table 1. Data on the crystal lattice parameters of the studied ceramic samples (the parameters were
determined using the Rietveld method).

Lattice Parameter Concentration of CeO2

Phase 0.05 0.10 0.15 0.25 0.50

ZrO2—monoclinic
P21/c(14)

a = 5.10953 ± 0.00012 Å,
b = 5.18829 ± 0.00015 Å,
c = 5.29281 ± 0.00016 Å,

β = 98.950◦
- - - -

Zr0.98Ce0.02O2—
monoclinic
P21/c(14)

-

a = 5.14495 ± 0.00021 Å,
b = 5.20584 ± 0.00016 Å,
c = 5.30924 ± 0.00017 Å,

β = 98,852◦

a = 5.15503 ± 0.00015 Å,
b = 5.20990 ± 0.00027 Å,
c = 5.30404 ± 0.00023 Å,

β = 98.773◦
- -
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Table 1. Cont.

Lattice Parameter Concentration of CeO2

Phase 0.05 0.10 0.15 0.25 0.50

ZrO2—tetragonal
P42/nmc(137) - a = 3.58742 ± 0.00015 Å,

c = 5.17585 ± 0.00017 Å
a = 3.59234 ± 0.00011 Å,
c = 5.18498 ± 0.00016 Å

- -

Zr0.85Ce0.15O2—
tetragonal,

P42/nmc(137)
- - - a = 3.61188 ± 0.00026 Å,

c = 5.18693 ± 0.00017 Å
-

ZrCeO4—tetragonal
P42/nmc(137) - - - - a = 3.73690 ± 0.00017 Å,

c = 5.29911 ± 0.00012 Å

Ce0.1Zr0.9O2—
tetragonal

P42/nmc(137)
- - - - a = 3.62745 ± 0.00014 Å,

c = 5.22967 ± 0.00018 Å

A change in the phase composition, accompanied not only by phase transformations,
but also by subsequent transformations of the monoclinic structure→ tetragonal structure
type, leads to a change in the degree of crystallinity or structural ordering of the samples
under study. Figure 4 shows the results of the change in the crystallinity degree, as well as
the size of crystallites, which were estimated from the data of X-ray diffraction patterns
using the Scherer equation.
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As can be seen from the data presented, phase transformations lead to an increase in
the structural ordering degree, whereas a change in the size of crystallites is also observed,
which can be due to processes associated with the rearrangement of the crystal structure
as a result of a change in the phase composition of ceramics. At the same time, a decrease
in the size of crystallites with a change in the phase composition leads to a change in the
dislocation density in the structure of ceramics, an increase in which can have a significant
effect on the strength properties of ceramics [28,29]. As it is known, a change in the
dislocation density can cause the so-called effect of dislocation hardening, due to a decrease
in the probability of propagation of microcracks that occur under external influences. This
effect is used quite often in metallurgy, to create high-strength materials that are subject
to external influences and shocks. In the case of inert matrix materials, high strength and
crack resistance are among the leading indicators that determine their service life, since
during operation, ceramics can be subjected not only to radiation exposure, one of the
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effects of which is swelling of materials, but also to thermal heating, as well as mechanical
shocks or pressures that can lead to deformation and cracking of ceramic materials.

Figures 5–7 show the results of the change in strength characteristics, as well as
the dependence of the influence of dislocation density on hardening and increase in
crack resistance.

The general trend in the change in strength characteristics can be divided into
three characteristic areas that have a pronounced dependence on the phase composition
of the synthesized ceramics. In the case when the ZrO2 phase of the monoclinic type
dominates in the ceramic structure, the hardness and crack resistance values are quite low.
At the same time, the formation of the Zr0.98Ce0.02O2 phase in the structure of ceramics
does not lead to significant changes in the strength characteristics. The increase in hardness
and crack resistance in this case was no more than 3–5%, which indicates a small effect
of the change in the phase composition during the replacement phase formation on the
strength characteristics. The formation in the structure and the subsequent increase in the
contribution of ZrO2 tetragonal phases leads to a sharp increase in strength characteristics,
which indicates the strengthening of ceramics due to phase transformations. Additionally,
an important role in this process is played by the change in dislocation density, the change
of which, as the data in Figure 6 shows, has a good correlation with the change in strength
properties. In the case when monoclinic phases are not observed in the structure of ceramics
at high CeO2 concentrations, the increase in strength and crack resistance is more than 3.5–4
and 2.3–2.5 times, respectively, compared with samples in which the monoclinic type of
crystal lattice dominates. At the same time, the change in the dislocation density depending
on the phase composition has a similar pattern of changes as the strength properties, which
indicates that the hardening of ceramics is affected not only by a change in the phase
composition, but also by a change in the dislocation density.

Hardening mechanisms can be explained as follows. A change in the dislocation den-
sity due to a decrease in the size of crystallites leads to the formation of additional obstacles
in the form of grain boundaries or dislocation loops, to the propagation of microcracks
under the appearance of external pressures or stresses. At the same time, an important role
in changing the dislocation density is played by a change in the phase composition and
phase transformations of the crystal structure from monoclinic to tetragonal. In the case
of a monoclinic structure, the crystallite sizes are quite large, and from the assessment of
the degree of structural ordering in the composition of ceramics, a sufficient number of
disordered regions and defective inclusions are observed, the presence of which leads to
accelerated destruction under external influences. The presence of a tetragonal phase in the
composition leads to an increase in hardening, as well as to fragmentation of crystallites,
which leads to an increase in the dislocation density, an increase in which, as can be seen
from the data presented, leads to the appearance of the dislocation hardening effect.
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4. Conclusions

Thus, the following conclusions can be drawn.
During the studies performed, it was found that a change in the CeO2 concentration

in the composition of ceramics leads to the formation in the structure of first substitution
phases of the Zr0.98Ce0.02O2 type of the monoclinic type, then the tetragonal Zr0.85Ce0.15O2
phase, the appearance of which is also accompanied by an increase in the contribution
of polymorphic transformations of the Monoclinic-ZrO2 → Tetragonal-ZrO2 type. At
CeO2 concentrations above 0.15, a phase transformation of the structure of the type mon-
oclinic structure→ tetragonal structure is observed with dominance in the structure of
substitutional phases of the Zr0.85Ce0.15O2 and Ce0.1Zr0.9O2 types.

When analyzing the effect of the phase composition on the strength properties of
ceramics, it was found that the displacement of the ZrO2 phase from the ceramic structure
with its subsequent transformation into the Zr0.85Ce0.15O2 or Ce0.1Zr0.9O2 phase leads to
the strengthening of the ceramics by more than 3.5–4 times. The results of resistance to
cracking under single compression showed that the formation of the ZrCeO4 phase in the
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structure of ceramics leads to an increase in the resistance of ceramics to cracking by more
than 2.5 times.

Further prospects of these studies will be directed to the study of the resistance of these
ceramics to thermal aging, as well as the assessment of resistance to external influences,
including radiation damage caused by heavy ion irradiation.
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