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Abstract

Neuroblastoma is a cancer of the developing sympathetic nervous system that most com-

monly presents in young children and accounts for approximately 12% of pediatric oncology

deaths. Here, we report on a genome-wide association study (GWAS) in a discovery cohort

or 2,101 cases and 4,202 controls of European ancestry. We identify two new association

signals at 3q25 and 4p16 that replicated robustly in multiple independent cohorts comprising

1,163 cases and 4,396 controls (3q25: rs6441201 combined P = 1.2x10-11, Odds Ratio

1.23, 95% CI:1.16–1.31; 4p16: rs3796727 combined P = 1.26x10-12, Odds Ratio 1.30, 95%

CI: 1.21–1.40). The 4p16 signal maps within the carboxypeptidase Z (CPZ) gene. The 3q25

signal resides within the arginine/serine-rich coiled-coil 1 (RSRC1) gene and upstream of

the myeloid leukemia factor 1 (MLF1) gene. Increased expression of MLF1 was observed in

neuroblastoma cells homozygous for the rs6441201 risk allele (P = 0.02), and significant

growth inhibition was observed upon depletion of MLF1 (P < 0.0001) in neuroblastoma cells.

Taken together, we show that common DNA variants within CPZ at 4p16 and upstream of

MLF1 at 3q25 influence neuroblastoma susceptibility and MLF1 likely plays an important

role in neuroblastoma tumorigenesis.
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Author summary

Neuroblastoma is an embryonal tumor of the developing sympathetic nervous system that

accounts for 12% of childhood cancer deaths. Approximately 1–2% of cases are inherited

in an autosomal dominant fashion. These familial cases often harbor germline mutations

in ALK or PHOX2B. However, the vast majority of neuroblastomas appear to arise sporad-

ically. We are studying sporadic neuroblastoma through an ongoing genome-wide associ-

ation study (GWAS). To date, this effort has identified single nucleotide polymorphisms

(SNPs) within or upstream of CASC15 and CASC14, BARD1, LMO1, DUSP12, HSD17B12,

DDX4/IL31RA, HACE1, LIN28B, and TP53, along with a common copy number variation

(CNV) within NBPF23 at chromosome 1q21.1, each being highly associated with neuro-

blastoma. Here, we report on genome-wide association study (GWAS) comprising 3,264

neuroblastoma patients and 8,598 control subjects. We identify two new association sig-

nals at 3q25 and 4p16 (3q25: rs6441201 combined P = 1.2x10-11, Odds Ratio 1.23, 95%

CI:1.16–1.31; 4p16: rs3796727 combined P = 1.26x10-12, Odds Ratio 1.30, 95% CI: 1.21–

1.40). The 3q25 signal resides upstream of the MLF1 gene and the 4p16 signal maps to the

CPZ gene. We further demonstrate that neuroblastoma cells homozygous for the risk

allele at 3q25 express higher levels of MLF1 and that silencing of MLF1 in neuroblastoma

cells results in significant growth inhibition.

Introduction

Neuroblastoma is a cancer of the developing sympathetic nervous system that most commonly

affects children under 5 years of age, with a median age at diagnosis of 17 months [1]. Approx-

imately 50% of cases present with disseminated disease at the time of diagnosis, and despite

intense multi-modal therapy, the survival rate for this high-risk subset remains less than 50%

[1]. Somatically acquired segmental DNA copy number alterations, such as MYCN amplifica-

tion and deletions of 1p and 11q, are associated with aggressive disease and poor survival [2].

However, recent whole genome and exome sequencing studies have revealed a relative paucity

of somatic point mutations in neuroblastoma tumors [3–6].

In terms of the etiology of neuroblastoma, only 1–2% of patients present with a family his-

tory of disease; the vast majority of cases appear to arise sporadically. Familial neuroblastoma

is largely explained by germline mutations in ALK [7, 8] or PHOX2B [9, 10]. To understand

the genetic basis of sporadic neuroblastoma, we are performing a genome-wide association

study (GWAS). To date, this effort has identified single nucleotide polymorphisms (SNPs)

within or upstream of CASC15 [11, 12] and CASC14 [11], BARD1 [13, 14], LMO1 [15], DUSP12
[16], HSD17B12 [16], DDX4/IL31RA [16], HACE1 [17], LIN28B [17], and TP53 [18], along with

a common copy number variation (CNV) within NBPF23 [19] at chromosome 1q21.1, each

being highly associated with neuroblastoma. Importantly, several of the neuroblastoma suscepti-

bility genes identified by GWAS have been shown to not only influence disease initiation, but

also drive tumor aggressiveness and/or maintenance of the malignant phenotype [15, 17, 20–22].

Here, to identify additional germline variants and genes influencing neuroblastoma tumori-

genesis, we imputed genotypes across the genome (see Methods) and performed a discovery

GWAS of genotyped and imputed variants in a cohort of 2,101 neuroblastoma patients and

4,202 control subjects of European ancestry [17]. This effort refined previously reported sus-

ceptibility loci and identified two new association signals at 3q25 and 4p16 which were repli-

cated in three independent cohorts comprising 1,163 cases and 4,396 controls. In addition,
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based on expression quantitative trait loci (eQTL) analysis and in vitro studies following

manipulation of candidate genes in neuroblastoma cell lines, we demonstrate that the 3q25 sig-

nal likely targets the myeloid leukemia factor 1 (MLF1) gene in neuroblastoma, resulting in

increased MLF1 expression and promoting cell growth.

Results

Discovery GWAS based on individuals of European ancestry

To discover germline variants associated with neuroblastoma, we performed a GWAS follow-

ing genome-wide genotype imputation in 2,101 neuroblastoma patients accrued through the

North American-based Children’s Oncology Group (S1 Table) and 4,202 control subjects of

European ancestry (see Methods; S1 Fig)[17]. Individuals were genotyped using the Illumina

HumanHap550 or Quad610 Beadchip. Multi-dimensional scaling was used to infer ancestry,

and the first twenty components were recorded for subsequent use as co-variates in association

testing to control for potential population substructure. To generate imputed genotypes, we

first selected SNPs present on both platforms that passed our quality control metrics and

applied SHAPEIT to infer haplotypes[23]. We then utilized IMPUTE2 [24] with default

parameters and Ne = 20000, along with a multi-population reference panel from the world-

wide 1000 Genomes Project Phase 1 Release 3 to impute genotypes across the entire genome.

For quality control purposes, variants with minor allele frequency (MAF) <1% and/or IMPU-

TE2-info quality score <0.7 were removed following imputation. The remaining variants were

tested for association with neuroblastoma using the frequentist association test under the addi-

tive model using the “score” method implemented in SNPTEST [25] (Fig 1 and S2 Fig). The

genomic inflation factor was 1.04 (S3 Fig).

Refinement of known neuroblastoma susceptibility loci

We first confirmed previous reports of neuroblastoma-associated loci, and identified variants

of greater statistical significance through imputation at each locus (Fig 2; S2–S8 Tables). Spe-

cifically, we observed association at 2q35 implicating BARD1 [13] (Fig 2A, rs58430496: p =

3.05 x 10−11; OR: 1.36, 95% CI: 1.25–1.48), 6p22 implicating CASC15 [11], (Fig 2B, rs4712656:

p = 8.07 x 10−16; OR: 1.37, 95% CI: 1.27–1.47), and 6q16-q21 implicating HACE1 [17] (Fig 2C,

rs72990858: p = 1.37 x 10−13; OR: 0.59, 95% CI: 0.51–0.69). After conditioning on rs72990858

at 6q16, we identified a second independent association signal at 6q16-q21 implicating LIN28B
[17] (Fig 2D, rs17065417: p = 4.72 x 10−9; OR: 0.70, 95% CI: 0.62–0.80). We also confirmed

association at 11p15 implicating LMO1 [15] (Fig 2E, rs2168101: p = 3.18 x 10−16; OR: 0.70,

95% CI: 0.70–0.65), 11p11 implicating HSD17B12 [16] (Fig 2F, rs10742682: p = 1.31 x 10−7;

OR: 1.24, 95% CI: 1.15–1.34) 17p13 implicating TP53 [18] (Fig 2G, rs35850753: p = 1.39 x

10−8; OR: 1.95, 95% CI: 1.57–2.43).

Discovery of new neuroblastoma susceptibility loci at 3q25 and 4p16

We observed two new genome-wide significant associations, the first at 3q25 (rs6441201:

p = 3.01 x 10−7; Odds Ratio: 1.21, 95% C.I.: 1.12–1.30; Fig 3A; Table 1; S9 Table) and the other

at 4p16 (rs3796727: p = 5.25 x 10−9; Odds Ratio: 1.26, 95% C.I.: 1.16–1.36; Fig 3B; Table 1; S10

Table). The novel association signal at 3q25 spans a large 470-Kb linkage disequilibrium (LD)

block in the HapMap CEU population, encompasses the arginine/serine-rich coiled-coil 1

(RSRC1) gene, and maps just upstream of the myeloid leukemia factor 1 gene (MLF1) (Fig

3A). The signal at 4p16 marks an approximate 27.5-Kb LD block in the CEU population and

maps within the carboxypeptidase Z (CPZ) gene (Fig 3B).
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Functional annotation of neuroblastoma-associated variants

To identify potential causal variants at each susceptibility locus, we developed an annotation

tool incorporating data from ENCODE [26], the Roadmap Epigenomics Project [27], evolu-

tionary conservation, and transcription factor binding motifs (see Methods). We applied this

tool to all variants with a discovery p-value < 10−4, MAF > 0.005, and info score > 0.5. This

approach confirmed the recently identified causal variant (rs2168101) at the LMO1 locus

shown to disrupt a canonical GATA binding site in neuroblastoma[20], and identified several

other variants that warrant further study. (S2–S10 Tables).

Conditional, interaction, and clinical correlative analyses

To investigate whether more than one association signal may exist at 3q25 or 4p16, we condi-

tioned our analysis of 3q25 on rs6441201 and our analysis of 4p16 on rs3796727. No evidence

for a separate association signal was observed at either locus (S4 Fig). In addition, no associa-

tion was observed between rs6441201 or rs3796727 genotypes and clinical/biological covari-

ates, including markers of tumor aggressiveness (S11 and S12 Tables). An interaction analysis

between rs6441201 or rs3796727 and the most statistically significant SNPs at each of the pre-

viously reported susceptibility loci revealed only weak evidence for epistasis (S13 Table), sug-

gesting that these loci may contribute independently to neuroblastoma risk.

Replication of 3p25 and 4p16 association signals in three independent

cohorts

We next sought to replicate the new 3q25 and 4p16 association signals in three independent

cohorts (S2 Fig). First, we analyzed an African American cohort of 365 neuroblastoma cases

and 2,491 genetically matched controls [28]. These individuals were genotyped on the Illumina

HumanHap550 or Quad-610 bead chips, and SHAPEIT and IMPUTE2 [24] were applied to

infer genotypes at the 3q25 and 4p16 loci using data from the 1000 Genomes Phase I Release 3

in a manner similar to the European American cohort. Utilizing the proportion of African

Fig 1. Manhattan plot of discovery results. Level of significance (-log10 transformed P values) for each SNP

along the genome in chromosomal order is plotted. Red line: significance threshold of 5.0 x 10−8 considered for

identification of novel loci. Previously identified susceptibility loci are labeled; new association signals identified

at chromosomes 3q25 and 4p16 are indicated in bold.

https://doi.org/10.1371/journal.pgen.1006787.g001
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Fig 2. Genome-wide imputation confirms previously reported neuroblastoma susceptibility loci and identifies additional variants

of greater statistical significance. Regional association plots of genotyped and imputed SNPs at previously reported neuroblastoma

susceptibility loci identified by GWAS. Plots generated using LocusZoom. Y-axes represent the significance of association (-log10

Neuroblastoma susceptibility loci at 3q25 and 4p16
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admixture as a covariate to correct for varying degrees of admixture among our samples, we

confirmed the association of rs6441201 at 3q25 (p = 5.70 x 10−3; Odds Ratio: 1.23, 95% CI:

1.04–1.45; Table 1; S5 Fig). Genotype imputation at the 4p16 locus was of low confidence in

this cohort and therefore was not included. Next, we performed PCR-based genotyping in

two additional independent cohorts for the top genotyped SNP at 3q25 (rs6441201), and two

SNPs at the 4p16 locus since they were imputed (rs3796727 and rs3796725). First, we geno-

typed an Italian cohort of 427 neuroblastoma cases and 783 controls and observed a trend

toward association in the same direction seen in the European and African American samples

at 3q25 (rs6441201: P = 0.11, OR: 1.15, 95% CI: 0.97–1.36) and a robust replication at 4p16

(rs3796727: P = 0.010, OR: 1.28, 95% CI: 1.07–1.54; rs3796725: P = 4.36 x 10−3, OR: 1.33, 95%

CI: 1.01–1.61 Table 1). Second, we genotyped both SNPs in a cohort of 371 cases and 1,122

controls from the United Kingdom, and confirmed all associations (rs6441201: P = 8.45 x

10−4, OR: 1.32, 95% CI: 1.12–1.56; rs3796727: P = 1.71 x 10−3, OR: 1.33, 95% CI: 1.11–1.59;

transformed P values) and recombination rate. SNPs are color-coded based on pair-wise linkage disequilibrium (r2) with the most statistically

significant SNP. (a) 2q35 locus implicating BARD1 (rs58430496: p = 3.05 x 10–11; OR: 1.36, 95% CI: 1.25–1.48) (b) 6p22 locus implicating

CASC15 (rs4712656: p = 8.07 x 10–16; OR: 1.37, 95% CI: 1.27–1.47) (c) 6q16-q21 locus implicating HACE1 (rs72990858: p = 1.37 x 10–13;

OR: 0.59, 95% CI: 0.51–0.69) (d) independent association at 6q16-q21 after conditioning on rs72990858 implicates LIN28B (rs17065417:

p = 4.72 x 10–9; OR: 0.70, 95% CI: 0.62–0.80) (e) 11p15 locus implicating LMO1 (rs2168101: p = 3.18 x 10–16; OR: 0.70, 95% CI: 0.70–0.65)

(f) 11p11 locus implicating HSD17B12 (rs10742682: p = 1.31 x 10–7; OR: 1.24, 95% CI: 1.15–1.34) and (g) 17p13 implicating TP53

(rs35850753: p = 1.38 x 10–8; OR: 1.95, 95% CI: 1.57–2.43).

https://doi.org/10.1371/journal.pgen.1006787.g002

Fig 3. Discovery of neuroblastoma susceptibility loci at chromosome 3q25 and 4p16. Regional association plots of genotyped and imputed SNPs

novel susceptibility loci. Plots were generated using LocusZoom. Y-axes represent the significance of association (-log10 transformed P values) and the

recombination rate. SNPs are color-coded based on pair-wise linkage disequilibrium (r2) with indicated SNPs (a) 3q25 locus: rs6441201 shown in purple

(3.01 x 10−7; Odds Ratio: 1.21, 95% C.I.: 1.12–1.30). (b) 4p16 locus: rs3796727 shown in purple (p = 5.25 x 10−9; Odds Ratio: 1.26, 95% C.I.: 1.16–1.36).

https://doi.org/10.1371/journal.pgen.1006787.g003
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rs3796725: P = 0.028, OR: 1.23 95% CI: 1.02–1.48; Table 1). Meta-analysis using the inverse-

variance method within METAL[29] resulted in a highly significant associations with neuro-

blastoma (Table 1; rs6441201: P = 1.21x10-11, Odds Ratio 1.23, 95% CI:1.16–1.31 and

rs3796727: P = 126x10-12, Odds Ratio 1.30, 95% CI:1.21–1.40; rs3796725: P = 2.08 x 10−11,

Odds Ratio 1.29, 95% CI:1.19–1.38).

rs3796727 genotype correlates with methylation status of CPZ at 4p16

To investigate whether the neuroblastoma susceptibility variants may function as methylation

quantitative trail loci (meQTL), we performed a methylation genome-wide association study

based on additive risk genotype of rs6441201 (3q25) or rs3796727 (4p16) in a cohort of 769

individuals without cancer for whom we have both SNP and methylation array data, as

described previously [30]. Briefly, M-values (log2 ratio between the methylated and unmethy-

lated probe intensities [31]) were compared using an additive model based on SNP genotype.

Principal component analysis (PCA) was first applied to infer ancestry (S6 Fig), and we

focused initially on 395 individuals of European ancestry. No evidence was observed for

rs6442101 functioning as a meQTL in this cohort. However, in our analysis of rs3796727 geno-

types, we observed a single genome-wide significant meQTL signal mapping to the same

Table 1. Statistically significant and replicated SNP associations at 3q25 and 4p16.

SNP Major

Allele

MinorAllele Cohort† Minor Allele Frequency

Cases

Minor Allele Frequency

Controls

P-value‡ OR§ (95% CI║)

rs6441201 G A European

American

0.52 (n = 2,101) 0.47 (n = 4,202) 3.01 x 10−7 1.21 (1.12–

1.30)

African American 0.68 (n = 365) 0.64 (n = 2,491) 5.70 x 10−3 1.23 (1.04–

1.45)

United Kingdom 0.54 (n = 371) 0.47 (n = 1,122) 8.45 x 10−4 1.32 (1.12–

1.56)

Italian 0.50 (n = 427) 0.46 (n = 783) 0.11 1.15 (0.97–

1.36)

Combined 1.21 x

10−11
1.23 (1.16–

1.31)

rs3796725 C T European

American

0.35 (n = 2,101) 0.31 (n = 4,202) 1.41 x 10−8 1.23 (1.15–

1.34)

United Kingdom 0.33 (n = 353) 0.29 (n = 1,057) 0.028 1.23 (1.02–

1.48)

Italian 0.29 (n = 428) 0.23 (n = 759) 4.36 x 10−3 1.33 (1.10–

1.61)

Combined 2.08 x

10−11
1.29 (1.19–

1.38)

rs3796727 G A European

American

0.35 (n = 2,101) 0.30 (n = 4,202) 5.25 x 10−9 1.26 (1.16–

1.36)

United Kingdom 0.35 (n = 362) 0.29 (n = 1,094) 1.71 x 10−3 1.33 (1.11–

1.59)

Italian 0.31 (n = 432) 0.26 (n = 766) 0.010 1.28 (1.07–

1.54)

Combined 1.26 x

10−12
1.30 (1.21–

1.40)

† No deviations from Hardy-Weinberg equilibrium were observed (P>0.001) in all cohorts.
‡Allelic P-values; combined P-values from meta-analysis using METAL.
§OR: Odds Ratio with respect to the minor (risk) allele.
║CI: Confidence Interval

https://doi.org/10.1371/journal.pgen.1006787.t001
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neuroblastoma-associated locus at 4p16 (cg14339343, p = 1.33 x 10−16; S7 Fig; S14 Table); this

signal replicated in the independent cohort comprised of 332 individuals of African ancestry

(cg14339343, p = 1.36 x 10−6 S8 Fig; S15 Table). Analyzing all 769 individuals together in a

multi-ethnic meGWAS yielded a highly significant association between rs3796727 genotype

and methylation status of cg14339343 (cg14339343, p = 5.98 x 10−21 Fig 4A; S16 Table). Closer

examination revealed that this meQTL resides directly within the 50 UTR of the CPZ gene (Fig

4B), and the rs3796727 risk allele is associated with decreased methylation (Fig 4C, S9 Fig).

These data suggest that rs3796727 genotype may influence CPZ expression. While RNA was

not available to assess CPZ expression in these individuals, interrogation of the Genotype-Tis-

sue Expression (GTEx) Portal revealed that CPZ expression was primarily limited to ovary,

cervix and fallopian tube (S10 Fig). Cervix and fallopian tube did not include matched geno-

type data and thus eQTL analysis was not possible, but ovary tissue showed increased CPZ
expression in cells homozygous for the rs3796727 risk allele (p = 0.17; S11 Fig). While not

reaching statistical significance, this trend is consistent with the observed genotype-methyla-

tion correlation. Taken together, these data suggest that rs3796727 genotype may be associated

Fig 4. Methylation genome-wide association study (meGWAS) identifies rs3796727 as a methylation quantitative trait loci (meQTL)

for sites in CPZ. (a) Manhattan plot of meGWAS results in 793 individuals based on additive rs3796727 genotype. A single genome-wide

significant association is identified and the most statistically significant methylation probe is labeled (cg14339343). (b) LocusZoom plot at 4p16

locus reveals cg14339343 maps to the CPZ gene. Y-axes represent the significance of association (-log10 transformed P values) and the

recombination rate. (c) Box plot of M-values based on rs3796727 genotype in 793 individuals. The rs3796727 risk allele “A” is associated with

decreased methylation.

https://doi.org/10.1371/journal.pgen.1006787.g004
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with decreased methylation and increased CPZ expression; further study is necessary to con-

firm this role for rs3796727 in neuroblastoma directly.

rs6441201 at 3q25 is a multi-tissue expression quantitative trait loci

(eQTL)

To determine if the neuroblastoma-associated SNPs at 3q25 are eQTLs, we utilized the GTEx

Portal. The rs6441201 variant at 3q25 was identified as a multi-tissue cis-eQTL for both RSRC1
(p = 1.05 x 10−78; S12 Fig) and LOC100996447, a recently discovered long non-coding RNA

located at 3q25 (p = 1.14 x 10−145; S13 Fig). In addition, rs6441201 was identified as a cis-

eQTL for MLF1 in esophagus (p = 6.33 x 10−11; S14 Fig).

rs6441201 risk alleles are associated with increased MLF1 expression

and MLF1 silencing results in decreased cell growth in neuroblastoma

cells

We next analyzed a set of 19 neuroblastoma cell lines with matched genome-wide SNP geno-

typing and mRNA expression data. The rs6441201 variant was not observed to be an eQTL for

RSRC1 in neuroblastoma cells. However, MLF1 expression was significantly higher in neuro-

blastoma cells harboring the rs6441201 risk allele compared those homozygous for the protec-

tive allele (P = 0.02; Fig 5A). We further interrogated seven additional genes in the region, but

did not observe association of rs6441201 genotype with mRNA levels. Consistent with these

findings, silencing of MLF1, but not RSRC1, using pooled siRNA resulted in significant cell

growth inhibition in neuroblastoma cells (Fig 5A–5D).

Discussion

Neuroblastoma is an embryonal tumor of the autonomic nervous system thought to arise from

developing and incompletely committed precursor cells derived from neural crest tissues; it

is the most common cancer diagnosed in the first year of life [1]. Here, in order to identify

germline genetic risk factors and genes influencing neuroblastoma tumorigenesis, we per-

formed a genome-wide association studying (GWAS) comprising a total of 3,264 neuroblas-

toma patients and 8,598 healthy control subjects from four independent cohorts. Two new

neuroblastoma susceptibility loci were identified, one at chromosome 3q25 and the other at

4p16. The 4p16 variants map to the CPZ gene locus, and the 3q25 variants map within RSRC1
and upstream of MLF1.

The CPZ gene encodes a member of the carboxypeptidase E subfamily of metallocarboxy-

peptidases which represent Zn-dependent enzymes implicated in intra- and extracellular

processing of proteins. Through an unbiased meGWAS, we observed strong evidence for

rs3796727 functioning as a meQTL for sites within the 50 UTR of CPZ. Specifically, the

rs3796727 risk allele was associated with decreased methylation, suggesting the risk allele

may be associated with increased expression of CPZ. CPZ is a Zn-dependent enzyme with an

N-terminal cysteine-rich domain (CRD) and a C-terminal catalytic domain. CPZ is enriched

in the extracellular matrix and expressed during early embryogenesis. In addition to contain-

ing a metallocarboxypeptidase domain, CPZ also contains a Cys-rich domain with homology

to Wnt-binding proteins [32]. Indeed, studies in chick embryos suggest that CPZ is involved

in WNT signaling[33]. In addition, CPZ has been shown to modulate Wnt/beta-catenin signal-

ing and terminal differentiation of growth plate chondrocytes[34]. Among the tissues interro-

gated in GTEx, CPZ expression was primarily observed in ovary, where there was a trend

toward increased expression in cells homozygous for the risk allele (S10 and S11 Figs). Our
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Fig 5. rs6441201 risk allele at 3q25 correlates with increased MLF1 expression and MLF1 silencing results in decreased

cell growth in neuroblastoma cells. (a) MLF1 mRNA expression is significantly higher in neuroblastoma cell lines harboring

one or more copies of the rs6441201 risk allele (A) compared to neuroblastoma cell lines homozygous for the protective allele

(GG). (b) Silencing of RSRC1 or MLF1 expression using pooled siRNAs resulted in 50–90% reduced mRNA levels by real-time

quantitative PCR in neuroblastoma cell lines. (c) Confirmation by Western blot of knockdown at the protein level for RSRC1 and

MLF1 after siRNA mediated silencing in neuroblastoma cell lines. (d-g) siRNA mediated silencing of MLF1 results in significant

growth inhibition of neuroblastoma cells compared to non-targeting control siRNA; no effect was observed upon silencing of

RSRC1. Cell growth measured by real-time cell sensing system (RT-ces).

https://doi.org/10.1371/journal.pgen.1006787.g005
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methylation GWAS based on additive risk allele at the 4p16 susceptibility locus revealed signif-

icantly decreased methylation in the 5’ UTR of CPZ of cells harboring the risk allele, consistent

with increased CPZ expression. Matched RNA was not available to assess mRNA expression in

the methylation GWAS cohort, and a genotype-expression correlation was not observed in

neuroblastoma cell lines. However, CPZ may influence tumor initiation and thus require

assessment of precursor cells from the developing sympathetic nervous system.

The 3q25 variants map within RSRC1 which encodes a member of the serine and arginine

rich-related protein family. The gene product has been shown to play a role in constitutive and

alternative splicing, and is involved in the recognition of the 30 splice site during the second

step of splicing [35]. Variants in RSRC1 are associated with the neurological disease schizo-

phrenia, and RSRC1 is involved in prenatal brain development and cell migration to forebrain

structures [36]. RSRC2, a member of the same gene family, has been proposed as a tumor

suppressor gene in esophageal carcinogenesis[37]. Increased expression of RSRC2 has been

observed in neuroblastomas harboring somatic gain of chromosome 12q [38], and a MIER2-

RSRC1 fusion has been observed in prostate cancer [39]. Taken together, existing studies sug-

gest that RSRC1 may play an important role in both neural stem cell proliferation and cancer

development.

The MLF1 gene, also mapped to 3q25, encodes an oncoprotein that is thought to play a role

in the phenotypic determination of hematopoetic cells. It was first identified as the C-terminal

partner of the leukemic fusion protein nucleophosmin (NPM)-MLF1 that resulted from a t

(3;5)(q25.1;q34) chromosomal translocation [40]. MLF1 is overexpressed in more than 25% of

MDS-associated cases of AML, in the malignant transformation phase of MDS, and in lung

squamous cell carcinoma [41, 42]. MLF1 overexpression is thought to suppress a rise in the

CDK inhibitor CDKN1B, preventing the activation of Epo-activated terminal differentiation

pathway and promoting proliferation [43]. MLF1 is expressed in a wide variety of tissues, shut-

tles between the cytoplasm and the nucleus, and has also been shown to reduce proliferation

by stabilizing the activity of TP53 by suppressing its E3 ubiquitin ligase, COP1 [44]. These data

suggest that MLF1 may play both a tumor suppressing and an oncogenic role depending on

the biological context.

Since both RSRC1 and MLF1 have been previously implicated in cancer, we investigated the

3q25 locus in more detail. Based on GTEx data, rs6441201 is a multi-tissue eQTL for both

RSRC1 and a recently discovered long non-coding RNA LOC100996447at 3q25. While we did

not observe a genotype-expression correlation for RSRC1 or LOC100996447 in neuroblastoma

cells, we cannot rule out the possibility that variants at 3q25 influence expression of RSRC1
and/or LOC100996447genes early in tumorigenesis within developing neural crest cells. How-

ever, MLF1 expression was observed in nineteen distinct neuroblastoma cell lines interrogated

in this study, with the highest expression in cells homozygous for the risk allele at rs6441201.

Silencing of MLF1 resulted in significant growth inhibition in four distinct neuroblastoma cell

lines. Taken together, these data are consistent with the hypothesis that MLF1 promotes neuro-

blastoma tumorigenesis, and that the 3q25 risk alleles are associated with growth advantage

through increased MLF1 expression. Given that the observed cell growth phenotype was inde-

pendent of rs6441201 genotype, alternative mechanisms driving MLF1 expression to promote

neuroblastoma cell growth likely exist.

In conclusion, here we refine previously reported susceptibility loci, identify common vari-

ation at chromosome 3q25 and 4p16 associated with neuroblastoma, and provide insight into

potential causal variants at the newly identified susceptibility loci. The newly associated vari-

ants at 4p16 are located within CPZ, and the top associated SNP is a meQTL for sites located

directly within the 50 UTR of CPZ. The associated variants at 3q25 appear to function in cis to

alter MLF1 expression in neuroblastoma. Based on initial functional studies, it is likely that
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germline susceptibility alleles at 3q25 play and important role in both initiation and disease

progression. Ongoing studies will further elucidate the role of both CPZ and MLF1 in neuro-

blastoma tumorigenesis.

Materials and methods

Genotype imputation and association testing

A primary European-American cohort of 2,101 cases and 4,202 matched controls were assayed

with Illumina HumanHap550 v1, Illumina HumanHap550 v3, and Illumina Human610 SNP

arrays as previously described [17]. Genotypes were phased using SHAPEIT [23] v2.r790

and data from 1000 Genomes Phase 1 Release 3. Subsequently, imputation was performed

genome-wide using IMPUTE2 [24] v2.3.1 for all SNPs and indel variants annotated in 1000

Genomes Phase I Release 3. To minimize potential errors in phasing and imputation per-

formed genome-wide, we employed a genome-tiling approach. Each position in the genome

was covered by a minimum of three tiles (sliding windows). Variants with MAF <1% and/or

IMPUTE2-info quality score <0.7 were removed. Testing for association with neuroblastoma

was performed under an additive genetic effect model using the frequentist likelihood score

method implemented in SNPTEST [25] v2.4.1. After genome-wide assessment, regions with

p< 5.0 x 10−7 were re-imputed without tiling and tested for association in a similar manner.

Genotypes for a previously described African-American replication cohort of 365 cases 2491

controls [28] were imputed and tested for neuroblastoma association using the same analytic

pipeline. Statistical adjustment for gender was performed in both cohorts. For population

stratification adjustment, the first 20 multidimensional scaling (MDS) components were

included as covariates in the European-American cohort, while a measure of African admix-

ture as estimated by the ADMIXTURE software program was used in the African-American

cohort.

Replication in Italian and United Kingdom cohorts

Genotyping of the top associated SNPs at MLF1 (rs6441201) and RSRC1 (rs3796725 and

rs3796727) was performed using TaqMan SNP genotyping assays (Life Technology). The

Italian cohort was comprised of a total of 432 neuroblastoma cases and 780 controls. The

replication cohort from the United Kingdom included 371 cases and 1,122 controls in total.

Association with neuroblastoma was assessed using an additive genetic effect model of the fre-

quentist likelihood score method implemented in SNPTEST [25] v2.4.1 in the same manner as

the discovery cohort.

Genotype imputation and methylation association testing

DNA from 769 children without cancer was extracted from blood and genotyped using Illu-

mina HumanHap550 v1, Illumina HumanHap550 v3, and Illumina Human610 SNP arrays.

DNA from the same individuals was also profiled for genome-wide methylation using Illumina

450K methylation arrays. Genotypes were phased using SHAPEIT [23] v2.r790 and data from

1000 Genomes Phase 1 Release 3. Subsequently, imputation was performed genome-wide

using IMPUTE2 [24] v2.3.1 for all SNPs and indel variants annotated in 1000 Genomes Phase

I Release 3. Principal component analysis (PCA) was performed based on genotype data and

ancestry was inferred. A threshold of 0.9 was applied to rs3796727 imputed genotype probabil-

ities for the purpose of methylation association testing; genotypes from individuals not reach-

ing this threshold were excluded. Association testing was subsequently performed using linear

regression with the R software.
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Meta-analysis

Meta-analysis was performed using the inverse-variance method within the METAL [29] soft-

ware package, and a fixed-effects model was assumed.

Methylation data analyses

Genome-wide methylation profiles were generated from gDNA isolated from peripheral blood

mononuclear cells from a total of 854 subjects recruited by the Center for Applied Genomics

(CAG) at the Children’s Hospital of Philadelphia (CHOP) on the Infinium HumanMethyla-

tion450 BeadChip Kit according to the manufacturers’ protocols. and analyzed as Methylation

data were exported from GenomeStudio and subjected to quantile color balance adjustment,

background level correction, and simple scaling normalization as described previously [30]. Prin-

ciple component analysis identified 425 subjects of European ancestry, 374 African Americans,

20 East Asians, and 24 Hispanics among these subjects. Methylation probes known to overlap

with common SNPs, were identified and removed using the IMA R package. M-values (the log2

ratio between the methylated and unmethylated probe intensities) were extracted and stored as a

matrix. Additive genotypes at rs3796727 for subjects of European ancestry were extracted from

existing genotyping data using PLINK. There are a total of 402 subjects of European ancestry

without missing genotype at rs3796727 and extreme outlier values of methylation M-values

(�median M-value of the genotype group±3 s.d.). Methylation data in gene CPZ were analyzed

as the response variable in a linear regression, with genotype at as the predictor variable among

these 402 subjects. Sex, age, and 10 genotype-derived principle components were included as

covariates. Linear regression and generation of boxplots was performed using base packages in R.

Genome-wide mRNA expression profiling of neuroblastoma cell lines

Genome-wide mRNA expression profiling in neuroblastoma cell lines was performed using

the Illumina WG-6 expression array according to the manufacturer’s specifications. Data were

normalized using the average normalization method provided in Illumina GenomeStudio soft-

ware. ANOVA test was performed at the gene level to assess differential expression in cell

lines. P< 0.05 was considered significant. Data is available from the Gene Expression Omni-

bus (GEO) database (Accession: GSE78061).

RT-PCR in neuroblastoma cell lines

TaqMan Gene expression assays for MLF1 (Hs00963682_m1), RSRC1 (HS00963694_m1) and

HPRT (Hs02800695_m1) were purchased through Life Technologies. Reactions were set up in

triplicate. Starting with 200 ng RNA, reverse transcription was performed followed by 1:4 dilu-

tion and 2 ul of cDNA was subsequently used in a 10-μl reaction with 1× TaqMan Universal

PCR Master Mix (Life Technologies). Standard curves were generated using serial dilutions of

cDNA from the neuroblastoma cell line Kelly, produced in the same RT reaction as the experi-

mental samples. Samples were amplified on an Applied Biosystems 7900HT Sequence Detec-

tion System using standard cycling conditions, and data were collected and analyzed with SDS

2.3 software. MLF1 and RSRC1 expression levels were normalized to HPRT expression.

MLF1 and RSRC1 protein detection

Neuroblastoma cell lines were grown in T75 flasks under standard cell culture conditions.

Cells were plated into 6 well plates for transfection with siRNA, 2 wells per target for protein

analysis. Replicate samples were pooled on collection. Whole-cell lysates were extracted with

100 μl of protein lysis buffer containing Tris Base (25mM), NaCl (150 mM), EGTA and EDTA
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(1 mM each), NaF (10 mM) DTT (1 mM), Triton X-100 (1%), and protease/phosphatase

inhibitors (Cell Signaling, #5872) on ice for at least 30 minutes before brief sonication. After

15 min of centrifugation at 4˚C, the supernatant was removed, and protein quantification was

performed using the Pierce BCA Protein Assay Kit (Life Technologies, 23225). Lysates (12 μg)

were separated on 10% Criterion TGX gels (BioRad) and were transferred to PVDF mem-

branes. Membranes were washed and incubated with antibodies directed against MLF1

(Abcam, ab70211), RSRC1 (Abcam, ab106650) and Ku80 (Cell Signaling, 2753). All blocking

and antibody dilution was performed in 5% milk in TBST.

MLF1 and RSRC1 knockdown and monitoring of cell growth

For routine maintenance, cells were grown in RPMI 1640 complete medium (Gibco, 22400)

containing 10% FBS (Hyclone, SH 30073–03), 1× antibiotic antimycotic (Gibco, 15240–062)

and 2 mM l-glutamine (Gibco, 25030). On day 0, cells were seeded in triplicate into antibiotic-

free medium in 96-well RT-CES plates (ACEA). On day 1, using DharmaFECT 1 (Dharmacon,

T-2001-03, 0.1%), cells were transiently transfected with 25 nM of either a non-targeting nega-

tive control siRNA (Dharmacon, D-00810-10-20) or pooled siRNA directed against MLF1 (L-

019478-00-0005) or RSRC1 (L-028584-01-0005). Real-time cell growth was monitored every

hour for at least 96 h using the RT-CES system, as previously described. Data presented are

representative of at least three independent experiments. To monitor efficiency of MLF1 and
RSRC1 knockdown, transfection was performed as described, and RNA was isolated 48 hours

later using the Qiagen mini extraction kit. Total RNA (200 ng) was primed with oligo(dT) and

reverse transcribed using SuperScript First Strand Synthesis System for RT-PCR (Life Tech-

nologies). Quantitative RT-PCR using TaqMan gene expression assays (ABI) was performed

as described above. Similarly, protein was isolated 72 hours after transfection to monitor

MLF1 and RSRC1 protein knockdown using Western blot analysis as described.

GWAS annotation tool

Variants directly genotyped, or imputed from the 1000 Genomics phase 1 release 3 data with

discovery p-value < 10−4, MAF > 0.005, and info score > 0.5 were annotated and ranked

based on a DNase I hypersensitivity data, evolutionary conservation, transcription factor bind-

ing site scores, and Roadmap Epigenomics data. Conservation scores were computed as the

average of the phastCons46way Placental UCSC conservation track score for all bases from the

−10 position to the +10 position surrounding each candidate variant. A DNase I hypersensitiv-

ity score was calculated by counting the number of sequencing tags from the −100 position to

the +100 position around each candidate variant in ENCODE data for the neuroblastoma cell

line, SK-N-SH. Scanning for transcription factor binding motifs was performed using a cus-

tom implementation of the MATCH algorithm[45] using JASPAR 2014[46] position weight

matrices (PWMs) as input. Briefly, to quantify the conservation of position i in a PWM

described by a frequency matrix, fi,B, the information vector was computed as follows:

IðiÞ ¼
X

B2ðA;C;G;TÞ

fi;Blog2
ð4fi;BÞ

For a given input sequence, bi, an absolute information-weighted match score was com-

puted as

Score ¼
XL

i¼1

IðiÞfi;bi

and a normalized matrix similarity score (mSS) was computed as previously described.
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This scan was completed both for the entire human reference genome (hg19) and a modi-

fied version of the reference genome (hg19_alt), where each reference base was replaced by its

alternative base at each SNP position. A match was called for a PWM if the mSS was greater

than 0.8 for either hg19 or hg19_alt at a given position overlapping a SNP. At these positions,

an mSS difference (delta-nrm) and an absolute score difference (delta-abs) were computed

between hg19_alt and hg19 as two separate metrics to quantify the predicted effect of each

SNP on transcription factor binding.

Web resources

The URLs for data presented herein are as follows:

1000 Genomes Project, http://www.1000genomes.org

LiftOver, http://genome.ucsc.edu/cgi-bin/hgLiftOver

SHAPEIT, https://mathgen.stats.ox.ac.uk/genetics_software/shapeit/shapeit

IMPUTE2, http://mathgen.stats.ox.ac.uk/impute/impute_v2

SNPTEST, https://mathgen.stats.ox.ac.uk/genetics_software/snptest/snptest

LocusZoom, http://csg.sph.umich.edu/locuszoom

METAL, http://www.sph.umich.edu/csg/abecasis/metal
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(0,1,or 2 alleles). (a) Plot restricted to children of European ancestry. (b) Plot restricted to chil-

dren of African American ancestry.

(PDF)

S10 Fig. CPZ expression across normal tissues in GTEx. CPZ exhibits tissue specific expres-

sion. CPZ is primarily expressed in Ovary. CPZ is also expressed in mammary tissue, cervix

(ecto and endo), mucosa in esophagus, fallopian tube, and vagina. Minimal or no expression is

observed in remaining tissues profiled.

(PDF)

S11 Fig. Expression of CPZ in ovarian tissue. Expression of CPZ is higher in ovarian tissue

homozygous for the rs3796727 neuroblastoma-associated risk allele at 4p16, though this did

not reach statistical significance (p = 0.17). Data and figure from GTEx portal (Analysis

Release V6).

(PDF)

S12 Fig. rs6441201 is a multi-tissue eQTL for RSRC1. Expression of RSRC1 is significantly

correlated with rs6441201 genotype. Data and figure from GTEx portal (Analysis Release V6).

(PDF)

S13 Fig. rs6441201 is a multi-tissue eQTL for LOC100996447. Expression of LOC100996447

(RP11-538P18.2), a long non-coding RNA, is significantly correlated with rs6441201 genotype.

Data and figure from GTEx portal (Analysis Release V6).

(PDF)

S14 Fig. rs6441201 is an eQTL for MLF1 in esophagus. Expression of MLF1 is significantly

correlated with rs6441201 genotype in esophagus mucosa (p = 6.3 x 10−11). Data and figure

from GTEx portal (Analysis Release V6).

(PDF)
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