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Abstract

Background

Increased spatial QRS-T angle has been shown to predict appropriate implantable cardio-

verter defibrilIator (ICD) therapy in patients with left ventricular systolic dysfunction (LVSD).

We performed a retrospective cohort study in patients with left ventricular ejection fraction

(LVEF) 31–40% to assess the relationship between the spatial QRS-T angle and other

advanced ECG (A-ECG) as well as echocardiographic metadata, with all-cause mortality or

ICD implantation for secondary prevention.

Methods

534 patients�75 years of age with LVEF 31–40% were identified through an echocardiog-

raphy reporting database. Digital 12-lead ECGs were retrospectively matched to 295 of

these patients, for whom echocardiographic and A-ECG metadata were then generated.

Data mining was applied to discover novel ECG and echocardiographic markers of risk.

Machine learning was used to develop a model to predict possible outcomes.

Results

49 patients (17%) had events, defined as either mortality (n = 16) or ICD implantation for

secondary prevention (n = 33). 72 parameters (58 A-ECG, 14 echocardiographic) were uni-

variately different (p<0.05) in those with vs. without events. After adjustment for multiplicity,

24 A-ECG parameters and 3 echocardiographic parameters remained different (p<2x10-3).
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These included the posterior-to-leftward QRS loop ratio from the derived vectorcardio-

graphic horizontal plane (previously associated with pulmonary artery pressure, p = 2x10-6);

spatial mean QRS-T angle (134 vs. 112˚, p = 1.6x10-4); various repolarisation vectors; and a

previously described 5-parameter A-ECG score for LVSD (p = 4x10-6) that also correlated

with echocardiographic global longitudinal strain (R2 = - 0.51, P < 0.0001). A spatial QRS-T

angle >110˚ had an adjusted HR of 3.4 (95% CI 1.6 to 7.4) for secondary ICD implantation

or all-cause death and adjusted HR of 4.1 (95% CI 1.2 to 13.9) for future heart failure admis-

sion. There was a loss of complexity between A-ECG and echocardiographic variables with

an increasing degree of disease.

Conclusion

Spatial QRS-T angle >110˚ was strongly associated with arrhythmic events and all-cause

death. Deep analysis of global ECG and echocardiographic metadata revealed underlying

relationships, which otherwise would not have been appreciated. Delivered at scale such

techniques may prove useful in clinical decision making in the future.

Background

Patients with left ventricular systolic dysfunction (LVSD) are at increased risk for sudden car-

diac death (SCD) due to ventricular arrhythmia. A number of large randomised trials have

shown a mortality benefit for the prophylactic use of implantable cardioverter defibrilIators

(ICDs) in patients with left ventricular ejection fraction (LVEF)�35%, and NYHA Class II, or

worse, symptoms. International guidelines therefore recommend the use of primary preven-

tion ICDs in this population[1]. However many middle to low OECD countries have no policy

recommendations for the use of primary prevention ICDs, due to limited resources. For

instance, in New Zealand patients with LVEF between 30–35% are not considered eligible for

an ICD. Furthermore the recent DANISH study has also brought into question the role of pri-

mary prevention ICDs in patients with a nonischaemic cardiomyopathy and an LVEF�35%

[2].

Although LVEF and symptoms are currently considered the main determinants of risk, var-

ious advanced ECG (A-ECG) parameters from the resting ECG have also been shown to pre-

dict sudden cardiac death and ventricular arrhythmia[3–6]. One such metric, the spatial

QRS-T angle, can be calculated from a standard digital 10-sec 12-lead ECG by first deriving

the vectorcardiogram from the ECG, and then measuring the 3D angle between the spatial

QRS and T-wave maximal or mean loop vectors. This parameter has been shown to have a

high value in predicting ventricular arrhythmias not only in patients with left ventricular sys-

tolic dysfunction[3, 7], but also in those with normal LVEF[8–11].

While patients with LVEF 35 to 40% are also at risk for ventricular arrhythmia and SCD,

they are not eligible for primary prevention ICD therapy under current guidelines, due to cost

and an estimated 6% incidence of serious ICD complications[12, 13]. An individualised

approach to estimating risk and benefit is therefore necessary in this population. In this retro-

spective cohort study, we evaluated the utility of the spatial QRS-T angle in predicting out-

comes, using a clinical electronic database of patients with LVEF 31 to 40%. We also used

agnostic mining of global conventional and A-ECG, as well as echocardiographic metadata, to

potentially identify other novel biomarkers of risk for all cause death, secondary prevention
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ICD implantation and heart failure admissions. This global metadata was also used to evaluate

inter-relationships between the data and overall data complexity in patients with and without

events.

Methods

Patients

All research was approved by the local Institutional Review Board (Waitemata District Health

Board Knowledge Centre), and was conducted in accordance with the Declaration of Helsinki

(Ethical Guidelines for Observational Studies 2012. Health and Disability Ethics Committees

of New Zealand). The IRB waived the requirement for participants to provide consent, as the

project was a retrospective clinical audit. All patients who had undergone an echocardiogram

between February 2010 and January 2015, with an LVEF of 30.5% to 39.4% via Simpson’s

biplane method, were identified using a SQL server search of an Excelera database (Philips

Healthcare, Best, The Netherlands). Only those with complete bundle branch block, existing

ICD or cardiac resynchronisation therapy (CRT), paced rhythm, or a noisy or absent ECG

were excluded.

Clinical data and outcomes

Clinical information and ICD outcomes were manually identified with the use of electronic

medical records. Mortality and heart failure readmissions were identified using International

Classification of Diseases 10 (ICD10) queries. A socioeconomic deprivation score was popu-

lated using hospital databases. The primary outcomes of interest were prespecified as all cause

death and secondary prevention ICD implantation due to a community or hospital cardiac

arrest and documented VT/VF. A secondary outcome of interest was heart failure admissions.

Spatial mean QRS-T angle was prespecified as the variable of principal interest in relation to

all outcomes. Clinical data was matched against A-ECG metadata, post-analysis and re-

identification.

A-ECG analysis

12-lead ECGs, corresponding to the first echocardiogram performed on each patient, were

extracted from Epiphany’s Cardio Server ECG management software (Version 3.2.3.1, Epiph-

any Healthcare, Midlothian, VA, USA), de-identified, and converted to an analysable, binary

format by using an Octave script, then sent to Advanced ECG Services (Nicollier-Schlegel

SARL, Trélex, Switzerland; https://aecg.ch) for blinded A-ECG analyses. Such analyses were

limited to only those parameters that can be accurately assessed from 10-s recordings, and did

not include temporal parameters such as heart rate variability and QT variability. Analyzed

parameters included those derived from signal averaging of all adequately cross-correlated

QRS and T complexes within the 10-s recordings by using software originally assembled at

NASA [14, 15] to generate results for: (1) several spatial (derived vectorcardiographic or

3-dimensional) ECG parameters, including the spatial mean and peaks QRS-T angles, the spa-

tial ventricular gradient, and various spatial waveform azimuths, elevations, and time-voltages

[15], all derived by using the Frank-lead reconstruction technique of Kors et al.[16]; (2) param-

eters of QRS and T-waveform complexity derived by singular value decomposition (SVD) that

can be reproducibly obtained from 10-s ECGs, for example the principal component analysis

(PCA) ratio[14] and the dipolar voltage equivalents [15, 17] of the QRS and T waveforms; and

(3) the most applicable parameters from the conventional scalar 12-lead ECG. The majority of

these parameters and their related detailed methods have been described in previous
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publications[14–16, 18]. We also calculated results for a previously validated A-ECG score for

LVSD that was originally constructed on the basis of multivariate logistic regression of A-ECG

data from a larger data set of previous patients with known LVSD[15]. This score specifically

incorporates results from a patient’s spatial mean QRS-T angle, derived Frank Z-lead QRS

integral, total (12-lead) QRS voltage, and SVD-derived QRS-wave nondipolar and T-wave

dipolar voltages [15]. The exact coefficients utilized in the score can also be found within Sup-

plemental Table 2 of [15].

Echocardiography analysis

Echocardiograms were performed as part of clinical care on GE Vivid 7, E9 or Philips IE33

ultrasound machines. All echocardiograms were performed by an experienced sonographer

under cardiologist (ASE level III) supervision. Complete echocardiographic metadata, includ-

ing all sonographer inputted measurements, were extracted using SQL coding and matched to

re-dentified A-ECG data post-analysis. NULL values, text fields and low count variables were

excluded as part of feature selection. Echocardiographic variables were then compared

between patients with versus without the studied primary and secondary outcomes. Left ven-

tricular global longitudinal strain (GLS) analysis was also performed on randomly chosen

echocardiograms by using EchoPAC version 113.0.5. These GLS data were enriched by results

from a further 24 echocardiograms from patients with normal LVEF to mild LVSD, who were

not part of the core study, to encompass a wider spectrum of disease. A subgroup of 102

patients also underwent a second echocardiogram as part of clinical care, and were studied to

assess baseline predictors of response to medical therapy. Patients with a>10% increment in

LVEF were classified as responders to medical therapy, those with a�10% change were classi-

fied as nonresponders, and those with>10% decrement were classified as "deteriorators". Pri-

mary outcomes for each of these subgroups were also compared. In a posthoc analysis we

calculated the aortic energy loss index (ELI) for all patients and compared this between those

with and without primary events. The ELI is calculated as (AVA x Aa)/(Aa—AVA), where

AVA is derived from the continuity equation and Aa is the aortic area[19, 20].

Graph analysis and machine learning

After aligning echocardiographic and A-ECG metadata, a feature selected correlation matrix

was created from the resulting 291 variables of interest. These data were inputted into Cytos-

cape 3.3.0, for inter-relational network analysis. An interactive network was generated to com-

pare the metadata of patients with and without a primary outcome. These data were also

animated using a Javascript D3 Force layout by generating a correlation matrix from data

added one patient at a time, ranked in order by LVEF. The strength of the edges between

nodes was proportional to the absolute correlation between related measurements. Correla-

tions for variables with>82 instances were considered statistically significant, based on an

adjustment for multiplicity (p<1.2x10-6). A statistical certainty index was calculated as the per-

centage of total variables (n = 291) which reached this threshold. Edges were included for Pear-

son correlations >0.45 to improve visualisation of the network.

Individual patients were compared by a self-similarity matrix 1:1 to every other patient in

the database, using dot product multiscalar vectors and a graph analysis that applied the Java-

script D3 Force layout. Machine learning (Decision Tree analysis) was applied to global meta-

data using BigML (Corvallis, Oregon, USA). For this analysis only, an additional 8 patients

who already had secondary ICDs were also added to the database to increase numbers. These

patients were identified during the initial SQL query. After randomly splitting these data 60:40

into training and validation sets, multiple prediction models were then compared using ROCs.

Spatial QRS-T angle is associated with poor outcomes in patients with LV dysfunction
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Statistics

A student T test was applied to parametric data to compare patients with versus without pri-

mary or secondary outcomes. As patients were identified with an index echocardiogram

throughout the 5-year period Kaplan Meier analyses were used for time adjustment to com-

pare outcomes. Receiver Operator Curves (ROCs, Medcalc v 16.4.3) were used to identify the

most accurate (combined sensitivity and specificity) cut off values of the spatial mean QRS-T

angle for events, with the cut offs then being applied forward to the Kaplan Meier curves. Mul-

tiple ROCs were also compared for metadata variables that were significantly different, in

those with versus without events. Cox-Proportional Hazard models were used to evaluate

models of risk for the primary and secondary outcomes, using SAS version 9.4. For standard

statistics a nominal p<0.05 was deemed statistically significant. To correct for multiplicity, a

Bonferroni correction was applied with p<1.7x 10−4 for 291 variables. Qualitative measures,

such as shortest path distribution, network topology, between-ness centrality, degree and net-

work re-wiring (DyNet Cytoscape plugin), were used to evaluate networks.

Results

Patient characteristics and outcomes

534 patients�75 years of age with LVEF31-40% were identified through the echocardiography

reporting database. Digital 12-lead ECGs were matched to 345 of these patients within a time-

frame of less than six months. 50 of these patients were excluded due to the presence of one of

exclusionary conditions, as noted, leaving 295 for the final analysis. Baseline characteristics are

shown in Table 1.

144 (49%) of these patients had LVEF 31–35% and151 (51%) had LVEF 36–40%. 49 patients

(17%) had primary events, defined as either mortality (n = 16) or ICD implantation for sec-

ondary prevention (n = 33) over the 5-year period. 26 patients had admissions for congestive

heart failure, with several of those having numerous admissions. Secondary ICDs were

implanted for documented sustained ventricular arrhythmic events. The median time from

the index echocardiogram until the end of the study was 652 days, range 6 to 1,814 days. There

was a significant length time bias as patients with events had echocardiograms earlier in rela-

tion to the closure date; 1,099 +/-510 days versus 690 +/-475 days, p = 4x10-7.

Data mining of metadata

72 parameters (58 ECG, 14 echocardiographic) were univariately different (p<0.05) in those

with vs. without events. After adjustment for multiplicity, 24 A-ECG parameters and two echo-

cardiographic parameters remained different (i.e., p<1.7x10-4). The A-ECG parameters

included: The posterior-to-leftward (P/L) QRS loop ratio within the derived vectorcardio-

graphic horizontal plane (2.15 vs.1.15, p = 2x10-6, noting that this parameter has previously

been correlated to invasively measured pulmonary artery pressures [21, 22]); the spatial mean

QRS-T angle (134 vs. 112˚, p = 1.6x10-4); various repolarisation vectors; and the aforemen-

tioned 5-parameter A-ECG score for LVSD (p = 4x10-6).[23] The two echocardiographic

parameters that after adjustment for multiplicity remained different were the left atrial (LA)

volume and the LA/Aortic diameter ratio. Notable amongst the 14 echocardiographic parame-

ters that were univariately different (p<0.05) were the aortic ELI (3.2 versus 2.6, p = 0.005 in

those with versus without primary events) and aortic valve area (AVA), the dimensionless

severity index (DSI, Vmax)[24], the (LVEDD/BSI), the tricuspid regurgitation (TR) jet maxi-

mum velocity, and LVEF.

Spatial QRS-T angle is associated with poor outcomes in patients with LV dysfunction
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Primary and secondary outcomes

A cut off for the spatial mean QRS-T angle of>110˚ had the optimal AUC of 0.68 for predict-

ing all-cause death or an arrhythmic event, with accompanying sensitivity of 84% and specific-

ity of 50%, P <0.0001 (Fig 1). Patients with a spatial mean QRS-T angle>110˚ had a

univariate HR = 3.7 (95%CI: 1.7 to 8.0) and adjusted HR of 3.4 (95% CI 1.6 to 7.4, p = 0.001)

in a Cox model including type II diabetes and LVEF (Table 2, Fig 2). The effect size was similar

in patients with either nonischaemic or ischaemic cardiomyopathy. At its optimal cut off�

-2.04, Youden index J 95% CI� -2.46 to� -0.22), the 5-parameter score A-ECG for LVSD,

previously validated for its diagnostic superiority over human ECG readers[23], had a higher

AUC (0.71) than that of the spatial QRS-T angle for predicting a primary event, although the

difference did not reach statistical significance. The LVSD A-ECG score as a continuous vari-

able had an adjusted HR of 0.8 (95% CI 0.7 to 0.98) after adjusting the effects of the binary spa-

tial QRS-T angle result, type II diabetes and LVEF. Machine learning (ML) of global metadata,

including 8 patients with prior ICD, further improved the AUC for a primary event to 0.75. By

comparison addition of the 8 patients did not alter the AUC for spatial QRS-T angle. Many

but not all ML models were dominated by spatial QRS-T angle, and repolarisation parameters.

The majority of ML models had high specificity but low sensitivity for primary events (Fig 3).

Patients with a spatial mean QRS-T angle>110˚ had a HR = 4.1 for the secondary outcome

of heart failure admission (95% CI 1.2 to 13.9) (Table 3, Fig 4). The optimal cut off for spatial

mean QRS-T angle to predict heart failure admission was>147˚ (Fig 5). The spatial mean

QRS-T angle was also associated with the number of heart failure admissions in a dose-

response type of relationship (S1 Fig). Finally, there was also a significant correlation between

the A-ECG LVSD score and echocardiographic global longitudinal LV strain, R2 = - 0.51,

P< 0.0001 (Fig 6).

Table 1. Baseline characteristics.

No Event n = 246 Event n = 49 P value

Age 60 (12) 64 (9) 0.02

Male 181 (70%) 38 (80%) 0.56

Atrial fibrillation 74 (30%) 14 (30%) 0.14

Hypertension 102 (41%) 25 (51%) 0.2

Dyslipidaemia 85 (34%) 21 (43%) 0.29

Smoker 62 (25%) 12 (24%) 0.88

Type 2 Diabetes 53 (21%) 18 (37%) 0.03

NYHA 1.1 (1) 1.3 (0.9) 0.33

Beta-blocker 174 (71%) 40 (82%) 0.11

ICM 124 (50%) 26 (53%) 0.7

NICM 98 (40%) 18 (37%) 0.7

Valvular, other 24 (10%) 15 (10%) 1

LVEF (Simpson) 36 (2.9) 35 (2.9) 0.04

Spatial QRS-T angle 112 (38) 134 (33) 1.6x10-4

Socioeconomic NZDep2006 deprivation score 5.6 (3) 5.4 (2.6) 0.72

NYHA = New York Heart Association functional classification; ICM = ischaemic cardiomyopathy; NICM = nonischaemic cardiomyopathy; LVEF = left

ventricular ejection fraction measured by Simpson biplane; NZDep2006, New Zealand socioeconomic deprivation score, 1 most deprivation, 10 least

deprivation. Six patients had aortic and 5 mitral prostheses and 16 had moderate-to-severe aortic stenosis.

https://doi.org/10.1371/journal.pone.0171069.t001
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Spatial mean QRS-T angle >110˚

A spatial mean QRS-T angle >110˚ was associated with numerous structural and functional

abnormalities, such as a larger left ventricular end diastolic dimension (LVEDD) (60mm vs

57mm, p = 5x10-5) and left ventricular end systolic dimension (LVESD), higher LV mass,

lower LVEF (35% versus 36%), stroke volume index and DSI (Vmax). LA diameter was larger

Fig 1. Receiver operator curve for arrhythmic events classified by spatial QRS-T angle. Spatial mean QRS-T angle

>110˚ had a sensitivity 84%, specificity 50% and AUC 0.68 (95% C.I. 0.62 to 0.73, p<0.0001).

https://doi.org/10.1371/journal.pone.0171069.g001

Table 2. Cox Proportional Hazard model for primary event.

Hazard ratio 95% Confidence Interval

Spatial mean QRS-T angle >110 degrees 3.4 1.6 to 7.4

Type II Diabetes 1.6 0.9 to 2.9

LVEF 0.99 0.9 to 1.1

https://doi.org/10.1371/journal.pone.0171069.t002
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Fig 2. Kaplan Meier plot demonstrating primary event rates over time, dichotomized by a spatial mean

QRS-T angle cut off of >110˚.

https://doi.org/10.1371/journal.pone.0171069.g002

Fig 3. Receiver operator curve for multiple machine learning models, generated using single decision

trees and ensembles.

https://doi.org/10.1371/journal.pone.0171069.g003
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and there was a higher prevalence of type II diabetes and hypertension in those with spatial

QRS-T angle >110˚.

Response to medical therapy

Primary outcome events occurred in 0% of responders (n = 26, increase in LVEF >10%), 17%

of nonresponders (n = 63, ΔLVEF�10%), and 31% of deteriorators (n = 13 decrease in LVEF

>10%). After excluding one patient with aortic stenosis, the parameter that best predicted

response to medical therapy was the echocardiographic DSI Vmax, which was lower in either

nonresponders or deteriorators compared to responders (0.61 versus 0.75, p = 0.0003). A DSI

>0.64 predicted likelihood of response with a sensitivity of 90%, specificity of 58% and AUC

of 0.75 (95% C.I. 0.6 to 0.8, p<0.0001).

Patients with non-ischaemic cardiomyopathy were also more likely to respond than those

with ischaemic cardiomyopathy. Responders had higher heart rates, a lower prevalence of type

II diabetes, and shorter LV length, than nonresponders or deteriorators.

Graph analysis

Parameters (nodes) that were significantly different in those with primary events were often

hubs, with high between-ness centrality. These included the spatial QRS-T angle, the sum

absolute QRST integral (SAI QRST) [6, 25], the posterior-to-lateral (P/L) QRS loop ratio[21],

and the 5-parameter A-ECG score for LVSD[23]. All of these parameters had high rewiring

scores when comparing patients with primary events to those without events. Numerous

inter-relationships (edges) between A-ECG and echocardiographic parameters were demon-

strated using a network model. The greatest densities of these edges were between LV struc-

tural parameters, such as the LVEDD/BSI, LV mass and measures of cardiac output, such as

the cardiac index. Atrial ECG parameters such as P duration, P wave axis in the frontal plane,

and PQ interval were key nodes, connecting both echocardiographic and ECG parameters.

These relationships weakened, with dissociation of ECG and echocardiography parameters as

the LVEF worsened and when adding patients with a primary event, showing a loss of data

complexity (Fig 7) (S1 Source code and S1 HTML https://theranosticslab.github.io/

NetworkVisualization/) (S1 GIF). This alteration in network topology resulted in an increase

in the shortest path length and its distribution.

The dot product similarity matrix demonstrated that patients were very similar to each other,

and these relationships followed a skewed, power law distribution. Patients with events were

more similar to other patients with events than to those without events, suggesting a phenotypic

distinction within the former group; median similarity 0.79 versus 0.76, P<0.0001. Patients

without events were more heterogeneous, and less similar than those with events. (Fig 8).

Discussion

In this cohort study of patients�75 years of age with LVEF 31 to 40%, we have further validated

the utility of the spatial QRS-T angle as a prognostic indicator, in our case for the combined out-

come of all-cause mortality or secondary ICD implantation. Using agnostic datamining and

Table 3. Cox Proportional Hazard model for secondary event.

Hazard ratio 95% Confidence Interval

Spatial mean QRS-T angle >110 degrees 4.1 1.2 to 13.9

Type II Diabetes 2.3 1.0 to 5.1

Age 1.1 1.0 to 1.1

https://doi.org/10.1371/journal.pone.0171069.t003
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Fig 4. Kaplan Meier plot demonstrating heart failure admissions over time separated by spatial mean

QRS-T angle >110˚.

https://doi.org/10.1371/journal.pone.0171069.g004

Fig 5. Receiver operator curve for heart failure admissions classified by spatial mean QRS-T angle.

Spatial mean QRS-T angle >147˚ had a sensitivity 64%, specificity 80% and AUC 0.74 (95% C.I 0.68 to 0.79,

p<0.0001).

https://doi.org/10.1371/journal.pone.0171069.g005
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correction for multiple hypothesis testing, we have also identified novel A-ECG markers of

arrhythmic risk, such as the derived vectorcardiographic posterior-to-leftward (P/L) QRS loop

ratio in the horizontal plane, previously associated with pulmonary artery pressure measured by

right heart catheterisation[21, 22]. This particular finding was also corroborated by our echocar-

diographic metadata, with the maximal TR jet velocity also being significantly associated with

primary events, albeit only univariately. Overall these findings are consistent with previous

reports of pulmonary artery hypertension and associated RV dysfunction being independently

and additively associated with poorer prognosis in patients with heart failure[26, 27].

While ECG parameters dominated in the prediction of arrhythmic outcomes, numerous

echocardiographic parameters were also univariately different in those with versus without

Fig 6. Scatter plot and regression line demonstrating relationship between global longitudinal strain

and A-ECG 5-parameter LVSD score.

https://doi.org/10.1371/journal.pone.0171069.g006

Fig 7. (a) Metadata network of patients without arrhythmic events, (b) all patients including those with events,

demonstrating reduced complexity and increased path length.

https://doi.org/10.1371/journal.pone.0171069.g007
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events and further improved ML prediction models, when incorporated. The most notable of

these echocardiographic parameters was the DSI, which was also a strong predictor of response

to medical therapy, even after accounting for patients with aortic stenosis. The DSI values in

most patients were high, i.e.,>0.5, discounting what would normally be considered a signifi-

cant aortic valve gradient. We speculate that this may represent either an increasing demand

on the failing heart from fluid energy loss due to turbulence, as blood transits the aortic valve,

or an epiphenomenon. The aortic valve energy loss index (ELI) in a posthoc analysis was also

univariately higher in patients with versus without primary events. It seems possible that in

patients with heart failure, energy loss due to turbulence may be a sign of poorer cardiac func-

tion, or it might indicate increased cardiac energy demand on the failing heart, even for low

gradients[28]. Alternatively, aortic valve sclerosis may indicate a poorer prognosis due to more

advanced coronary artery disease[29]. Computational modelling of heart mechanics and flow

dynamics might assist with further validation of this concept[30].

The spatial QRS-T angle has been shown to be associated with SCD, ventricular arrhythmia

and heart failure outcomes in a wide range of cardiac conditions, including not only heart fail-

ure but also acute coronary syndrome, hypertrophic cardiomyopathy and stable coronary

artery disease[31–33]. Furthermore, the spatial QRS-T angle has been shown to be increased

in patients with various cardiac risk factors, including smoking, diabetes and hypertension

[34–37]. The latter two associations were also observed in this study. It has been proposed that

increases in spatial QRS-T angle may be a sensitive indicator of left ventricular electrical

remodelling, which can manifest before overt conventional ECG or echocardiographic signs of

left ventricular hypertrophy become evident[36]. A cardiac MRI study of patients with second-

ary ICD implants showed that the spatial QRS-T angle was associated with LV function, vol-

ume and mass, as well as myocardial scar burden[38]. In the current study we similarly

showed relatively increased LV volume and mass and decreased LVEF in those with spatial

Fig 8. Self-similarity network (a), and distributions (b & c) showing similarity between patients with primary events and

between those with versus without primary events.

https://doi.org/10.1371/journal.pone.0171069.g008
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mean QRS-T angle>110˚. In the absence of MRI data on all patients in this study, the spatial

QRS-T angle provided additive indirect information on LV scar burden.

Although a wide spatial QRS-T angle may be indicative of structural heart disease it has also

been shown to be predictive of SCD, even in those with presumed normal cardiac structure

and function[8–11]. In our study the predictive value of the spatial QRS-T angle was observed

not only in patients with LVEF 31–35%, but also in those with LVEF 36–40% who would not

otherwise be considered eligible for ICDs. The spatial QRS-T angle has been shown to widen

not only in pathology such as decreased LVEF, but also with age[11]. In this study a cutoff of

>110˚ had the highest predictive power for future primary events in patients with LVEF 31–

40%. However lower cutoffs may also be predictive for events in patients with only mild LV

dysfunction, such that we’d propose that LVEF-specific reference ranges also be established

for the spatial QRS-T angle(s), to complement such ranges already in existence for age and

gender. This proposal is also supported by the results of our network analysis that showed pro-

gressive divergence of ECG and echocardiographic parameters, with events occurring pre-

dominantly in those who had lost concordance between these values. The notion that disease

or event processes are in part due to loss of ‘healthy’ adaption to environmental perturbations

and loss of complexity is also supported by molecular studies of cardiovascular disease[39, 40].

Network analysis in this study also demonstrated that both the spatial QRS-T angle and the

SAI QRST, another recently proposed marker of arrhythmic risk in patients undergoing ICD

implantation for primary prevention[6, 25], were important hubs separated by module clus-

ters. The posterior-to-leftward (P/L) QRS loop ratio from the horizontal plane and the A-ECG

score for LVSD also served as such hubs, although these latter two did not deliver significantly

independent information from one another and the A-ECG score only marginally further

improved the ROC AUC for prediction of primary events. Interestingly the A-ECG score for

LVSD was also highly correlated with global longitudinal strain, itself known to be associated

with increased risk of ventricular arrhythmia[41]. We have previously demonstrated that the

A-ECG LVSD score, which itself incorporates results from the spatial QRS-T angle, has equal

diagnostic sensitivity and higher specificity in the diagnosis of heart failure compared to

human readers of a 12-lead ECG[23, 42].

Unbiased machine learning using decision tree analysis however did demonstrate an

improvement in AUC for prediction of arrhythmic events, when using combined ECG and

echocardiographic metadata. These models frequently included the aforementioned A-ECG

parameters, although several did not and instead incorporated multiple other A-ECG parame-

ters of repolarisation. This suggests that there may be no single parameter that optimally pre-

dicts events, and that a global approach may be more effective in making risk predictions.

Such an approach may also be most useful in clinical settings wherein missing data can be a

problem[43]. The application of machine learning to broad clinical metadata, looking for

intermediate phenotypes or patterns in response to therapy, has significant potential to

improve individualised patient care[44]. Similar ‘phenomapping’ has been used in patients

with heart failure with preserved ejection fraction (HFpEF) and demonstrated three subclasses

of this condition[45]. In one study, frontal planar QRS-T angle dominated in the discrimina-

tion of a HFpEF subtype associated with particularly high risk of heart failure hospitalisation

or death. The spatial QRS-T angle is widely regarded as more informational than the frontal

planar QRS-T angle[46], as well as more powerful for predicting arrhythmic risk[3], though

the former requires computational reconstruction of a 3D ECG model, whereas the latter can

be easily measured from a conventional 12-lead ECG.

Several other A-ECG parameters such as R-to-R and QT interval variability that are also

known to have predictive value for cardiovascular events[4, 47], but that can only be accurately

quantified via using longer-duration ECG recordings (e.g., 5-min), could not be included in
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this study because of our use of only shorter (10-s) recordings. These other parameters, when

available, may also provide useful additional information for quantifying risk[4, 48], although

additional studies involving longer duration 12-lead ECG would be required to formally evalu-

ate this. Other sources of data such as genomic, metabolomic or other biomarker information

may also be additive to a global model of risk. For example, recent studies have demonstrated

that metabolomics may not only be diagnostic for heart failure, but also predictive of responses

to cardiac resynchronization and ICD therapies[49–52]. Integrating electrobiochemical ‘omic

information may yield further predictive information, which cannot be yielded by any individ-

ual method separately[53, 54]. As current methods probably demonstrate only the substrate

for arrhythmic risk, one logical next step might be to include continuous community-based

monitoring of patients via wearable sensors, with inclusion of metabolomic and possibly geno-

mic data to further strengthen risk assessment for events[55–57].

Conclusion

In this retrospective cohort study, we have demonstrated that the spatial QRS-T angle is a

strong predictor of arrhythmic events, all-cause death and heart failure admissions. This was

shown to be predictive in a population of patients with both ischaemic and nonischaemic car-

diomyopathy. The spatial QRS-T angle was first described in the 1950s[58], however it has

never garnered much interest from practising cardiologists. With a recent meta-analysis of

146,000 patients, including data from ICD trials, a significant relationship between a wide spa-

tial QRS-T angle and arrhythmic risk[59], this parameter can no longer be ignored. Both it

and A-ECG more generally may play significant roles in individualising the decision for ICD

implantation, particularly in cost constrained environments. However, before incorporation

into routine practice, further confirmation is required in prospective randomised studies.

Limitations

As this was a retrospective, clinical cohort study, selection bias may have played a role in influ-

encing the outcomes. The cohort was heterogeneous which makes bias possible, but also aids

in translating findings into a real world context. There was a significant length time bias, as

some patients were identified earlier in the study period than others. This however is more

likely to have underestimated the effect size of a spatial QRS-T angle >110 degrees in patients,

who spent limited time in the study period. The outcomes measured in this study depended

on adequate electronic clinical records and ICD10 coding. However, as this study was per-

formed in an environment with universal health records, with nationalised databases, in a rela-

tively constrained geography, follow up attainment was high. Machine learning was limited by

low numbers with risk of overfitting, however the machine learning part of the study was

intended as a demonstration of the types of analyses which could be performed on a greater

scale.
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