
RESEARCH ARTICLE

Suitability of a new Bloom filter for numerical

vectors with high dimensions

Chunyan ShuaiID
1, Jiayou Lei1, Zeweiyi Gong2, Xin Ouyang3*

1 Faculty of Transportation Engineering, Kunming University of Science and Technology, Kunming, China,

2 Faculty of Electric Power Engineering, Kunming University of Science and Technology, Kunming, China,

3 Faculty of Information Engineering and Automation, Kunming University of Science and Technology,

Kunming, China

* kmoyx@hotmail.com

Abstract

The notable increase in the size and dimensions of data have presented challenges for data

storage and retrieval. The Bloom filter and its generations, due to efficient space overheads

and constant query delays, have been broadly applied to querying memberships of a big

data set. However, the Bloom filter and most of the variants regard each element as a 1-

dimensional string and adopt multiple different string hashes to project the data. The inter-

esting problem is when the inputs are numerical vectors with high dimensions, it remains

unknown whether they can be projected into the Bloom filter in their original format. Further-

more, we investigate whether the projection is random and uniform. To address these prob-

lems, this paper presents a new uniform Prime-HD-BKDERhash family and a new Bloom

filter (P-HDBF) to retrieve the membership of a big data set with the numerical high dimen-

sions. Since the randomness and uniformity of data mapping determines the performance

of the Bloom filter, to verify these properties, we first introduce information entropy. Our the-

oretical and experimental results show that the P-HDBF can randomly and uniformly map

the data in their native formats. Moreover, the P-HDBF provides an efficient solution alterna-

tive to implement membership search with space-time overheads. This advantage may be

suitable for engineering applications that are resource-constrained or identification of the

nuances of the graphics and images.

1. Introduction

With increasing data sizes, concise data representations and efficient query algorithms have

become the key factors to large-scale data management. As a result, a large number of technol-

ogies have appeared, such as the Bloom filter (BF) [1]. The BF has a low query delay and a high

time-space overhead, leading to its broad use in computing areas, such as network and net-

work security [2–5], distributed systems [6–9] and applications or embedded devices [10,11],

with limited computing and storage resources. Moreover, many variants have been proposed,

including the counting Bloom filter (CBF) [12] and its improvements [13–14], the compressed

Bloom filter[15], the spectral Bloom filter[16], the dynamic Bloom filter [17], the Cuckoo Fil-

ter[18], and the parallel BFs (PBF-HT and PBF-BF) [19, 20].

PLOS ONE | https://doi.org/10.1371/journal.pone.0209159 December 21, 2018 1 / 15

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Shuai C, Lei J, Gong Z, Ouyang X (2018)

Suitability of a new Bloom filter for numerical

vectors with high dimensions. PLoS ONE 13(12):

e0209159. https://doi.org/10.1371/journal.

pone.0209159

Editor: Zhan Li, University of Electronic Science

and Technology of China, CHINA

Received: July 13, 2018

Accepted: December 2, 2018

Published: December 21, 2018

Copyright: © 2018 Shuai et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Data are available

freely from http://corpus-texmex.irisa.fr/ and on

figshare at the URLs: https://figshare.com/articles/

sift_data/7428974 and https://figshare.com/

articles/ivecs_read_m/7428971.

Funding: This work is supported by the National

Key R&D Plan of China (No. 2017YFB0306405) to

XO, the National Natural Science Foundation of

China (No.61562056, No.61364008) to CS. The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

http://orcid.org/0000-0001-8282-2697
https://doi.org/10.1371/journal.pone.0209159
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0209159&domain=pdf&date_stamp=2018-12-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0209159&domain=pdf&date_stamp=2018-12-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0209159&domain=pdf&date_stamp=2018-12-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0209159&domain=pdf&date_stamp=2018-12-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0209159&domain=pdf&date_stamp=2018-12-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0209159&domain=pdf&date_stamp=2018-12-21
https://doi.org/10.1371/journal.pone.0209159
https://doi.org/10.1371/journal.pone.0209159
http://creativecommons.org/licenses/by/4.0/
http://corpus-texmex.irisa.fr/
https://figshare.com/articles/sift_data/7428974
https://figshare.com/articles/sift_data/7428974
https://figshare.com/articles/ivecs_read_m/7428971
https://figshare.com/articles/ivecs_read_m/7428971


The BF can perform well and obtain a low false positive probability (FPP) only when the

hash randomly and uniformly disperses the data, and usually, string hash functions [21] are

the default choices. Regardless of the data format, the string hash takes the input as a 1-dimen-

sional string, rather than its original format, and iteratively computes every character to obtain

a random integer. To better scatter the data into different places and reduce the FPP, multiple

different string hashes are usually selected. To project numerical vectors with high dimensions

in their original formats, LshBFs [22–25] replace the string hashes with a uniform locality sen-

sitive hashing (LSH) [26]. However, since the LSH gathers the data around the mean, LshBFs

are more suitable for approximate nearest neighbours queries, rather than membership

queries.

When the inputs are numerical vectors with high dimensions, this paper proposes dealing

with them in their original formats other than strings. First, a unified prime BKDERhash [27]

function family, denoted as Prime-HD-BKDERhash, is proposed to substitute for multiple dif-

ferent string hashes. Meanwhile, information entropy is introduced in the BF to verify the ran-

domness and uniformity of the data mapped by the Prime-HD-BKDERhash. Next, by

combining the unified Prime-HD-BKDERhash with a counter array, a new BF called P-HDBF

is established to store and retrieve the memberships of the big data set. The theoretical analysis

and experiments show that the Prime-HD-BKDERhash can disperse elements more effectively

than the string hashes, and the P-HDBF is more suitable to represent and query the numerical

vectors of a big data set in high-dimensional spaces, which has low space-time costs. Com-

pared with the PBF-HT and PBF-BF, the P-HDBF possesses low false detection rates, low

query delays and low space requirements. The advantages of the constant query delay and low

space-time costs make the P-HDBF more appropriate for some engineering applications with

constrained computing and storage resources, such as distinguish the nuances of the graphics

and images.

The remainder of this paper is organized as follows. Related works are described in section

2. The design of Bloom filter and our structure are presented in section 3. The theoretical anal-

yses and proofs are in Sections 4 and 5. Section 6 presents the related performance evaluation

and experiments. Section 7 presents the study’s conclusions.

2. Related work

This section provides a brief survey related to the Bloom filter designs and its variants that are

suitable for element deletion and multi-dimensional vectors.

A Bloom filter [1] utilities a slightly array to store a big data set. This filter uses the map-

pings of multiple string hashes to answer whether a query is member of the set with a small

false positive probability or not. To support element deletion, the counting Bloom filter (CBF)

[12] proves that a 4-bit counter array will be sufficient to defend against overflows brought by

element deletion. The FPP, array size and cardinality of the BF have been discussed in [28–30].

The variable incremental counting Bloom filter (VI-CBF) [31] increases the counter by a vari-

able increment rather than the unaltered increment to reduce memory costs. Moreover, with

the same counter width, the query in VI-CBF can get a more complete answer than in CBF.

The Cuckoo filter [18] consists of an array of buckets where each item has two candidate buck-

ets. The filter computes every item’s two fingerprints and bucket positions using hash func-

tions h1(x) = h(x) and h2(x) = h1(x)�h (h is x’s fingerprint). The lookup procedure checks both

buckets to see if either one contains the query to determine the membership. Since the insert

procedure will continuously relocate existing fingerprints to their alternatives until no more

buckets can be allocated, it efficiently reduces the memory costs but results in a long computa-

tional time.

A new BF for numerical vectors with HD

PLOS ONE | https://doi.org/10.1371/journal.pone.0209159 December 21, 2018 2 / 15

Competing interests: The authors have declared

that no competing interests exist.

Abbreviations: S = (V1,. . .,Vn), A set of n vectors

for member query; V(v1. . .vd), q(q1. . .qd), A vector

in S and a query q with d dimensions; P(p1. . .pl),

A prime number set P and a prime number pi; Hp,

A Prime_HD_ BKDRHash function family with a

function of hk
P = Si = ∏pi−1�Si−1+vi(i = 1. . .d);

fP−HDBF, fnpP−HDBF, The false positive (negative)

probability of P-HDBF.; m, The array size of P-

HDBF.; k, The number of Prime_HD_ BKDRHash

functions.

https://doi.org/10.1371/journal.pone.0209159


Bloom-1 [32] achieves a reduced query overhead at the cost of a higher FPP for a given

memory size. Reviriego [33] provides a correct analysis of Bloom-1 and gives out an exact

FPP. For the fixed FPP and cardinality of a dataset, the spaces that a BF required are deter-

mined. Once a number of extra elements are added in, the FPP will increase quickly. There-

fore, the traditional BF is suitable for static sets. The Spectral BF [16] and Dynamic BF (DBF)

[17] extend the BF to multi-set and dynamic sets, respectively. To determine which BF an ele-

ment belongs to in cloud environment, Bloofi [34] organizes different BFs in a hierarchical

index structure similar to a B+ tree and the FPP of the hierarchical Bloofi is discussed in [35].

These BFs recognize the inputs as 1-dimensional strings. PBF [20], PBF-HT and PBF-BF

[21] have been developed to store and query multi-dimensional elements. The PBF consists of

multiple parallel standard BFs, and each standard BF represents an attribute. Due to the

destruction of the integrity of the attributes, the PBF generates a high FPP. Furthermore, to

reduce the FPP, the PBF-HT (PBF-BF) adds a hash table (a check BF) to the PBF. Let d be the

number of dimensions, let m1 and m2 be the sizes of the array of the BF and the HT (or the

checkBF), and let k1 and k2 be numbers of hash functions of the PBF and the HT (or the check

BF), respectively. The memory cost and query delay of the PBF-BF (or PBF-HT) are dm1+m2

and k1d+k2, respectively. Both of them grow linearly as dimensions increase and result in huge

memory wastes and query delays. Rather than applying multiple different string hashes to map

the inputs into different integers, the LshBF schemes [22–25] apply locality sensitive hashing

(LSH) [26] functions to directly transform high-dimensional vectors into serial real numbers

by performing the dot product with the input dimensions and mapping similar vectors in the

Euclidean space to near location(s). The LSH avoids “dimensional disasters” but results in a

high FPP when querying memberships. To reduce the FPP, the LshBF-BF [23] adds a verifica-

tion BF to further disperse vectors. According to the central limited theorem [36], the LSH

shrinks all elements of the set around the mean. For example, when the LSH satisfies the stan-

dard normal distribution, approximately 68.5% of the elements gather between the negative

and positive variance after mapping, which makes it more suitable for approximate nearest

neighbours search.

3. Methods and structure

3.1 Standard Bloom filter and Counter Bloom filter

Definition 1. Bloom filter (BF) [1]. A Bloom filter contains k independent string hash func-

tions hj(j = 1,. . .,k) and an array of m bits initiated to 0. By projecting k hashes, the BF stores n
elements of a set S (V1,V2. . .Vn) into the bit array. For hj (j = 1,. . .,k) and Vi(i�n), the bit

hj(Vi)%m is set to 1. A bit can be set to 1 multiple times, but only the first change has an effect.

Given a query q, if hj(q)%m = 1 for all hj (j = 1,. . .,k), the q is accepted as a member of S with a

false positive probability (FPP).

The BF assumes that each hj (j = 1,. . .,k) can randomly and uniformly map elements. Usu-

ally, hj is a string hash [21], such as sax_hash and RSHash. By repeatedly iterating every charac-

ter of Vi, hj obtains an integer in the range of [0−(231-1)] (32 bits length) as the random hash

fingerprint of Vi. For example, given two vectors X(357,246,369) and Y(468,369,157), the sax_

hash function (h1) uses ASCII codes of characters ’3’,’5’,’7’,’,’,’2’. . . of X to iteratively compute

a random integer. Then, the counter h1(X)%m is added with 1, as shown in Fig 1.

3.2 Prime high dimensional Bloom filter

To address numerical vectors with high dimensions in their original formats other than

strings, a new uniform hash function family, denoted as Prime_HD_BKDRHash, is proposed.

A new BF for numerical vectors with HD

PLOS ONE | https://doi.org/10.1371/journal.pone.0209159 December 21, 2018 3 / 15

https://doi.org/10.1371/journal.pone.0209159


Based on the unified Prime_HD_BKDRHash and a counter array, a new BF called P-HDBF is

built, as shown in Fig 2.

(1) Prime_HD_BKDRHash. It originates from the BKDRHash function [27] and prime

numbers. Given a prime number set P = [3,5,7,11,13,17. . .](except of 2) and a d dimensional

numerical vector V(v1,. . .,vd), Prime_HD_BKDRHash considers V as a d dimensional vector.

By iteratively computing hp = Si = ∏pi-1�Si−1+vi (i = 1. . .d), d dimensions contribute to the last

hash value. Although the jth operation and the (j+1)th operation are same, the corresponding

prime numbers are different. Therefore, hj(V) and hj+1(V) will get different hash values (details

in section 4.1).

(2)A counter array (CA). The array of P-HDBF contains m counters and each counter

occupies 4 bits, which is enough to defend against the FNP brought by deleting elements [12].

When k random integers are calculated by k Prime_HD_BKDRHash functions, the counter

hj(V)%m(1�j�k) of the CA is added to 1.

4. Theoretical analysis

The BF structure can work well only when the hashes can randomly and uniformly project all

elements, since it is the basis of the BF. Therefore, this section will discuss the hash family- Pri-

me_H-D_BKDRHash which is based on BKDRHash [27], and demonstrate why it is effective

Fig 1. Bloom filter and counting Bloom filter.

https://doi.org/10.1371/journal.pone.0209159.g001

Fig 2. P-HDBF and prime_HDBKDRHash.

https://doi.org/10.1371/journal.pone.0209159.g002

A new BF for numerical vectors with HD

PLOS ONE | https://doi.org/10.1371/journal.pone.0209159 December 21, 2018 4 / 15

https://doi.org/10.1371/journal.pone.0209159.g001
https://doi.org/10.1371/journal.pone.0209159.g002
https://doi.org/10.1371/journal.pone.0209159


in the projection and query of high-dimensional vectors. The definition, proof and algorithm

are shown as follows.

4.1 Prime_HD_ BKDRHash

Definition 2. A family Hp = {hp:Rd!U} of functions is called a prime high-dimensional

BKDRHash (Prime_HD_BKDRHash), if 8V2Rd,V(v1,. . .,vd) and a prime number set P(p1,. . .,

pl)(l21) (without 2), such that hp = Si = ∏pi-1�Si−1+vi (i = 1. . .d).

Theorem 1. By hp mapping, all vectors Vj(v1,. . .,vd) with d dimensions in a set will be ran-

domly and uniformly projected to different integers.

Proof. Since hp = Si = ∏pi-1�Si−1+vi (i = 1. . .d), then

Sd ¼ ðp2 � . . . � pi � . . . � pdÞv1 þ ðp3 � . . . � pi � . . . � pdÞv2

þ . . .þ ðpiþ1 � . . . � pdÞvi þ . . .þ vd

¼ v1

Yd

i¼2

pi þ v2

Yd

i¼3

pi þ . . .þ vi
Yd

i¼iþ1

pi þ . . .þ vd

: ð1Þ

Let pi<232, 0<vi�232 (i = 1,. . .,d), αd = 1 and αd−1 = pd�αd. For any i = 1,. . .,d−1, αi = pi+1�αi+1

>0 and αj>αi(j>i). If αi<232 and any αj�vj>232 (j>i), αj�vj overflows, and the overflow part

will be discarded by the 32-bit CPU. Since pj2P (without 2), pi is an odd number, and the mul-

tiplication of odd numbers is still an odd number. Since 9x’2N,
Yd

j¼jþ1

pj ¼ 2x0 þ 1. Meanwhile,

vj2N and 0<vi�232, therefore

ai � vj ¼ vj
Yd

j¼jþ1

pj

¼ vjð2x
0

þ 1Þðx0 2 NÞ

¼ vj � 2x
0

þ vj
¼ 232 þ bjvj

: ð2Þ

If αi<232 and αi−1 = pi�αi>232, there always exists zi−1 = 2x+1(x2N), which makes

ai� 1 � vi� 1 ¼ ð2
32 þ zi� 1Þ � vi� 1

¼ 232 � vi� 1 þ zi� 1 � vi� 1

; ð3Þ

and

ai� 2 � vi� 2 ¼ pi� 1 � ai� 1 � vi� 2

¼ pi� 1 � ð2
32 þ zi� 1Þ � vi� 2

¼ pi� 1 � 2
32 � vi� 2 þ pi� 1 � zi� 1 � vi� 2

: ð4Þ

The same operations are applied on other fields from α1�v1 to αi−3�vi−3. For vi2N, all 232�vi−1

and pj�. . .�pi−1�2
32�vj(1�j<i−2) will be discarded by the 32-bit CPU due to overflow. Then,

Sd ¼ ðp1 � . . . � pi� 1 � zi� 1Þv1 þ ðp2 � . . . � pi� 1 � zi� 1Þv2

þ . . . pi� 1zi� 1 � vi� 2 þ zi� 1 � vi� 1 þ aivi þ . . . bjvj þ . . .þ vd
: ð5Þ

If pj. . .�pi−1�zi-1 = 232+z(j<i), the CPU will iteratively discard the overflows. After multiple

A new BF for numerical vectors with HD

PLOS ONE | https://doi.org/10.1371/journal.pone.0209159 December 21, 2018 5 / 15

https://doi.org/10.1371/journal.pone.0209159


iterations,

Sd ¼ z1 � v1 þ . . .þ . . . pi� 2zi� 1 � vi� 2

þ zi� 1 � vi� 1 þ aivi þ . . . bjvj þ . . .þ v0d
; ð6Þ

where, for example, pi2P, zi−1 = 2x+1(x2N), z1 = p1�p2. . .�pl�zi−1 z2 = p2. . .�pl�zi−1. Therefore,

p1p2. . .zi−16¼p2. . .zi−16¼pi−2zi−16¼zi−16¼α1 6¼ βj. . .<232. Next, according to congruence theory

[37],

Sd%m ¼ ðz1 � v1 þ . . .þ pi� 2 � zi� 1 � vi� 2 þ zi� 1 � vi� 1 þ aivi þ . . . bjvj þ . . .þ vdÞ%m

¼ ðz1 � v1%m . . . pi� 2 � zi� 1 � vi� 2%mþ zi� 1 � vi� 1%mþ aivi%mþ . . . bjvj%mþ . . .þ vd%mÞ%m
:ð7Þ

Worst case: Since pi2P (without 2), pi is an odd number, and the multiplication of odd

numbers is still an odd number. Let ni be positive integers. Then,
Y

i¼1

pi ¼ 2n1 þ 1,
Y

i¼2

pi ¼

2n2 þ 1 and
Y

i¼i

pi ¼ 2ni þ 1. Therefore,

Sd ¼ ð2n1 þ 1Þv1 þ ð2n2 þ 1Þv2 þ . . .þ ð2ni þ 1Þvi þ . . .þ vd: ð8Þ

For Sd, if 2ni�232, the CPU will discard the overflow part. At worst, for all i, 2ni = ki232(ki2N),

then Sd = v1+v2+. . .+vi+. . .+vd.
The function Sd%m maps the Sd into the counter array, according to congruence theory

[37].

Sd%m ¼ ðv1 þ . . .þ vi þ . . .þ vdÞ%m

¼ ðv1%mþ . . .þ vi%mþ . . .þ vd%mÞ%m
: ð9Þ

From formulas (7) and (9), even in the worst case, every dimension vi contributes to Sd%m. In

fact, from formula (7), all of the coefficients are odd numbers and they are different. For a

well-selected m, different vi will have different contributions to the final result, and the change

of a vi will change Sd%m. Therefore, hp satisfies the avalanche effect of hash functions [38] and

can be regard as a uniform hash function.

Lemma 1. For a vector V, functions hpi and hpj are independently selected from the Pri-

me_HD_BKDRhash family. There exist hpi ðVÞ 6¼ hpj ðVÞ and hpi ðVÞ%m 6¼ hpj ðVÞ%m.

Explain. For any two hash functions hpi and hpj , h
p
i ðVÞ 6¼ hpj ðVÞ. For simplicity, let d = 3, V

(v1,v2,v3), hp1 and hP
2
. From formula (1),

Sh
p
1

3
¼ ðp1p2p3Þv1 þ ðp2p3Þv2 þ p3v3

Sh
p
2

3
¼ ðp4p5p6Þv1 þ ðp5p6Þv2 þ p6v3Þ

; ð10Þ

where p1<p2<p3<p4<p5<p6 and pi2P. Therefore, Sh
p
1

3
6¼ Sh

p
2

3
and hp1ðVÞ 6¼ hp2ðVÞ.

Let q1 and q2 be quotients and r1 and r2 be remainders. Sh
p
1

3
and Sh

p
2

3
mod m are

r1 ¼ Sh
p
1

3
%m ¼ ððp1p2p3Þv1 þ ðp2p3Þv2 þ p3v3Þ%m

r2 ¼ Sh
p
2

3
%m ¼ ððp4p5p6Þv1 þ ðp5p6Þv2 þ p6v3Þ%m

: ð11Þ

For a proper m and r16¼r2, hp1 and hp2 can scatter vectors into different positions. Without the

loss of generality, 3 dimensions expand to d dimensions and hp1 and hp2 spread to hpi and hpj . For

well selected prime numbers, the worst case of formula (9) can be avoided, since hpi ðVÞ 6¼

A new BF for numerical vectors with HD

PLOS ONE | https://doi.org/10.1371/journal.pone.0209159 December 21, 2018 6 / 15

https://doi.org/10.1371/journal.pone.0209159


hpj ðVÞ and ri6¼rj,

ri ¼ Sh
p
i

d
%m ¼ ððpi�dþ1pi�dþ2 . . . pi�dþdÞv1 þ ðpi�dþt . . . pdÞvt þ pdvdÞ%m

rj ¼ Sh
p
j

d
%m ¼ ððpj�dþ1pj�dþ2 . . . pj�dþdÞv1 þ ðpj�dþt . . . pdÞvt þ pdvdÞ%m

: ð12Þ

4.2 Algorithm

From the above discussion, the Prime_HD_BKDRhash functions can randomly and uniformly

map high-dimensional vectors to integers and Algorithms 1 combined with Fig 2 demonstrate

the working process.
Algorithm 1.
unsigned int Prime_HD_BKDRHash (int� V, int k, int d)
{
1. unsigned int prime_set = [3,5,7,11,13,17 . . .];
2. unsigned int S = 0, i = 0;
3. while (�V)
4. S = prime_set [k�d+i++] �S+ (�V++);
5. return S&0x0FFFFFFF;
}

The input parameters contain the vector V, dimensions d and the kth hash function. After d
loops, lines 3 and 4 of Algorithm 1 obtain hpk ¼ S

i
¼
Q
pi� 1 � Si� 1 þ vi ði ¼ 1 . . . dÞ. By per-

forming a bitwise AND on Si and 0x0FFFFFFF, the kth Prime_HD_BKDRHash transforms

the vector V into an integer that ranges from [0−(232−1)]. Since different hash functions adopt

different prime numbers, the return integers are different.

5. Performances

In section 4, we have demonstrated that the Prime_HD_ BKDRHash can randomly and uni-

formly scatter the high-dimensional vectors of a set to integers in the range of 0 to 232−1.

Therefore, the P-HDBF satisfies the theory of the BF, including all parameters and their

relationships.

5.1 False positive probability (FPP), m, n, k and false negative probability

(FNP)

FPP. Let there be k hash functions, a counter array of size m and a set containing n vectors

with d numerical dimensions. After the n vectors are mapped onto the P-HDBF, the false posi-

tive probability of the P-HDBF is [15].

fP� HDBF ¼ ð1 � ð1 � 1=mÞnkÞk � ð1 � e� nkmÞk: ð13Þ

Counters. For fixed k, n and FPP, the counters that the P-HDBF requires are

m ¼ �
kn

lnð1 � fP� HDBF1=kÞ
: ð14Þ

Maximum cardinality. For fixed m,k and FPP, the maximum number of the vectors the

P-HDBF can represent is

n0 ¼ �
lnð1 � eln

f0
k Þ �m

k
: ð15Þ

A new BF for numerical vectors with HD

PLOS ONE | https://doi.org/10.1371/journal.pone.0209159 December 21, 2018 7 / 15

https://doi.org/10.1371/journal.pone.0209159


Minimum number of hash functions. For fixed m, n and FPP, the minimum number of

hash functions is

kmin ¼ ln 2ð
m
n
Þ: ð16Þ

False negative probability (FNP). The FNP of the P-HDBF is

fnpP� HDBF ¼ 0: ð17Þ

5.2 Time complexity

For a hash hj and a query q, every numerical dimension qi will participate in the computation.

By computing the k hashes, the P-HDBF obtains k integers. Next, by mapping hj(q)%m, the

P-HDBF checks whether the corresponding k counters are greater than or equal to 0. If any

counter is 0, we know that the query is not in the set. If all counters are larger than 0, the query

is determined as a member of the set with a small FPP. For a set of n elements with d dimen-

sions, its initialization time complexity is

OðknÞ: ð18Þ

The time complexity of insertion/deletion/query of a vector is

OðkÞ: ð19Þ

6. Experiment

6.1. Dataset and setting

To verify the effectiveness of the P-HDBF on high-dimensional numeric vectors, this paper

adopts 3 picture datasets, including Colour [39], Sift [40] and Gist [40], used in most experi-

ments. On these datasets, we compare the performances of the P-HDBF with the CBF,

PBF-HT and PBF-BF. The CBF is the classical method in all variants and the PBF-HT and

PBF-BF support the query of multiple dimensions. The Colour includes 70,000(70K) vectors

with 32 dimensions, and the values are expanded to positive integers. The Sift and Gist contain

100,000 (100K) vectors with 128 and 960 dimensions, respectively, and values of dimensions

are all positive integers. All query vectors are different from the samples and are set to 10,000

(10K). The experiments were conducted on a computer with an Intel Xeon E5-2603 v3 and

16GB RAM.

6.2 Distribution and entropy

The key of the BF is that the data can be randomly and uniformly projected by hash functions.

To verify this performance, we first introduce information entropy of the array in the BF after

Prime_HD_BKDRHash mapping. Information entropy can describe the randomness of a sys-

tem, and a larger entropy indicates a greater dispersed state. Let v’ be the number of the ele-

ments allocated in a counter of the array, and n and m be the size of the set and the array,

respectively. Then, the proportion of the vectors allocated in the counter can be calculated by

p�v’/kn, and the entropy of all counters is defined as follows.

E ¼
X

m

� plog p �
X

m

� ðv0=knÞlogðv0=knÞ: ð20Þ

Let k = 6 and m = 25n. Figs 3 and 4 display the number of the vectors allocated in different

counters (denoted as distribution) and entropies of the P-HDBF and the CBF on the 3 datasets.

As Fig 3 shows, the distribution of the P-HDBF is similar to the CBF, which implies that the

A new BF for numerical vectors with HD

PLOS ONE | https://doi.org/10.1371/journal.pone.0209159 December 21, 2018 8 / 15

https://doi.org/10.1371/journal.pone.0209159


vectors are uniformly allocated in different counters. Fig 4 shows that the entropy of the

P-HDBF is slightly larger than that of the CBF under different samples and dimensions, espe-

cially in a high-dimensional space. From the view of the entropy, larger entropy means better

discretization and less collision. Figs 3 and 4 reflect that the Prime_HD_BKDRHash can scat-

ter vectors more randomly and uniformly, especially for the high-dimensional vectors of a big

data set (on Gist with d = 960). This implies that the FPP of the query after mapping by the

uniform Prime_HD_BKDRHash will be less than that of multiple string hashes. The uniform

Prime_HD_BKDRHash can project the numerical vectors as the inputs of the original formats

and substitute multiple different string hashes of the BF.

6.3 Relationships of the FPP, n, m, d and k

This section will show whether the P-HDBF is consistent with the theory of the Bloom filter,

and the indicators include the FPP, n, m, k and their relationships. The CBF, as a classical BF,

Fig 3. Number of vectors allocated in different counters of the CBF and the P-HDBF on colour (d = 32), Sift (d = 128) and Gist

(d = 960).

https://doi.org/10.1371/journal.pone.0209159.g003

Fig 4. Entropy of the CBF and P-HDBF under different samples and dimensions.

https://doi.org/10.1371/journal.pone.0209159.g004

A new BF for numerical vectors with HD

PLOS ONE | https://doi.org/10.1371/journal.pone.0209159 December 21, 2018 9 / 15

https://doi.org/10.1371/journal.pone.0209159.g003
https://doi.org/10.1371/journal.pone.0209159.g004
https://doi.org/10.1371/journal.pone.0209159


is applied for comparison with the P-HDBF, and the P-HDBF should show the same tenden-

cies as the CBF. By fixing one or two parameter(s) in turn, Figs 5, 6 and 7 show the FPPs’

changes with other parameters changing. For the fixed memory costs (m) and the number of

the hash functions (k), the increased collision rate causes the FPP growing. Let m = 50k and

k = 6. Fig 5 displays the increased tendencies of the FPPs as the cardinality of the set increases,

even to 100%.

Then, by fixing memory costs (0.21 MB, 0.28 MB, and 0.35 MB), Fig 6 demonstrates the

FPPs as k increases on the 3 datasets. For the fixed number of samples (n) and memory costs

(m), the number of the hash functions (k) determines the FPP. Firstly, the FPP will decrease as

k grows and reach to a minimum value, then the increasing collisions will result in a low FPP.

With k rising, both FPPs sharply decrease, reach a minimum value, and then increase slowly,

which is consistent with the theory of the BF.

Lastly, for k = 6, Fig 7 displays the similar changes in the FPPs of the CBF and the P-HDBF

as m increases from 5n to 25n. For fixed k and n, the FPP will be decided by memories allo-

cated to them, and a large m can effectively reduce the FPPs.

To further observe the performance of the P-HDBF in a high dimensional space, an extra

experiment is added. Let n = 70K(100K,100K), k = 6 and the memory be 0.35 MB. Fig 8 dem-

onstrates the changes of the FPPs with increasing dimensions. The FPPs of the P-HDBF are

lower than those of the CBF, especially in certain high dimensional cases.

For different m, n and k, the FPPs’ changes of the CBF and the P-HDBF are almost the

same. Even the performance of the P-HDBF is better than the CBF, which implies that the

P-HDBF can replace the CBF to process high-dimensional vectors. Meanwhile, the FPPs’

changes of the P-HDBF are consistent with the theory in section 5. Next, we will continue to

compare the performance of the P-HDBF with other methods.

6.4 Compared with other methods

Let FPP�[0.0001−0.0005], m = 25n and k = 6. This paper compares the memory usages of the

CBF, PBF-BF and PBF-HT with the P-HDBF on 3 datasets, as shown in Fig 9. For the fixed

FPP, the CBF and the P-HDBF have memory overheads. However, the memory costs of the

PBF-BF and the PBF-HT grow with increased sample sizes and dimensions.

Fig 5. FPPs of the CBF and P-HDBF with an increasing n.

https://doi.org/10.1371/journal.pone.0209159.g005

Fig 6. FPPs of the CBF and the P-HDBF under different k and memory costs.

https://doi.org/10.1371/journal.pone.0209159.g006

A new BF for numerical vectors with HD

PLOS ONE | https://doi.org/10.1371/journal.pone.0209159 December 21, 2018 10 / 15

https://doi.org/10.1371/journal.pone.0209159.g005
https://doi.org/10.1371/journal.pone.0209159.g006
https://doi.org/10.1371/journal.pone.0209159


Figs 10 and 11 exhibit the average initiation and query time of different schemes under 10K

query vectors. Since these schemes need to split all vectors and project them into the storing

arrays, the initiation and query times will continue to increase with larger samples and more

dimensions. Compared with the PBF-BF and PBF-HT, the CBF and the P-HDBF only require

dividing the dimensions and computing the hash values. Therefore, their initiation and query

times increase slowly with more dimensions. The initiation time and query delays of the CBF

and P-HDBF are far smaller than those of the PBF-BF and PBF-HT.

Fig 7. FPPs of the CBF and P-HDBF with the memory increase.

https://doi.org/10.1371/journal.pone.0209159.g007

Fig 8. FPPs of the CBF and P-HDBF under different dimensions.

https://doi.org/10.1371/journal.pone.0209159.g008

Fig 9. Memory costs under different samples and dimensions.

https://doi.org/10.1371/journal.pone.0209159.g009

A new BF for numerical vectors with HD

PLOS ONE | https://doi.org/10.1371/journal.pone.0209159 December 21, 2018 11 / 15

https://doi.org/10.1371/journal.pone.0209159.g007
https://doi.org/10.1371/journal.pone.0209159.g008
https://doi.org/10.1371/journal.pone.0209159.g009
https://doi.org/10.1371/journal.pone.0209159


Therefore, for a given FPP and a dataset with high-dimensional vectors, the P-HDBF will

be a better choice than the PBF-based schemes by avoiding a long member query delay and

huge memory costs.

7. Conclusions

Regardless of the formats of the inputs, the traditional Bloom filters adopt multiple string

hashes to implement memberships queries of a big data set. To map the inputs with numerical

high dimensions in their original type(s), this paper proposes a uniform Prime_HD_BKDR-

Hash function and establishes a P-HDBF structure, a new Bloom filter, to store and query

members of a big data set with numerical dimensions. The unified Prime_HD_BKDRHash

can randomly and uniformly project the inputs (other than multiple string hashes) into

Fig 10. Average initiation time of the PBF-HT, PBF-BF, CBF and P-HDBF with FPP�[0.0001−0.0005] and k = 6.

https://doi.org/10.1371/journal.pone.0209159.g010

Fig 11. Average query delays of the PBF-HT, PBF-BF,CBF and P-HDBF with FPP�[0.0001−0.0005] and k = 6.

https://doi.org/10.1371/journal.pone.0209159.g011

A new BF for numerical vectors with HD

PLOS ONE | https://doi.org/10.1371/journal.pone.0209159 December 21, 2018 12 / 15

https://doi.org/10.1371/journal.pone.0209159.g010
https://doi.org/10.1371/journal.pone.0209159.g011
https://doi.org/10.1371/journal.pone.0209159


different integers. The performances and parameters of the P-HDBF have been theoretically

discussed. The experiments show that the P-HDBF, as a substitute for the counting Bloom fil-

ter in high-dimensional numerical spaces, can obtain excellent data discretization and a good

performance. Compared with the methods based on the parallel Bloom filters, the P-HDBF

will not increase memory use or query delays as dimensions increase and can be used in appli-

cations with limited CPU and memory resources. The P_HDBF can be applied in some appli-

cations, such as identify the nuances of pictures.

Acknowledgments

The authors would like to thank Matthijs Douze and Cordelia Schmid for their data sources,

data and interpretation of data (http://corpus-texmex.irisa.fr/).

Disclaimer: The authors alone are responsible for the views expressed in this article and

they do not necessarily represent the views, decisions or policies of the institutions with which

they are affiliated.

Author Contributions

Conceptualization: Chunyan Shuai.

Data curation: Xin Ouyang.

Funding acquisition: Chunyan Shuai, Xin Ouyang.

Methodology: Chunyan Shuai, Jiayou Lei.

Software: Xin Ouyang.

Supervision: Chunyan Shuai.

Visualization: Zeweiyi Gong.

Writing – original draft: Zeweiyi Gong.

Writing – review & editing: Chunyan Shuai.

References
1. Bloom BH. Space/Time Trade-Offs in Hash Coding with Allowable Errors. Communications of the ACM.

1970; 13: 422–426.

2. Geravand S, Ahmadi M. Bloom Filter applications in network security: A state-of-the-art survey. Com-

puter Networks. 2013; 57: 4047–4064.

3. Mun JH, Lim H. New approach for efficient IP address lookup using a Bloom filter in trie-based algo-

rithms. IEEE Transactions on Computers. 2016; 65: 1558–1565.

4. Antikainen M, Aura T, Särelä M. Denial-of-service attacks in Bloom-filter-based forwarding. IEEE/ACM

Transactions on Networking (TON). 2014; 22: 1463–1476.

5. Saravanan K, Senthilkumar A. Security enhancement in distributed networks using link-based mapping

scheme for network intrusion detection with enhanced Bloom filter. Wireless Personal Communications.

2015; 84: 821–839.

6. Tarkoma S, Rothenberg CE, Lagerspetz E. Theory and practice of Bloom Filters for distributed sys-

tems. IEEE Communications Surveys & Tutorials. 2012; 14: 131–155.

7. Jiang P, Ji Y, Wang X, Zhu J, Cheng Y. Design of a multiple Bloom filter for distributed navigation rout-

ing. IEEE Transactions On Systems, Man, And Cybernetics: Systems. 2014; 44: 254–260.

8. Oigawa Y, Sato F. An Improvement in Zone Routing Protocol Using Bloom Filter. 19th International

Conference on Network-Based Information Systems (NBiS); 2016 Sept 07–09; Ostrava, Czech

Republic.

9. Ko H, Lee G, Pack S, Kweon K. Timer-based Bloom Filter aggregation for reducing signaling overhead

in distributed mobility management. IEEE Transactions on Mobile Computing. 2016; 15: 516–529.

A new BF for numerical vectors with HD

PLOS ONE | https://doi.org/10.1371/journal.pone.0209159 December 21, 2018 13 / 15

http://corpus-texmex.irisa.fr/
https://doi.org/10.1371/journal.pone.0209159


10. Zengin S, Schmidt EG. A Fast and Accurate Hardware String Matching Module with Bloom Filters.

IEEE Transactions on Parallel and Distributed Systems. 2016; 28: 305–317.

11. Liu J, Chen S, Wang G, Wu T. Page replacement algorithm based on counting Bloom filter for NAND

flash memory. IEEE Transactions on Consumer Electronics. 2014; 60: 636–643.

12. Fan L, Cao P, Almeida J, Broder AZ. Summary cache: a scalable wide-area web cache sharing proto-

col. IEEE/ACM Trans. Networking. 2000; 8: 281–293.

13. Pontarelli S, Reviriego P, Maestro JA. Improving counting Bloom filter performance with fingerprints.

Information Processing Letters. 2016; 116: 304–309.

14. Lim H, Lee J, Byun H, Yim C. Ternary Bloom Filter Replacing Counting Bloom Filter. IEEE Communica-

tions Letters. 2017; 21: 278–281.

15. Mitzenmacher M. Compressed Bloom Filters. IEEE/ACM Transactions on Networking. 2002; 10: 604–

612.

16. Cohen S, Matias Y. Spectral Bloom Filters. Proceedings of the 2003 ACM SIGMOD international con-

ference on Management of data; 2003 June 09–12; San Diego, California, US.

17. Guo D, Wu J, Chen H, Yuan Y, Luo X. The dynamic Bloom Filters. IEEE Transactions on Knowledge

and Data Engineering. 2010; 22: 120–133.

18. Fan B, Andersen DG, Kaminsky M, Mitzenmacher MD. Cuckoo filter: Practically better than bloom. Pro-

ceedings of the 10th ACM International on Conference on emerging Networking Experiments and Tech-

nologies; 2014 December 02–05; Sydney, Australia.

19. Xiao MZ, Dai YF, Li XM. Split Bloom Filters. Acta Electronica Sinica. 2004; 32: 241–245.

20. Xiao B, Hua Y. Using parallel Bloom Filters for multiattribute representation on network services. IEEE

Transactions on parallel and distributed systems. 2010; 21: 20–32.

21. Partow A. General Purpose Hash Function Algorithms. 2013. Available from: http://www.partow.ne-t/

programming/hashfunctions/DEKHashFunction

22. Kirsch A, Mitzenmacher M. Distance-Sensitive Bloom Filters. In: The Eighth Workshop on Algorithm

Engineering and Experiments (ALENEX06). Society for Industrial and Applied Mathematics; 2006. pp.

41–51.

23. Hua Y, Xiao B, Veeravalli B, Feng D. Locality-sensitive Bloom Filter for Approximate Membership

Query. IEEE Transactions on Computers. 2012; 61: 817–830.

24. Qian J, Zhu Q, Chen H. Multi-Granularity Locality-Sensitive Bloom Filter. IEEE Transactions on Com-

puters. 2015; 64: 3500–3514.

25. Qian J, Zhu Q, Chen H. Integer-Granularity Locality-Sensitive Bloom Filter. IEEE Communications Let-

ters. 2016; 20: 2125–2128.

26. Datar M, Immorlica N, Indyk P, Mirrokni VS. Locality-Sensitive Hashing Scheme Based on P-Stable

Distributions. In: Proceedings of the twentieth annual symposium on Computational geometry. New

York: ACM; 2004. pp. 253–262.

27. Kernighan BW, Ritchie D. C Programming Language. 2nd ed. London: Prentice-Hall; 1988.

28. Rottenstreich O, Keslassy I. The Bloom paradox: When not to use a Bloom Filter. IEEE/ACM Transac-

tions on Networking (TON). 2015; 23: 703–716.

29. Bose P, Guo H, Kranakis E, Maheshwari A, Morin P, Morrison J, et al. On the false-positive rate of

Bloom filters. Information Processing Letters. 2008; 108: 210–213.

30. Christensen K, Roginsky A, Jimeno M. A new analysis of the false positive rate of a Bloom filter. Infor-

mation Processing Letters 2010; 110: 944–949.

31. Rottenstreich O, Kanizo Y, Keslassy I. The variable-increment counting Bloom filter. IEEE/ACM Trans-

actions on Networking (TON). 2014; 22: 1092–1105.

32. Qiao Y, Li T, Chen S. Fast Bloom Filters and their generalization. IEEE Transactions on Parallel and

Distributed Systems. 2014; 25: 93–103.

33. Reviriego P, Christensen K, Maestro JA. A Comment on “Fast Bloom Filters and Their Generalization”.

IEEE Transactions on Parallel and Distributed Systems. 2016; 27: 303–304.

34. Crainiceanu A, Lemire D. Bloofi: Multidimensional Bloom Filters. Information Systems. 2015; 54: 311–

324.

35. Fu Y, Biersack E. False-Positive Probability and Compression Optimization for Tree-Structured Bloom

Filters. ACM Transactions on Modeling and Performance Evaluation of Computing Systems (TOM-

PECS). 2016; 1: 19.

36. Heyde CC. Central Limit Theorem. In: Convergence of Stochastic Processes. New York: Springer;

1984. pp. 3244–3248.

A new BF for numerical vectors with HD

PLOS ONE | https://doi.org/10.1371/journal.pone.0209159 December 21, 2018 14 / 15

http://www.partow.ne-t/programming/hashfunctions/DEKHashFunction
http://www.partow.ne-t/programming/hashfunctions/DEKHashFunction
https://doi.org/10.1371/journal.pone.0209159


37. Katz VJ. Chapter 3: Chinese Mathematics. In: The Mathematics of Egypt, Mesopotamia, China, India

and Islam: A Sourcebook. Princeton University Pres; 2007. pp. 187–384.

38. Feistel H. Cryptography and Computer Privacy. Scientific American. 1973; 228:15–23.

39. Fagin R, Kumar R, Sivakumar D. Efficient similarity search and classification via rank aggregation. Pro-

ceedings of the 2003 ACM SIGMOD international conference on Management of data; 2003 June 09–

12; San Diego, California, US.

40. Amsaleg L. Datasets for approximate nearest neighbor search. 2017. Available from: http://corpus-

texmex.irisa.fr/

A new BF for numerical vectors with HD

PLOS ONE | https://doi.org/10.1371/journal.pone.0209159 December 21, 2018 15 / 15

http://corpus-texmex.irisa.fr/
http://corpus-texmex.irisa.fr/
https://doi.org/10.1371/journal.pone.0209159

