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OBJECTIVE—To determine the effect of the apolipoprotein A-I
(ApoA-I) mimetic peptide, D-4F, on atherosclerosis development
in a pre-existing diabetic condition.

RESEARCH DESIGN AND METHODS—We induced hyper-
glycemia in 6-week-old apoE�/� female mice using streptozoto-
cin. Half of the diabetic apoE�/� mice received D-4F in drinking
water. Ten weeks later, plasma lipids, glucose, insulin levels,
atherosclerotic lesions, and lesion macrophage content were
measured.

RESULTS—Diabetic apoE�/� mice developed �300% more
lesion area, marked dyslipidemia, increased glucose levels, and
reduced plasma insulin levels when compared with nondiabetic
apoE�/� mice. Atherosclerotic lesions were significantly reduced
in the D-4F–treated diabetic apoE�/� mice in whole aorta (1.11 �
0.73 vs. 0.58 � 0.44, percentage of whole aorta, P � 0.01) and in
aortic roots (36,038 � 18,467 �m2/section vs. 17,998 � 12,491
�m2/section, P � 0.01) when compared with diabetic apoE�/�

mice that did not receive D-4F. Macrophage content in athero-
sclerotic lesions from D-4F–treated diabetic apoE�/� mice was
significantly reduced when compared with nontreated animals
(78.03 � 26.1 vs. 29.6 � 15.2 P � 0.001, percentage of whole
plaque). There were no differences in glucose, insulin, total
cholesterol, HDL cholesterol, and triglyceride levels between the
two groups. Arachidonic acid, PGE2, PGD2, 15-HETE, 12-HETE,
and 13-HODE concentrations were significantly increased in the
liver tissue of diabetic apoE�/� mice compared with nondiabetic
apoE�/� mice and significantly reduced by D-4F treatment.

CONCLUSIONS—Our results suggest that oral D-4F can pre-
vent atherosclerosis development in pre-existing diabetic mice
and this is associated with a reduction in hepatic arachidonic
acid and oxidized fatty acid levels. Diabetes 59:3223–3228,

2010

T
ype 1 diabetes is associated with two- to fourfold
higher risk of coronary artery disease (CAD)
and macrovascular disease (1,2). The excess
cardiovascular risk in this population is not

entirely explained by traditional risk factors, including
hyperglycemia.

Oxidative modification of LDL and the subsequent for-
mation of foam cells are thought to be an initial step in
atherogenesis (3). Multiple animal and in vitro studies
have supported a role for oxidative processes in all phases
of CAD, from foam cell formation to plaque rupture and
thrombosis (4–6). Initiation of lipid peroxidation and
formation of an array of bioactive fatty acid oxidation
products are widely held as critical steps in the athero-
sclerotic process. It has been suggested that the inflam-
matory properties of lipoproteins may also be important
for the development of the atherosclerotic process in
diabetes (7). However, the mechanism by which diabetic
dyslipidemia contributes to the development of CAD in
type 1 diabetes is not clear.

HDL and apolipoprotein A-I (apoA-I), its major protein,
have been efficacious in the treatment of atherosclerosis
(8). ApoA-I mimetic peptides 4F (L-4F and D-4F), that form
a class A amphipathic helix similar to those found in
apoA-I, were found to be efficacious in murine models of
atherosclerosis (9) by a mechanism that is independent of
plasma cholesterol levels and in part related to its ability
to remove oxidized lipids from lipoproteins (9). Moreover,
recent studies have shown that apoA-I mimetic peptides
increase antioxidants, confer robust vascular protection
and improve insulin sensitivity in rodent models of diabe-
tes and obesity (10–12).

In this study, we examined whether oral administration
of D-4F can inhibit atherosclerosis development in a
pre-existing diabetic condition. Our results show that D-4F
is able to decrease atherosclerotic lesion development in
diabetic mice, and this is associated with a reduction of
hepatic arachidonic acid and hepatic oxidized fatty acids
levels.

RESEARCH DESIGN AND METHODS

The Animal Research Committee at University of California Los Angeles
approved all the protocols used in these studies. Five-week-old female
apoE�/� mice were obtained from Jackson Laboratories (Bar Harbor, ME)
and were housed in the Division of Laboratory Animal Medicine at the
University of California Los Angeles. The mice were fed normal mouse chow
diet and given free access to both food and water throughout the study, except
when fasting blood specimens were obtained. After 1 week of acclimatization
(at the age of 6 weeks), 40 mice were administrated intraperitoneal injections
of streptozotocin ([STZ], Sigma-Aldrich) at a dosage of 65 mg/kg daily for 5
consecutive days. Control animals (n � 20) received vehicle (citrate buffer, pH
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4.5) alone. Nine days after the last STZ injection, fasting (6 h) blood glucose
levels were measured using a glucose machine (HemoCue 201 AB, Anghel-
hom, Sweden), and diabetes was verified on the basis of glucose level �250
mg/dl. By random selection, half of the diabetic mice (n � 17) were chosen to
receive the apoA-I mimetic peptide, D-4F, in drinking water at a concentration
of 0.2 mg/ml for 8 weeks; the remaining mice received regular drinking water.
The mice consumed �5 ml of water daily (from 3 to 5 ml daily). After 8 weeks
of treatment, all of the mice (control, diabetic, and diabetic/D-4F–treated)
were fasted for 6 h, after which blood and organs were collected.
Metabolic parameters. Plasma lipids were determined by enzymatic color-
imetric assays as described previously (13). Plasma glucose and insulin levels
were determined as previously described (14).
Atherosclerosis quantification. En face lesions analysis in the entire aorta
were performed according to procedures described by Tangirala et al. (15).
Briefly, after perfusion-fixation, the aorta was dissected out, opened longitu-
dinally from heart to the iliac arteries, pinned on a black wax pan, and stained
with Sudan IV solution. The image of the aorta was captured using a SONY
DXC-970MD color video camera, and the image analysis was performed using
the Image-Pro plus program (Media Cybernetics, Silver Spring, MD) in a
blinded fashion. The area covered by atherosclerotic lesions divided by the
area of the entire aorta was calculated for each group, expressed as a
percentage, and compared.

Atherosclerotic lesion area in the aortic root was determined as described
previously (16). Briefly, the heart and proximal aorta were removed and
embedded in optimum cutting temperature compound. Serial 10 �m-thick
cryosections from the middle portion of the ventricle to the aortic arch were
collected, mounted on precoated slides, and stained with Oil Red O and
hematoxylin. The lipid-containing area on each section, centered around the
aortic valves, was determined in a blinded fashion, using an ocular piece with
a 20 � 20 �m2 grid on a light microscope. The average lesion area per aorta,
calculated from 5 to 10 sections of each aorta, was determined.
Macrophage content. Fresh-frozen aortic root sections were stained for
CD-68. Briefly, after fixation in ice-cold acetone, sections were blocked in 4%
BSA plus 10% goat serum for 3 h at room temperature. Rat anti-mouse CD-68
antibodies (1:100; Serotec) were used with an overnight incubation at 4°C.
Goat anti-rat and goat anti-rabbit alkaline phosphatase secondary antibodies
(Jackson Immuno Research) were used at 1:200 for 1-h incubation at room
temperature. Immunostaining was visualized using Vector Red substrate plus
levamisole to inhibit endogenous alkaline phosphatase activity (Vector Labo-
ratories). Immunostaining was quantified in a blinded fashion using an ocular
piece with a 20 � 20 �m2 grid on a light microscope, and the area stained was
divided by the area of the entire plaque and the ratios obtained were
compared between groups.
Hepatic free fatty acid levels

Chemicals. Arachidonic acid (AA); 9-oxo-11a,15S-dihydroxy-prosta-5Z,13E-
dien-1-oic acid (prostaglandin E2; PGE2), 9a,15S-dihydroxy-11-oxo-prosta-
5Z,13E-dien-1-oic acid (prostaglandin D2; PGD2), (�)12-hydroxy-5Z,8Z,
10E,14Z-eicosatetraenoic acid (12-HETE), (�)15-hydroxy-5Z,8Z,11Z,13E-
eicosatetraenoic acid (15-HETE), (�)13-hydroxy-9Z,11E-octadecadienoic acid
(13-HODE), (�)9-hydroxy-10E,12E-octadecadienoic acid (9-HODE), 9	,15S-
dihydroxy-11-oxo-prosta-5Z,13E-dien-1-oic-3,3,4,4-day4 acid (prostaglandin
D2-d4;PGD2-d4), 12[S]-hydroxy-5Z,8Z,10E,14Z-eicosatetraenoic-5,6,8,9,11,12,
14,15-day8 acid (12(S)-HETE-d8), 15(S)-hydroxy-5Z,8Z,11Z,13E-eicosatetraenoic-
5,6,8,9,11,12,14,15-day8 acid (15(S)-HETE-d8), 13(S)-hydroxy-9Z,11E-octadecadie-
noic-9,10,12,13-day4 acid (13[S]-HODE-d4) were purchased from Cayman
Chemicals (Ann Arbor, MI).
Sample preparation. We performed lipid extraction as described previously
with slight modification (17). Briefly, a piece of liver, previously dissected and
weighed on dry ice, after the addition of methanol (0.02% BHT), internal
standard (15[S]-HETE-d8), 12[S]-HETE-d8, 13[S]-HODE-d4, PGD2-d4), formic
acid and water, was homogenized, vortexed, and incubated for 1 h on ice. The
homogenate was centrifuged and the supernatant was loaded onto an Oasis
HLB (60 mg, 30 �m) solid-phase extraction cartridge (Waters) and equili-
brated with 2-ml methanol and 2-ml water, and then washed with 2-ml 0.5%
methanol, and eluted with 3-ml 0.5% methanol. The solvent was evaporated
under argon and reconstituted with 50 �l of methanol, vortexed, and trans-
ferred to an auto sampler vial for liquid chromatography-tandem mass
spectrometry (LC/MS/MS) analysis.
LC/MS/MS analysis. LC/MS/MS analysis was performed as previously de-
scribed (18). The transitions monitored were mass-to-charge ratio (m/z):
303.13259.2 for AA; 351.13271.2 for PGD2; 351.1 3271.2 for PGE2;
319.13179.0 for 12-HETE; 319.13219.0 for 15-HETE; 295.03194.8 for 13-
HODE; 295.03171.0 for 9-HODE; 327.13226.1 for 15(S)-HETE-d8;
327.13184.0 for 12(S)-HETE-d8; 299.0 3197.9 for 13(S)-HODE-d4,
355.03237.0 for PGD2-d4.

Statistical analysis. All data were expressed as mean � SD. Differences
between groups were determined by ANOVA or Wilcoxon/Kruskal-Wallis for
nonparametric analysis.

RESULTS

Metabolic parameters were not affected by D-4F
treatment. Diabetic apoE�/� mice were found to have a
significant reduction in body weight and decreased serum
insulin levels and HDL cholesterol levels. The diabetic
apoE�/� mice developed significant elevations in plasma
total cholesterol, LDL cholesterol, and serum glucose
levels compared with nondiabetic apoE�/� mice. Treat-
ment with D-4F in drinking water at 0.2 mg/ml for 8 weeks
had no effect on body weight, serum glucose, insulin
levels, and lipoprotein cholesterol levels compared with
untreated diabetic apoE�/� mice (Table 1).
D-4F treatment reduced atherosclerotic lesions in
diabetic apoE�/� mice. Total atherosclerotic lesion area
was quantified in control apoE�/� mice (n � 20), un-
treated diabetic apoE�/� mice (n � 17), and D-4F–treated
diabetic apoE�/� mice (n � 17). Diabetic apoE�/� mice
were found to have a 300% increase in whole aortic
atherosclerotic lesion area compared with nondiabetic
apoE�/� mice. Atherosclerotic lesion area was signifi-
cantly reduced in D-4F–treated diabetic apoE�/� mice
(0.58 � 0.44 vs. 1.11 � 0.73, percentage of the whole aorta,
P � 0.01) (Fig. 1A and B), when compared with untreated
diabetic apoE�/� mice. The average lesion area as mea-
sured by Oil-Red-O staining of the aortic sinus sections
was significantly reduced in D-4F–treated diabetic
apoE�/� mice when compared with untreated diabetic
apoE�/� mice (36,038 � 18,467 vs. 17,998 � 12,491 �m2/
section, P � 0.01, n � 15 per group) (Fig. 1C and D).
D-4F treatment causes a reduction in the macrophage
content of atherosclerotic lesions in diabetic
apoE�/� mice. Quantification for macrophages in the
aortic sections using CD-68 immunohistochemistry dem-
onstrated a dramatic reduction in macrophage content in
D-4F–treated diabetic apoE�/� mice when compared with
untreated diabetic apoE�/� mice (78.03 � 26.1 vs. 29.6 �
15.2, expressed as a percentage of the whole plaque, P �
0.001) (Fig. 2A and B).
D-4F treatment results in the reduction of arachi-
donic acid and oxidized fatty acid content in the
livers of diabetic apoE�/� mice. Binding and removal of
bioactive lipids, including oxidized fatty acids, has been
identified as one of the mechanisms by which apoA-I
mimetic peptides prevent the development of atheroscle-
rosis (19,20). Therefore, we determined 1) whether the

TABLE 1
Characteristics of control apoE�/� mice, diabetic apoE�/� mice,
and diabetic apoE�/� mice treated with D-4F

Controls Diabetic
Diabetic 


D-4F

Total cholesterol (mg/dl) 493 � 124 993 � 521* 1,082 � 417
LDL cholesterol (mg/dl) 467 � 120 954 � 526* 1,027 � 410
HDL cholesterol (mg/dl) 18 � 4 14 � 4* 14 � 3
Triglyceride (mg/dl) 41 � 17 59 � 65 62 � 35
Glucose (mg/dl) 181 � 32 366 � 123* 420 � 89
Insulin (pg/ml) 281 � 113 132 � 68* 181 � 114
Weight (g) 20.1 � 1.4 16.9 � 3.7* 16.2 � 2.6

Values are expressed as average �SD. Mice were treated with 8
weeks of D-4F treatment in drinking water; 0.2 mg/ml as described in
methods. *P � 0.01 diabetic vs. control.
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levels of these lipids were elevated in the livers of diabetic
apoE�/� mice compared with the livers of control
apoE�/� mice, and 2) whether D-4F treatment altered
these levels. Liver tissue extracts from control apoE�/�,
diabetic apoE�/�, and D-4F–treated diabetic apoE�/� mice
(n � 5 per group) were analyzed by LC/MS/MS as de-
scribed in METHODS (20). Arachidonic acid, prostaglandin E2
(PGE2), PGD2, 15-hydroxyeicosatetraenoic acid (15-
HETE), 12-HETE, and 13-hydroxyoctadecadienoic acid
(13-HODE) were significantly increased in the livers of
diabetic apoE�/� mice compared with control apoE�/�

mice. The D-4F–treated diabetic apoE�/� mice showed a
significant decrease in hepatic tissue levels of these lipids
compared with diabetic apoE�/� mice that did not receive
D-4F (Fig. 3). The levels of these lipids in the diabetic

apoE�/� mice that were not treated with D-4F compared
with those that were treated with D-4F were significantly
greater for arachidonic acid (26,97.5 � 1,489.3 vs.
1,151.0 � 452.25 ng/100 mg of liver, P � 0.05), PGD2 (470 �
330 vs. 130 � 110 pg/100 mg of liver, P � 0.05), 15-HETE
(825 � 398 vs. 660 � 95 pg/100 mg of liver, P � 0.06),
12-HETE (1,550 � 805 vs. 805 � 340 pg/100 mg of liver, P �
0.05) and 13-HODE (7.75 � 3.81 vs. 5.5 � 1.1 ng/100 mg of
liver, P � 0.05).

DISCUSSION

The major finding of the present study is that the apoA-I
mimetic peptide D-4F prevented the acceleration of ath-
erosclerosis in STZ-induced diabetic apoE�/� mice. We
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FIG. 1. Decreased atherosclerotic lesion formation and lipid content in the diabetic D4F- treated mice. A: Representative images of the whole
aorta by en face method in control (apoE�/� mice that were not diabetic), in diabetic apoE�/� mice (diabetic), and in diabetic apoE�/� mice
treated with D-4F (diabetic/D-4F). B: Quantitative analysis of en face lesions in female apoE�/� mice on a chow diet; n � 20 for control; n � 17
for diabetic mice; and n � 17 for diabetic mice treated with D-4F (diabetic/D-4F). C: Representative sections of mouse aortic roots, stained with
Oil red O. D: Quantitative analysis of lesion area in female diabetic apoE�/� mice (diabetic) and in diabetic apoE�/� mice treated with D-4F
(diabetic/D-4F); n � 15 for both groups; *P < 0.01 diabetic versus control; ¶P < 0.01 diabetic versus diabetic/D-4F. (A high-quality digital
representation of this figure is available in the online issue.)
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recognize that diabetic apoE�/� mice may not perfectly
mimic human type 1 diabetes; however, this is a well
accepted animal model for studying hyperglycemia-in-
duced atherosclerosis. Induction of diabetes by STZ in
apoE�/� mice has been previously used to establish a role
for both the advanced glycation end products (21) and the
renin-angiotensin system (22) in the attenuation of athero-
sclerosis under conditions of hyperglycemia. Renard et al.
(23) used a virally induced pancreatic destruction method
to induce diabetes and concluded that diabetic conditions
accelerate atherosclerosis similar to the STZ method.

The finding that D-4F drastically reduced atherosclero-
sis development with no improvement in serum levels of
glucose, insulin, or lipoprotein cholesterol levels (Table 1
and Fig. 1) confirms that the effect of the peptide on
atherosclerotic lesions is not related to plasma cholesterol
levels or alteration in severity of diabetes. D-4F mediated
prevention of atherosclerosis development in diabetic
apoE�/� mice was associated with a reduction in lipid and
macrophage content of the atherosclerotic lesions (Fig. 2),
indicating that D-4F treatment significantly altered the
structure and composition of the plaque without altering
plasma glucose or cholesterol levels.

The antiatherogenic effect of D-4F in the absence of any

changes in hyperglycemia or plasma lipoprotein or lipid
levels suggests that lipoprotein oxidation may have a role
in the accelerated atherosclerotic process in apoE�/�

diabetic mice. Atherosclerosis is the result of complex
interactions between oxidized-lipoproteins, monocytes/
macrophages, injured endothelium, and smooth muscle
cells. Biologic oxidation products of arachidonic and
linoleic acid, including prostaglandins, HETEs, and
HODEs, play a role in LDL oxidation, one of the first steps
in atherosclerosis (3). LDL oxidation is a complex process
influenced by a multitude of oxidation pathways (24)
including the lipoxygenase pathway which can generate
potent lipid oxidants that include hydroperoxyoctadecadi-
enoic acid (HPODE) and hydroperoxyeicosatetraenoic
acid (HPETE) (3,25). A number of previous studies have
shown that products from the arachidonic acid and lino-
leic acid pathways are contained in oxLDL. Sevanian and
colleagues noted that a subpopulation of freshly isolated
LDL that they described as LDL(�) contains lipid hy-
droperoxides (26). Parthasarathy (27), Witzum and Stein-
berg (28), Thomas and Jackson (29), Frei and colleagues
(30), and Thomas, Kalyanaraman, and Girotti (31) studied
metal ion-dependent LDL oxidation in vitro and hypothe-
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sized that LDL must be “seeded” with reactive oxygen
species before it can be oxidized. Thomas and Jackson
(29) and Parthasarathy (27) suggested a role for lipoxyge-
nases in the seeding of LDL. We previously showed that
the seeding molecules present in freshly isolated LDL are
derived in part from the cellular metabolism of linoleic
acid (HPODE) and arachidonic acid (HPETE) (3). The
products resulting from the action of fatty acid hydroper-
oxides on LDL account for the ability of LDL to induce
endothelial cells to bind monocytes and secrete the potent
monocyte chemoattractant monocyte chemotactic pro-
tein-1 (MCP-1), which is one of the first steps in the
development of atherosclerosis. It has been reported that
in vitro apoA-I and apoA-I mimetic peptides bound non-
oxidized fatty acids such as arachidonic acid and linoleic
acid similarly, but the 4F peptides bound oxidized fatty
acids derived from arachidonic acid or linoleic acid with a
remarkable higher affinity than apoA-I (19). More recently,
we reported that plasma oxidized fatty acids levels were
significantly reduced within a few hours of L-4F adminis-
tration in mice (18).

Lipid oxidation products are continuously produced in
the tissues and enter the circulation. Because of the
amount of plasma required for determining specific plasma-
oxidized fatty acid levels, we did not make such measure-
ments in these studies. Instead we determined the hepatic
levels of arachidonic acid and oxidized fatty acids. Our
results show that the reduction in atherosclerosis with
D-4F treatment was associated with a significant reduction
of arachidonic acid and oxidized fatty acids in liver.

Liver is the organ with the highest accumulation of
oxidized lipids. Previous studies have shown that there is
a selective hepatic uptake of oxidized LDL (ox-LDL) and
oxidized cholesterol esters (32,33) mediated by the selec-
tive binding by scavenger receptors on liver endothelial
and Kupfer cells for modified LDL (34). More recently it
was shown that there is a selective uptake by hepatocytes
of oxidized lipids from ox-LDL-loaded macrophages (35).
Shaish et al. (36) reported the organ distribution of 125I-
LDL, 125I-HDL, and 125I-oxLDL in apoE�/� mice and dem-
onstrated that the highest accumulation of ox-LDL 24 h
after administration was in liver (sixfold more than unoxi-
dized or normal LDL).

Our finding of an increase in arachidonic acid and
oxidized fatty acid levels in the livers of diabetic mice is
particularly interesting in light of the hypothesis that
hyperglycemia may directly contribute to the generation of
oxidative stress (37). Enhanced lipid peroxidation in dia-
betes has been demonstrated in STZ-induced diabetic rats
that showed a marked increase in plasma levels and
urinary excretion rates of F2-isoprostanes (a free radical
oxidation product derived from the oxidation of arachi-
donic acid) (38). Enhanced lipid peroxidation has been
shown to be one of the early events in the development of
type 1 diabetes (39). Arachidonic acid peroxidation prod-
ucts have been proposed as a noninvasive index in type 1
diabetes that may be useful for monitoring pharmacologic
interventions aimed at interfering with disease develop-
ment and progression (40).

The studies detailed here used only female apoE�/�

mice. We chose to use female apoE�/� mice because on a
chow diet they develop larger atherosclerotic lesions
associated with lower cholesterol and triglyceride levels
when compared with male apoE�/� mice (41). Addition-

ally, we previously reported that the effect of D-4F was not
different in female and male apoE�/� mice (42).

In conclusion, our results suggest that the apoA-I mi-
metic peptide, D-4F, was effective in preventing the devel-
opment of accelerated atherosclerosis in mice with pre-
existing diabetes. The beneficial effects of D-4F were
associated with a significant reduction in hepatic arachi-
donic acid and oxidized fatty acid levels, which supports
the current literature suggesting that diabetes is charac-
terized by glucose-mediated oxidative stress. The rele-
vance of these findings to humans with diabetes remains
to be determined.
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