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ABSTRACT: Interactions between particles moving on a linear
track and their possible blocking by obstacles can lead to crowding,
impeding the particles’ transport kinetics. When the particles are
enzymes processively catalyzing a reaction along a linear polymeric
substrate, these crowding and blocking effects may substantially
reduce the overall catalytic rate. Cellulose hydrolysis by
exocellulases processively moving along cellulose chains assembled
into insoluble cellulose particles is an example of such a catalytic
transport process. The details of the kinetics of cellulose hydrolysis
and the causes of the often observed reduction of hydrolysis rate
over time are not yet fully understood. Crowding and blocking of
enzyme particles are thought to be one of the important factors
affecting the cellulose hydrolysis, but its exact role and mechanism are not clear. Here, we introduce a simple model based on an
elementary transport process that incorporates the crowding and blocking effects in a straightforward way. This is achieved by
making a distinction between binding and non-binding sites on the chain. The model reproduces a range of experimental results,
mainly related to the early phase of cellulose hydrolysis. Our results indicate that the combined effects of clustering of binding sites
together with the occupancy pattern of these sites by the enzyme molecules play a decisive role in the overall kinetics of cellulose
hydrolysis. It is suggested that periodic desorption and rebinding of enzyme molecules could be a basis of a strategy to partially
counter the clustering of and blocking by the binding sites and so enhance the rate of cellulose hydrolysis. The general nature of the
model means that it could be applicable also to other transport processes that make a distinction between binding and non-binding
sites, where crowding and blocking are expected to be relevant.

■ INTRODUCTION
Transport of independent particles moving at high densities
along a linear track is often slowed down by their mutual
interactions.1 These crowding effects play an important role in
many transport processes across widely different disciplines, on
spatial scales ranging from the molecular nanoscale to car traffic.
Examples include processive catalysis2 in chemistry and
biochemistry, such as enzymes processively catalyzing con-
version of an insoluble polymeric substrate (cellulose, chitin, or
other polysaccharides),3−6 directional sliding of enzymes along a
nucleic acid in processes such as DNA polymerization7 and
protein synthesis,8 active cellular transport phenomena, such as
motor proteins walking along microtubules9 and actin
filaments,10 but also problems in seemingly unrelated fields,
for example, movement of ants along a trail in ecology studies11

and the formation of traffic jams in car traffic.12,13

The spatial correlations inevitably present in these processes
mean that the particles cannot be described as a priori fully
independent actors, as, for example, reactants in bulk chemical
kinetics. This fact complicates the theoretical description of the
crowding phenomena. On the other hand, the recognition that
the particular details of the underlying transport process are

often not decisive for the general effects of crowding led to the
development and the detailed study of the properties of rather
general, abstract models.

One of the simplest models of transport affected by crowding
is the totally asymmetric simple exclusion process
(TASEP).14−16 Particles step with a constant rate in one
direction along a linear chain of sites; a step is possible only if the
next site is not occupied. The particle current depends on the
occupation density: the maximum is reached when half of the
sites are occupied; at higher occupancies, a further increase of
the current due to the particle number is outweighed by the
strong effect of crowding. Despite its simplicity, the model can
predict complex stationary states, for example, a state with two
regions of different particle densities separated by a steep wall as
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a result of boundary conditions in a system with open
boundaries.7 In one of its first applications, this model has
been used to describe the kinetics of ribosomes moving along
mRNA.7

In a further development, the model was extended by
including the exchange of particles with the bulk reservoir by
considering binding to and detachment from the chain
(Langmuir kinetics, LK), leading to the TASEP-LK model.17

Later, variations of the model with modified exchange rules or
interactions between particles moving along different chains
have been introduced and studied.18,19 Although many works
deal with the steady states of systems with open boundaries,
where the boundary condition strongly influences the steady
state, in some cases, relaxation kinetics19,20 or systems with
periodic boundary conditions18−20 have been investigated. The
exchange of particles with the bulk is particularly relevant for
chemical and biological applications. Models based on TASEP-
LK have often been applied to the description of crowding
dynamics of the motor proteins moving along the filaments of
cytoskeletal networks.9,21,22

The models of transport processes are closely related to the
models of crystal growth and evaporation.23−25 For example, the
role of impurities in crystal growth may be analogous to the
effects of external obstacles in linear transport. The models of
crystal growth can thus provide inspiration for formulating
models of processive catalysis.

Cellulose hydrolysis by processive cellulases can be viewed as
a directional transport process where crowding cannot be
neglected.3 Crowding of cellulases while moving along the
cellulose chains has been identified as one of the possible factors
severely limiting the efficiency of cellulose hydrolysis.26,27

Cellulose on the nanoscale consists of tightly packed, oriented
linear chains (polymeric cellobiose) resulting in a regular,
crystalline structure. On a larger scale, these microfibrils are
assembled into more or less filamentous nano- or microparticles
or larger, structured composite bodies. Cellulose is insoluble in
water but can be degraded down to its constituent monomers by
enzymes�cellulases. Some cellulases processively and direc-
tionally depolymerize the cellulose chain while releasing
cellobiose units into the bulk solution.3

To understand the limitations of the processive cellulose
hydrolysis, a range of models have been developed. A large
group of these are the kinetic models based on ordinary
differential equations, formulated in analogy to the chemical
enzyme kinetics.28−30 Although some of them include
processivity of the enzyme,31 no spatial correlations, apart
from simple blocking by a fixed obstacle, are included.
Therefore, the crowding effects are not properly represented
in these models, limiting their applicability.

The spatial correlations, therefore also the crowding effects,
are fully included in a class of models based on simulations.32−35

The simulation models are typically formulated to a high level of
detail. Often, they consider the size, the shape, and even the
internal structure (two domains) of the enzyme33−35 and a
specific shape of the substrate.32 This raises a question of how
general the results of such simulations are, and to which extent
they depend on the particular choice of these detailed
parameters. Furthermore, a large number of variable parameters,
together with the high time demand to perform the simulations,
precludes an extensive exploration of the relevant parameter
space and therefore a broad characterization of the model.

Here, we extend the TASEP-LK model by differentiating
between binding and non-binding sites on the chain. This

modification is motivated by the structure of cellulose. As a
result, we obtain a minimal model showing how blocking due to
crowding might affect cellulose hydrolysis. While omitting the
less relevant details, only the essential features of the hydrolysis
process are retained: binding to a particular end site of the
oriented cellulose chain, processive motion along the chain
accompanied by hydrolysis, blockage by other chain ends or
enzyme particles, and detachment from the chain.

We investigate the general behavior of the model and its
applicability and limitations for the description of cellulose
hydrolysis. By including only one additional parameter
compared to the TASEP-LK model, the modified model
remains very general and thus applicable to the description of
crowding effects also in other systems that make a distinction
between binding and non-binding sites.

■ MODEL
The model is inspired by an idealized picture of the hydrolysis of
crystalline cellulose by the processive enzyme Cel7A.3,36 The
parallel cellulose chains form a 3D crystal, with only the exposed
surface being accessible to the enzyme particles.

The cellulose chains are oriented and the particles (enzyme
molecules) can bind to only one end site of the chain (the left
chain end site in Figure 1). Once attached, the enzyme steps

along the chain from site to site (from the left to the right in
Figure 1), removing one segment per step (hydrolyzing the
glycosidic bond of the cellulose chain and releasing a cellobiose
molecule) until it either detaches, or becomes blocked by an end
of a chain lying in the layer above it, or reaches the end of the
chain, in which case we may assume that it detaches.

To further simplify this situation, we model one lane in the
upper exposed surface of the cellulose crystal as a single chain
with distributed binding sites (Figure 1). This reduction to a
one-dimensional chain neglects the loss of binding sites by
reaching the chain end (complete chain hydrolysis) and ignores
the exposure of new binding sites as the chain is consumed.
However, these two features compensate each other in a sense
that the total number of binding sites is preserved on average.
Importantly, the essential feature of this model�the blockage of
the stepping particle by binding sites in front of it�is preserved.

Figure 1. Particles can interact only with the surface of the bulk
material. One lane of the surface layer is approximated with a linear
chain of sites. Some of the sites allow particle attachment (binding sites,
filled circles), others do not (non-binding sites, empty circles). The
particles interact with the chain in three ways: attachment to the
binding sites with the rate k1′; making a step to the site on the right
(allowed only if the site is non-binding) with the rate k2; and
detachment with the rate k3.
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The linear chain consists ofN sites of two types: binding sites,
to which particles from the reservoir can bind, and non-binding
sites, which cannot directly bind a particle from the reservoir but
can become occupied by a particle stepping in from the
neighboring site. The fraction of the binding sites is denoted as
u.

The particles can bind to the binding sites with a rate k1′, step
to the neighboring site with a rate k2 (while releasing a product
molecule), and detach with a rate k3 (Figure 1). The stepping
process is totally asymmetric; the particles move from the left to
the right. While making steps, the particle “carries” the binding
site with it: the site from which the particle steps out becomes
non-binding, the site to which a particle steps becomes binding,
and the site from which the particle detaches remains a binding
site. The particle can make a step only if the next site is non-
binding, that is, binding sites, regardless of whether occupied or
not, cannot be entered by making a step from the neighboring
site. This blocking by binding sites is the origin of the observed
crowding effects.

The model has four independent parameters: the fraction of
the binding sites u and the rates of attachment k1′, stepping k2,
and detachment k3. We further distinguish between two cases
depending on the number of particles in the reservoir available
for binding. In the first case, the total number of particles e0 is
assumed to be in excess of the total number of binding sites uN:
e0 ≫ uN, so that the number of free particles available for
binding ne can be approximated by the total number of particles
e0: ne = e0 − na > e0 − uN ≈ e0, where na is the number of bound
particles. The attachment is then described by a simple rate
constant k1′. In the second case, the total number of available
particles e0 is finite, and the attachment rate at any moment is
k1ne, where k1 is the corresponding rate constant. The first case
can be seen as a limit of the second case when e0 ≫ uN and k1e0 =
k1′.

In all simulations, a periodic boundary condition was applied.
The initial distribution of the binding sites was in most cases
chosen as random, but the simulations with removal and
reattachment of all particles can be interpreted as a sequence of
independent simulations with modified initial conditions
corresponding to a variable degree of initial clustering of
binding sites.

In the current model with one chain and a periodic boundary
condition, the amount of substrate available for conversion is
effectively infinite. This is intentional, as we are focused on the
effects of crowding on the step rate isolated from other effects,
such as substrate depletion. The effect of substrate depletion
could, however, be easily included in the model by monitoring in
the course of simulation how many times a particular site on the
chain is visited by a stepping particle. Each passing of a site on
the chain would correspond to the conversion of one layer of the
substrate. Setting the maximum number of layers would allow
modeling of substrates with different particle sizes and
observation of the substrate depletion effects.

In the following, a “cluster” refers to one or more binding sites
next to each other, regardless of their occupancy, a “gap” is a
sequence of non-binding sites between two clusters, and an
attached particle is called blocked when it cannot make a step
because its neighboring site (to the right) is a binding site,
regardless of whether occupied or not.

Because clustering of the binding sites and blocking of the
stepping particles turns out to be decisive for the particles
kinetics, we refer to the proposed model as the CB model
(clustering/crowding + blocking).

■ METHODS
The model was implemented as a simulation in Python (ver.
3.6), taking advantage of parallel computation on a CUDA
graphics card provided in Python via the Numba compiler. The
chain parameters were chosen to match the internal architecture
of the GPU and so to optimize the calculation speed.

The chain length was N = 8192 sites, which is long enough to
avoid any artificial effects due to the periodic boundary
condition. The simulation was performed in parallel on 128
segments of the chain, each 64 sites long, and on 24 chains
simultaneously. To increase the signal-to-noise ratio, the
simulations were repeated 10−100 (in some cases up to
2000) times, representing an average of over 240−2400 chains.

In every simulation step, the particles attached to the chain
and not blocked were tested for the possibility of making a step
with the rate k2 and for detachment with the rate k3. The
unoccupied binding sites were tested for the possibility of
attachment of a particle from the bulk with the rate k1′. After all
steps, attachments and detachments within the current
simulation step were performed, the number of particle steps,
particle attachments and detachments per chain, the number
and size of clusters, and other parameters were stored for further
analysis.

The value of the step rate k2 was fixed to k2 = 1 in all
simulations. The attachment and detachment rates used in the
simulations were varied in the following ranges: k1′ = 10−4 to 0.1,
k3 = 10−5 to 1.0. The dimensionless rates used in simulations can
be related to the corresponding experimental rate constants
(indicated with a star here) as follows: = * *k k k k/ /1 2 1 2 and k3/
k2 = k3*/k2*. In the case when the particles are not in excess of the
number of binding sites, we have two additional expressions:
k1e0/k2 = k1*ctot/k2* and e0/(uN) = ctot/cs, where the second one
relates the total numbers of particles in simulations e0 and of
binding sites on the chain uN to the total volume concentrations
of the enzyme ctot and accessible binding sites on the substrate cs.
Using these expressions, it is possible to directly convert the
experimental parameters to the dimensionless parameters used
in simulations while choosing k2 = 1. To perform the conversion
in the opposite direction, from the simulation parameters to the
real-world dimensional parameters, it is necessary to provide two
parameters that provide scaling for time and concentration, for
example, the step rate constant k2* and the total enzyme
concentration ctot.

The experimentally determined rates are generally spread
over broad ranges, depending on exact conditions and substrate
type. The following values are typically reported:37 the step
(hydrolysis) rate constant k2* = 2−10 s−1, the attachment rate
constant k1* = 0.003−0.3 μM−1 s−1, with the employed
concentration of cellulase ctot = 0.1−2 μM,31,38 and the
detachment rate constant k3*: 0.002−0.2 s−1. The value ranges
of the dimensionless rates k1′ and k3 used in the simulations
therefore cover the ranges of the experimentally determined
values.

■ RESULTS
First, we show the analysis of the binding kinetics, as it allows
analytical description due to its independence on the
neighborhood of the binding site. Then, the results of
simulations of particles binding to, detaching from, and stepping
along the chain are presented. This part is divided into two
sections depending on whether the number of available particles
is in excess of the binding sites or not.
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Binding Kinetics. In the presented model, the binding
kinetics are independent of the stepping of the attached particle
and the occupancy of the neighboring sites. Therefore, the
binding kinetics can be described without considering the spatial
distribution of the binding sites, and no effects of spatial
correlations are present.

The attachment of free particles E to the unoccupied binding
sites F and the detachment of the bound particles A can be
described by the following reaction scheme:

+E F A
k

k

3

1
V

(1)

with the attachment and detachment rate constants k1 and k3,
respectively. The numbers of free particles ne, unoccupied sites
nf, and occupied sites (attached particles) na are related by the
conservation relations ne + na = e0 and nf + na = uN.

The temporal evolution of the number of bound particles is
governed by the following differential equation

=
n
t

k n n k n
d
d

a
1 e f 3 a (2)

Instead of na(t), we choose to describe the system by the
fraction of occupied binding sites f(t), and by substitutions nf =
(1 − f)uN and na = fuN we obtain
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The equilibrium fraction of occupied binding sites feq is
obtained as the smaller of the two solutions of the quadratic
equation obtained by setting df/dt = 0 in eq 3
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We denote f 2 the second root of the quadratic equation ( f 2 > 1
≥ feq > 0).

The solution of eq 3 for the initial condition with no attached
particles f(0) = 0 is
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In the limiting case of particle excess (e0 ≫ uN, k1e0 = k1′), the
solution converges to a simple exponential kinetics with the rate
equal to the sum of the attachment and detachment rate
constants k1′ and k3

= =
+

+f t f f
k

k k
( ) (1 e ), wherek k t

eq
( )

eq
1

1 3

1 3

(6)

Excess of Particles. The interplay between particle binding
and detachment and its stepping kinetics leads to spatial
correlations in the distribution of binding sites, which present a
major obstacle to describing the system by a kinetic model based

on differential equations. For this reason, we implemented the
model as a particle-based simulation.

The initial distribution of binding sites on the chain was
chosen as random. The simulations were started with particles
initially attached to randomly selected binding sites. The
number of particles was the same as the binding equilibrium
value (eq 6). In this way, the mean number of attached particles
was constant all the time, and any effects of the variation of the
mean attached particle numbers were eliminated; only the
blocking and clustering effect was responsible for the observed
changes in the step rate.

Figure 2 shows a graphical representation of the chain with
attached and stepping particles at the beginning of the

simulation and at late times. At early times, the binding sites
are still randomly distributed and not clustered, and many non-
blocked particles stepping from the left to the right can be
observed. At late times, the binding sites are clustered, many
particles are blocked, and only few particles are free to step.
Notice that an attachment of a particle to the rightmost site of a
partially occupied cluster may result in a micro-burst of activity,
whereby several blocked particles are freed practically
simultaneously. This can be related to a partial dissolution of
clusters of enzyme molecules bound to a cellulose fiber, which
has been previously observed experimentally (Movie S5 in ref
27).

The temporal evolution of several parameters was extracted
from the simulations: the step rate (the current) per site j, the
mean cluster size s, the number of attached particles na, and the
fraction of blocked particles f b.

In the simulations with initially attached particles at their
equilibrium number na = fequN, the mean number of attached
particles naturally remained constant throughout the simulation.
When the occupancy and the blocked state of the site are
uncorrelated, the fraction of blocked particles f b is directly
related to the step rate j

=j k f n N(1 ) /2 b a (7)

Figure 2. State of the chain at early and late times of the simulation. At
early times, the binding sites are randomly distributed and not
clustered, and many stepping (not blocked) particles are present. At late
times, the binding sites are clustered, many particles are blocked, and
only few particles are free to step. The stepping direction is from the left
to the right (blue: unoccupied binding sites; black: occupied binding
sites; white: non-attachable sites). Only 250 sites of the whole chain
(8192 sites) are shown.
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as only the non-blocked particles contribute to the step rate at
any time. Therefore, with this initial condition, two of the
monitored parameters are of the highest interest: the step rate
per site j and the mean cluster size s.

The step rate per site j is in this section displayed normalized
as the step rate per attached particle jp = jN/na. It therefore
directly represents the average reduction in step rate that an
attached particle experiences due to the crowding effects.
Because the mean number of attached particles na does not
change throughout the simulation, jp is directly proportional to
the step rate per site j and also to the step rate per attachable site
ja = j/u used in the following section, when the simulation is
started without any attached particles.
Step Rate Decrease. The most dominant effect, observed to

some degree in practically all simulations, is the decrease of the
step rate per particle jp from its initial value jp(0) = k2(1 − u) to a
steady-state value, which depends on the rates k1′ and k3 and on
the fraction of binding sites u (Figures 3 and 4).

Two phases of this decrease can be discerned. The first, major
phase originates from the initially non-blocked particles stepping
before they either become blocked by reaching the next binding

site or before they detach from the chain. The time scale of this
phase can be estimated as ns0/k2, where ns0 is the mean length of
a free run (in steps). The inverse of ns0, the “stopping rate”” per
particle step, can be approximated by the sum of the blocking
rate per step 1/sg and the detachment rate per step k3/k2. The
blocking rate is the rate at which the particle becomes blocked,
and sg is the mean size of the gap between two clusters (sg = s(1/u
− 1) in general, which becomes sg = 1/u for an initially random
distribution of binding sites). This approximation is valid when
the mean occupancy of binding sites f is small. When the
probability of a binding site being occupied is high, the mean
number of steps before a stepping particle becomes blocked is
higher than the mean gap size sg because the site on the right site
of the gap can move further to the right, if occupied. Considering
different cluster sizes on the right side of the gap and their
probability of being fully occupied leads to the extension of the
covered distance before becoming blocked from sg to sg + ns0 f(1
− u)/(1 − uf). Then

=
+

+
n s n f u uf

k
k

1 1
(1 )/(1 )s0 g s0

3

2 (8)

Figure 3. Temporal evolution of the step rate per attached particle jp (left) and the mean cluster size s (right) for several attachment (k1′) and
detachment rates (k3) with a constant fraction of occupied binding sites f. Other parameters: k1′ = k3, u = 0.1.

Figure 4. Step rate per attached particle jp (left) and the mean cluster size s (right) for several detachment rates k3. The inset on the left shows the
estimate of the time scale of the initial decrease of the step rate jp (eq 8) compared with values obtained from exponential fits of the simulation data.
Other parameters: k1′ = 0.001, u = 0.1.
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and ns0 can be obtained as a solution of a quadratic equation.
Within the probed range of simulation parameters, there is a
good agreement between this estimate and the time constant
obtained from an exponential fit to the initial decay of jp(t) in the
simulation results (inset in Figure 4).

The second, weaker phase of the decrease of jp is only
sometimes discernible. The time of its appearance is correlated
to the second, often major increase in the mean cluster size
described below.

The steady-state value of jp depends in a complex way on the
attachment and detachment rates k1 and k3 (Figure 5). In
general, a high detachment rate leads to high jp because the
particle spends a short time in the blocked state. High
attachment and low detachment rates also lead to a high jp
because of high occupancy of binding sites and therefore low
number of immobile blocking sites. For a given attachment rate
k1, there is a detachment rate k3 where the overall blocking effect
of the binding sites is strongest, and therefore a minimum of jp is
reached.
Clustering of Binding Sites. Concurrently with the decrease

of the step rate, the mean size of the clusters s of the binding sites
increases from its initial value, which is s(0) = 1/(1 − u) for
randomly distributed binding sites, and eventually reaches a
steady state (Figures 3 and 4).

For a broad range of parameters, two phases in the increase of
the mean cluster size can be discerned, approximately coinciding
with the two phases of step rate decrease. The second phase

appears to be slower than exponential, and often dominates.
Interestingly, the often strong increase of clustering in this
second phase is usually accompanied by only a minor decrease of
the step rate.

The steady-state values of s depend on k1 and k3 in a way
similar to jp (Figure 5). At high k3, clustering is weaker because
the stepping particle is more likely to detach before it becomes
blocked and thereby contributes to the cluster growth. At high k1
and low k3, the site occupancy is high and therefore the number
of immobile blocking sites is low. This leads to high dynamics
preventing formation of large clusters. For a fixed k1, a value of k3
exists where these two declustering mechanisms are weakest and
where s reaches its maximum. Increasing k3 weakens the
formation of larger clusters by attachment of particles from the
left; decreasing k3 enhances the cluster disassembly from the
right due to the high occupancy of binding sites, including the
rightmost cluster site.

Although the step rate decreases and the mean cluster size
increases in the course of simulation (Figures 3 and 4), and the
dependence of their steady state on k1 and k3 is similar (Figure
5), the two values are not fully correlated, and no direct universal
relationship between the step rate per particle jp and the mean
cluster size s could be inferred. For example, for a fixed k1′, the
minimum of the step rate jp and the maximum of the mean
cluster size s are reached at different detachment rates k3 (Figure
5). Considering only the steady-state values, the step rate and
the mean cluster size in the performed simulations were

Figure 5. Steady-state step rate jp (left) and the mean cluster size s (right) for a range of attachment and detachment rates (k1′, k3). Other parameters: u
= 0.1.

Figure 6. Step rate jp (left) and mean cluster size s (right) for k1′ = k3 = 0.0001. All particles were removed and reattached at regular intervals Δt = 500.
The red line (left) is the mean step rate over every cycle. The dashed line (right) is the mean cluster size without periodic removal and reattachment of
particles. Other parameters: u = 0.1.
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constrained by the following relation: s−2 < jp/k2 < s−1. However,
before a steady state was reached, transient values jp/k2 < s−2

were observed, indicating a complex relationship between jp and
s. The mean cluster size s alone therefore cannot be used as an
indicator of the step rate jp.

The decrease of the step rate jp and the increase of the mean
cluster size s are prominent when the intrinsic processivity (the
average number of steps the particle would perform before
detachment if not hindered by any obstacle, k2/k3) is larger than
the mean size of the gap between the clusters sg. In the opposite
case, there is only a small decrease of the step rate and a small
increase in the mean cluster size (Figure 3, the simulations with
the highest k3 values). Even though the mean gap size increases
with time, it has not been observed to approach or exceed the
intrinsic processivity, unless already comparable to it or larger at
the start of the simulation.
Removal and Reattachment of Particles. The simulations

described so far were started in a state where the binding sites
were randomly distributed along the chain, and the particles
were attached at randomly selected binding sites at a

concentration corresponding to the binding equilibrium. In
the following, the simulations were stopped at constant time
intervals, the attached particles were removed and reattached
again at random binding sites, and the simulation was restarted.
Because the clustering increases in the course of simulation,
every re-start of the simulation effectively corresponds to a new
simulation with a different initial condition. Later re-starts
therefore represent an initial condition with a higher degree of
binding site clustering.

Removal and reattachment of the particles were found to
result in a temporary increase of the step rate. The shape of this
transient burst in step rate varied depending on the state of the
chain: at longer times, when the sites were more clustered, the
bursts were lower and broader. The bursts were present even at
very long times, when a quasi-steady state was reached, a state
when the burst shape does not change any more (Figures 6−8).

The periodic removal and reattachment also led to an increase
in the average step rate. The strength of this effect, however,
depends on the frequency of removal and reattachment. The
effect is significant only when the period of the detachment/

Figure 7. Step rate jp (left) and the mean cluster size s (right) for k1′ = k3 = 0.01. All particles were removed and reattached at regular intervals Δt = 500.
The red line (left) is the mean step rate over every cycle. The dashed line (right) is the mean cluster size without periodic removal and reattachment of
particles. Other parameters: u = 0.1.

Figure 8. Mean cluster size s for two different attachment (k1′) and detachment rates (k3): k1′ = k3 = 10−4 (left) and 10−3 (right). All particles were
removed and reattached at regular intervals Δt = 500. The red dashed lines show the mean cluster size in the absence of the detachment/reattachment
cycles. For the times t > 104, only the minimum and maximum values per cycle are shown. Other parameters: u = 0.1.
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attachment cycle Δt was smaller than the inverse of the particle
detachment rate k3: Δt < 1/k3. Examples of the strong and the
weak effects are shown in Figure 6, where the cycle period of 500
is smaller than 1/k3 = 104, and in Figure 7, where the cycle period
of 500 is larger than 1/k3 = 100. Apparently, removing the
particles before their natural detachment time 1/k3 leads to a
stronger disruption of the system.

The periodic removal and reattachment always causes
temporary declustering coincident with the stepping burst.
Interestingly, when Δt < 1/k3, the subsequent clustering is
stronger than that in the absence of the detachment/
reattachment step (Figures 6 and 8). Clustering is therefore
sped up by this mechanism. In the quasi-steady state, the average
cluster size is however smaller than in the absence of the
detachment/reattachment step (Figure 8).
Finite Number of Particles. The constant attachment rate

k1′ assumed in the previous section is equivalent to a non-
depletable pool of particles available for binding. Here, we
consider a situation where the total number of particles e0 is
finite, the number of free particles ne cannot be approximated by
e0, and the actual attachment rate k1′ depends on the number of
free particles ne: k1′ = k1ne. Of particular interest are the

configurations with the total number of particles being of the
same order of magnitude as the number of attachable sites on the
chain.

In contrast to the previous section, no particles were attached
to the chain at the start of the simulation. The observed kinetics
therefore reflect the interplay of the attachment/detachment
kinetics from an initial non-equilibrium state and the crowding
effects due to the particles stepping along the chain.

The step rate in this section is expressed as the step rate per
attachable site ja = j/u and therefore represents the reduction of
the step rate relative to the hypothetical case when all binding
sites are occupied and the particles make steps unhindered.

In the following, we focus on the differences in kinetics
compared to the results presented in the previous section caused
by the finite particle number and the different initial condition.

Initial Burst of the Step Rate. Depending on the model
parameters, an initial burst in the step rate is observed, followed
by a gradual decrease toward the steady state (Figure 9). In some
simulations, a second phase of the decrease of the step rate was
observed. The initial rise of the burst is governed by the binding
of particles onto the initially empty chain. The subsequent fall of
the step rate ja is caused by the increasing blockage of the

Figure 9. Step rate per attachable site ja (left) and the mean cluster size s (right) for several detachment rates k3. Other parameters: k1 = 0.0001, u = 0.1,
e0 = 100.

Figure 10. Step rate ja (left) and the mean cluster size s (right) for several particle concentrations. The total number of binding sites uN is 82. Other
parameters: k1 = 0.0001, k3 = 0.001, u = 0.01.
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stepping particles, similar to the results in the previous section.
The dependence of the position and amplitude of the burst
depends on all model parameters in a complex way.

The presence of the burst depends on the total number of
particles relative to the total number of binding sites (Figure 10).
When the number of particles is smaller than the number of
binding sites, the burst is prominent and the step rate at long
times is clearly smaller than the burst maximum. With higher
particle numbers, the steady-state step rate increases, making the
burst less discernible or even absent. For some parameter values,
even in the limit of e0 → ∞, a small burst can be observed;
however, its amplitude is low compared to the steady-state value.

Investigating the kinetics with dependence on the detachment
rate k3 revealed that there is an optimal detachment rate for
which the step rate ja in the steady state is maximized (Figure
11). A higher than optimal detachment rate leads to a lower
occupancy of binding sites and therefore to a lower steady-state
step rate per binding site. A lower detachment rate enhances
crowding because of blocking by unoccupied binding sites for
which no free particle is available. This has important

implications for the applications of this model since the
existence of the optimal detachment rate in the context of
cellulose hydrolysis has been suggested before39 and is also
supported by experiments.40,41 This behavior has previously
been interpreted as a demonstration of the Sabatier principle in
the heterogeneous catalysis of cellulose by cellulases.42

Although the simulations were performed on a single chain,
rescaling of the parameters makes it possible to reinterpret a set
of data as simulations with a constant total particle
concentration and a variable chain concentration. This enables
a comparison with the experimental data of cellulose hydrolysis
by cellulases.31,43 To do this, the parameters e0 and k1 were
scaled by a factor α in the following way: k1 → αk1 and e0 → e0/α.
The parameter α is then proportional to the chain (substrate)
concentration. When the step rate in this case is expressed as the
step rate per particle (total) je = jNα/e0, it becomes directly
proportional to the experimentally observable hydrolysis rate at
a constant cellulase concentration.

Varying the chain concentration over several orders of
magnitude leads to the following observations (Figure 12): At

Figure 11.Temporal dependence of the step rate ja (left) and the steady-state value jss of the step rate ja (right) for different detachment rates k3. Other
parameters: k1 = 0.0001, u = 0.014, e0 = 100.

Figure 12. Step rate je per particle (total) for different chain concentrations α on logarithmic (left) and linear (right) time scales. The inset on the left
shows the steady-state value jss of the step rate je. The inset on the right shows the increase of the mean cluster size s with time. The parameter α,
expressing the relative chain concentration, was varied from 0.00781 to 8.33, and its increase is indicated by the direction of the arrow in the plots.
Other parameters: k1 = 0.0001, k3 = 0.01, u = 0.1, e0 = 100.
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low chain concentrations, the burst in the step rate is not
discernible, and the step rate increases to its steady-state value.
At increasing chain concentrations, a clear burst appears and its
amplitude rises. With a higher chain concentration, the burst
becomes narrower in time and its maximum appears at shorter
times. At long times, the steady-state step rate shows a saturation
behavior with increasing chain concentration α. Remarkably, all
these features can be found in the experimental data of cellulose
hydrolysis.31,43 Clustering of binding sites at very long times
appears to be stronger with increasing chain concentrations, but
the growth of clusters is considerably slower.

To demonstrate the agreement of the model with
experimental data, we attempted to fit the simulation results
to the published data of the time-dependent rate of cellulose
hydrolysis for different concentrations of the substrate31 (Figure
13). The commonly used iterative fitting procedure, where the

model is evaluated many times with different parameters until it
converges to the data, was not possible in this case because of the
long time needed to perform a single simulation. Therefore, we
first fixed several simulation parameters common to all data
curves (k1 = 8.3 × 10−5, k3 = 0.0138, u = 0.01, and e0 = 200) and
then manually adjusted the substrate concentration parameter α
and the amplitude to match each individual data set. Although
this procedure does not guarantee that the fits are optimal or the
parameters unique, the agreement with the data is very good,
especially in the lower range of substrate concentrations.

Clustering of Binding Sites. As in the previous section, an
increase in the mean cluster size s over different time scales was
observed (Figure 9). One or often two phases could be
discerned. In some situations, partial declustering, coinciding
with the hydrolysis burst, takes place (Figure 10). Even though it
has not been investigated in detail, it is thought to be related to
the fact that the binding equilibrium due to the attachment/
detachment kinetics has not been fully reached yet at the time
when declustering occurs (eq 5).

Periodic Removal of Particles.The simulations with periodic
removal of particles, but no immediate reattachment, exhibited
similar kinetics to the simulations with the excess of particles
(Figures 6−8): bursts in step rates with progressively lower
amplitude and longer duration, approaching a constant shape at
a quasi-steady state (Figure 14). The step rate bursts were
accompanied by transient declustering.

A similar burst in the step rate is produced when the total
number of particles is increased by adding free particles at one
time point, without affecting the bound particles in any way
(Figure 14). This models the addition of an enzyme to a running
hydrolysis reaction and has been shown experimentally to
produce an analogous burst in the hydrolysis rate.31,38,43,44

■ DISCUSSION AND CONCLUSIONS
General Properties of the CB Model. The introduced CB

model can be viewed as an extension of TASEP-LK. The
modification�the distinction between binding and non-bind-
ing sites�leads to two immediately obvious differences. First,
the fraction of binding sites u sets a limit to the maximum
fraction of total sites that can be occupied by particles. In

Figure 13. Fits of the simulation results to the experimental data from
ref 31, describing the evolution of the rate of cellulose hydrolysis for
different concentrations of the substrate. The substrate concentration
increases from 1.5 to 110.9 μM in the direction of the arrow.

Figure 14. Left: the shapes of the bursts in the step rate ja after different numbers of particle detachment cycles. Simulation parameters: k1 = 0.0001, k3
= 0.001, u = 0.1, e0 = 100. Right: the appearance of the second burst in the step rate after increasing the total number of particles e0. The simulation was
started with e0 = 100 and at time t = 100, the total particle number e0 was increased by adding 100 free particles. Other parameters: k1 = 0.0001, k3 =
0.01, u = 0.1.
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TASEP-LK, all sites can be occupied in the limit of k1′ ≫ k3.
Second, the stepping of particles is blocked by binding sites on
their right (in the direction of transport) regardless of their
occupancy. This causes stronger blocking at low occupancies.
Empty binding sites are stronger blockers than occupied sites in
a sense that an attached particle can temporarily unblock a
particle that it is blocking by making a step forward itself. These
differences have important consequences for both the relaxation
kinetics from the initial state and for the steady state reached in
the limit of long times.

In this work, we are interested in the general crowding effects
along the chain; therefore, we choose the periodic boundary
condition to avoid any influence of the boundaries. We are
mainly concerned with the relaxation kinetics from the initial
state toward the stationary state and with their relation to the
formation of the clusters of binding sites as time proceeds. In the
published studies of TASEP-LK, the focus has been mostly on
the stationary state in a system with open boundaries, where the
boundary conditions are determinant for the properties of the
stationary state.17 Nevertheless, there are several studies of
TASEP-LK under conditions similar to those applied here,18−20

which allow a comparison with the results of the presented
model.

Because the attachment and detachment kinetics is
independent of the transport of particles along the chain and
of the occupancy or type of neighboring sites both in TASEP-LK
and in the CB model, the fraction of the occupied attachable
sites when the binding equilibrium is reached is also the same.
The relaxation kinetics of the particle density f(t) is exponential
with equal time constants in both models19 (eq 6).

In TASEP-LK, the maximum steady-state current j is reached
when half of the sites are occupied,18 and when expressed per
attached particle, the steady-state current jp decreases linearly
with occupancy. In the presented CB model, the situation is
more complex as the steady-state step rate jp is not determined
fully by the fraction of occupied binding sites f but depends
directly on the rates k1′ and k3 (Figures 3 and 5). A slower particle
exchange kinetics promotes formation of larger clusters of
binding sites, decreasing the step rate jp. The relationship
between the mean cluster size and the step rate is however not
trivial (Figure 5). A more detailed investigation considering also
the distribution of cluster sizes might deepen the understanding
of this aspect.

The relaxation kinetics of the particle current j(t) in TASEP-
LK approaches the steady state exponentially, with a time
constant similar to the relaxation of the particle density f(t). For
certain initial conditions (no attached particles) and certain
parameter values, the relaxation kinetics can also exhibit a
maximum before decreasing toward the steady state.20 Here, the
relaxation of the step rate jp is affected by the formation of
clusters of binding sites over time. The kinetics has more phases
and is stretched in time, slower than exponential, which is
particularly evident in the increase of the mean size of clusters at
long times (Figures 3 and 4). The relaxation kinetics is
influenced by the initial distribution of binding sites and the
initial degree of clustering, as observed in the simulations with
detachment and reattachment of particles (Figures 6 and 14).
The individual detachment and reattachment cycles can be
understood as independent simulations with different initial
conditions with respect to the distribution of binding sites.

The presented results show that the distinction between
binding and non-binding sites leads to a much richer behavior
compared to that of the original TASEP-LK model.

Model as a Description of Cellulose Hydrolysis. The
existing simulation models of cellulose hydrolysis by processive
cellulases usually incorporate a high level of detail in the
description of the structure of both the enzymes and the
substrate and in the individual interaction steps. The enzyme
molecules are characterized not only by their size but also the
shape32,35 and sometimes even by their internal structure,
resolving the catalytic domain, the carbohydrate binding
module, and the linker connecting the two subunits.33,34 The
substrate is represented as a 2D assembly of linear chains, a 3D
microfibril with a particular arrangement of chains,33,34 or a
more complex structure with domains of different properties.35

In some situations, the particular shape of the substrate and its
evolution during the course of the reaction are decisive for the
observed kinetics.32 Different states of the enzyme in interaction
with the substrate are considered; every state may exhibit a
different type of transport along the substrate (diffusional or
processive), and various transitions between the states, in
addition to adsorption and desorption, are a part of the model.

Consequently, the models usually contain many parameters,
making the characterization of the model behavior in the large
parameter space impractical. It may be difficult to elucidate
which detail of the model is determinant for the overall model
behavior, and what feature of the model is less or not at all
relevant.

In this work, we choose to focus on the role of crowding of
enzyme particles on the substrate chain by excluding all but the
essential detail and thus keeping the model minimal. The events
in the CB model may then effectively represent more than one
real event. The attachment represents all steps between the
actual attachment and the start of processive hydrolysis,
including threading of the chain. The detachment represents
all steps between the stop of processive hydrolysis and the
physical detachment from the substrate, including decomplex-
ation. One model step of the enzyme along the chain may in
reality correspond to more hydrolysis steps.

Despite these simplifications, the inclusion of particle
interactions that leads to crowding results in a model that can
reproduce a broad range of experimental observations: At short
times, a hydrolysis burst appears (Figure 9) and a similar activity
burst is observed upon addition of more enzymes (Figure 14).
The temporal profile of the burst with increasing substrate
concentration exhibits faster rise, its maximum is reached earlier,
and its value is higher relative to the steady-state hydrolysis rate;
at low substrate concentrations, no clear maximum is attained
(Figure 12). When the detachment rate k3 is varied, a maximum
in the steady-state hydrolysis rate for a particular detachment
rate is reached (Figure 11), as suggested in the literature.40 The
steady-state hydrolysis rate shows a saturation behavior with
increasing substrate concentration (Figure 12). The detailed
view of the simulations reveals the presence of clusters of
attached particles that can be released in a micro-burst, as
observed directly in AFM experiments27 (Figure 2).

The results of the simulations are also in agreement with a
simple analytical three-state model, which assumes the existence
of an active, hydrolyzing bound state and an abstract inactive
bound state.45 The analytical model described the experimental
data best when assuming that the initially free particle first binds
to the active state and later enters the inactive state. The CB
model introduced here offers a concrete picture as to the nature
of the active and inactive states. The binding sites are initially
minimally clustered; a particle that binds to the chain is likely to
be free to perform steps, that is, is active. After some time, the
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particle is going to hit a binding site, becoming blocked. The
blocked state corresponds to the inactive state in the analytical
model.

Due to its simplicity, the CB model still exhibits a couple of
features for which there is lack of experimental support. Several
sets of simulation results show that the crowding effect on the
hydrolysis rate can be diminished by adding an excess of enzyme.
This leads to the increase of the occupancy of the binding sites
toward saturation, effectively unblocking the crowded enzyme
molecules. The effect can be seen in Figure 5, where the steady-
state step rate jp can be brought toward its maximum value of
k2(1 − u) by strongly increasing the attachment rate k1′,
regardless of the detachment rate k3. As seen in Figure 10, the
increase of the total number of enzyme particles e0 well above the
number of the binding sites on the chain not only eliminates the
initial hydrolysis burst but also brings the step rate ja close to its
maximum value corresponding to unhindered hydrolysis.
Although this effect is not very realistic, it does not invalidate
the model but rather shows that the model is not complete and
has its limits. The evidence from published experimental data
provides hints to potential extensions of the CB model that
might address this issue,26,46,47 for example, including
unproductive binding, where the interaction of the enzyme
with the chain does not permit hydrolysis, possibly because the
chain is not threaded. Such a bound enzyme would still block the
processive motion of other enzyme particles. Another possibility
is the modification of the interactions between particles and
chain ends that takes into account the difference in size of an
enzyme molecule and the binding site, as already used in the
earliest application of TASEP on enzyme sliding along a nucleic
acid.7

In experiments performed over long times, a gradual decrease
of hydrolysis activity over time scales much longer than the
initial activity burst is commonly observed.44,46 In the CB
model, the steady state is often reached relatively fast after the
initial burst, and if there is any decrease of the step rate occurring
later, it is relatively small. Interestingly, coupled to this small step
rate decrease at long times is a significant increase in clustering
(Figures 3, 4, 8, and 10). This raises the possibility that
modifying the model by inducing a stronger coupling between
the degree of clustering and the step rate might lead to a step rate
decrease also over long time scales, as known from experi-
ments.44,46 Nevertheless, it should be noted that there are other
factors thought to contribute to the long-term effects in
hydrolysis, such as changes in the substrate morphology and
effects of substrate heterogeneity, that become apparent as a
significant fraction of the substrate becomes hydrolyzed. These
are, however, beyond the scope of the presented model, which
effectively reduces the substrate to a single chain and does not
deal with the substrate structure on a larger scale.

In the search for the explanation of the decrease of hydrolysis
rate in the course of cellulose hydrolysis, a distinction between
substrate effects and enzyme effects is often made.31,47,48 The
substrate effects are linked to the heterogeneity of cellulose with
different fractions (e.g., crystalline vs amorphous) having
different susceptibilities to hydrolysis, resulting in evolving
substrate composition and properties as hydrolysis progresses.
Alternatively, the substrate effects can be described as depletion
of productive binding sites in the course of hydrolysis. The
enzyme effects usually involve some type of inactivation,
reversible or irreversible, either by adsorption on noncellulotic
components (lignin) or by nonproductive binding to cellulose.

The kinetics of the presented CB model shows that the
decrease in the step rate is accompanied by an increase in the
mean cluster size s. Although the relationship between the step
rate and the mean cluster size is not straightforward, it is intuitive
to expect that larger clusters of binding sites lead to a lower step
rate: in a cluster, only one, the rightmost site is not blocked;
therefore, with the mean cluster size s, only the fraction 1/s of all
binding sites is not blocked and can contribute to the step rate if
occupied by a particle. This reasoning suggests that the
retardation of the step rate in the CB model clearly falls into
the category of substrate effects. The simulations with the
detachment and reattachment of particles show, however, that
the particle occupancy of sites within a cluster plays an
important role, and the effect cannot be attributed solely to
the substrate.

After a long time, most particles are bound to blocked sites
within a cluster. Detachment and random reattachment of
particles obviously does not change the distribution of the
binding sites on the chain at that very moment. It is the
distribution of particles within a cluster that changes at this step.
While before the particle detachment the rightmost cluster site is
less likely to be occupied (if occupied, the particle would
perform a step, separating itself from the cluster), after the
particle reattachment, it has the same probability of being
occupied as all other binding sites. This is the reason for the
subsequent increase in the step rate and decrease in the mean
cluster size (Figures 6 and 14). Both effects are transient but can
appear at any time after the beginning of hydrolysis, even in the
steady state, when larger clusters are formed and the initial
condition is forgotten (Figure 14). The effect is therefore
independent of the assumption of randomly distributed, that is,
rather dispersed, binding sites made in the simulations. From
this point of view, the particles being blocked is the cause of the
decreased step rate. The addition of new particles instead of
detachment of the already present particles leads to a similar
effect by the same mechanism (Figure 14).

Following this picture, there is a clear dependence between
the effects of substrate structure and enzyme blocking on the
step rate: while particle stepping contributes to the growth of
clusters, larger clusters increase the population of blocked
particles. The intervention by detachment/reattachment
transiently reverses this process: freeing the particle from its
blocked state and giving it a chance to bind to the rightmost (not
blocked) cluster site increases the step rate and promotes cluster
disassembly. The substrate and enzyme effects within the CB
model cannot therefore be separated from each other.

The detachment/reattachment cycles performed periodically
can increase the average step rate (Figure 6), and if realized in
practice, it could form a basis of a strategy to enhance the
efficiency of cellulose hydrolysis. This view is supported by
experimental observation of a hydrolysis burst after addition of
new enzyme31,38,43,44 and the partial recovery of hydrolysis rate
after the enzyme removal and the restart of hydrolysis.46,48

Although only one type of enzyme was considered in this
work, in practice, the cellulase Cel7A is usually not acting alone
but is present together with other cellulases, which may attack
the cellulose chain in a different way. These include exocellulases
hydrolyzing the oriented cellulose chain from the opposite end
than the exocellulase Cel7A and endocellulases, which hydrolyze
also the bonds in the middle of the chain, and so create new
chain ends, that is, new binding sites for exocellulases. The
combined action of exo- and endocellulases is expected to affect
the density of the binding sites (the parameter u, held constant
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in this work) and therefore also to alter the degree of site
clustering and its effects on the overall enzyme kinetics.
Modeling of cellulose hydrolysis by various combinations of
different enzymes will be a natural extension of the presented
work and is expected to contribute to the understanding of the
experimentally observed synergies between different cellulases.

In conclusion, the proposed CB model shows that many
features of cellulose hydrolysis catalyzed by processive cellulases
can be explained by blocking of the transport of cellulases along
the cellulose chain by other binding sites, whereby dynamic
assembly of the binding sites into clusters during the course of
the reaction and the occupancy of the binding sites within the
cluster modulates the overall reaction rate. Importantly, it is not
necessary to assume the existence of an additional non-
productively bound state or irreversible enzyme binding.
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