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Phenolics are the most abundant plant metabolites and are believed to decompose slowly in soils compared to other soil organic
matter (SOM). Thus, they have often been considered as a slow carbon (C) pool in soil dynamics models. Here, however, we
review changes in our concept about the turnover rate of phenolics and quantification of different types of phenolics in soils. Also,
we synthesize current research on the degradation of phenolics and their regulatory effects on decomposition. Environmental
changes, such as elevated CO

2
, warming, nitrogen (N) deposition, and drought, could influence the production and form of

phenolics, leading to a change in SOM dynamics, and thus we also review the fate of phenolics under environmental disturbances.
Finally, we propose the use of phenolics as a tool to control rates of SOM decomposition to stabilize organic carbon in ecosystems.
Further studies to clarify the role of phenolics in SOM dynamics should include improving quantification methods, elucidating the
relationship between phenolics and soil microorganisms, and determining the interactive effects of combinations of environmental
changes on the phenolics production and degradation and subsequent impact on SOM processing.

1. Introduction

Phenolics consist of more than one aromatic ring, bearing
one ormore hydroxyl functional groups.They originate from
plant materials and industrial products/wastes, which enter
the soil either as leachates or as particulate matter [1]. Once
integrated into the soil, phenolics can control below-ground
processes, including SOM decomposition [2–4] and nutrient
cycling [5, 6]. Recently, Freeman et al. [7] have suggested that
modification of phenolics in peatland has a potential as a
geoengineering tool to capture C in terrestrial ecosystems.

In spite of theses multitude of studies, however, contro-
versies remain on how phenolics decompose in soils, how
theymodify the rate of SOMdecomposition, and how current
environmental changes will influence the fate of phenolics in
soils. Given that phenolics represent one of the most abun-
dant components in soils [8, 9] and that they affect the cycling
of key nutrients to plants and soil microorganism [1, 9],
it is indispensable to investigate the mechanisms by which
phenolics influence decomposition biotically and abiotically

and the degree to which these mechanisms will vary in
response to environmental changes.This review presents cur-
rent knowledge about phenolics and their role in decompo-
sition under various environmental changes and proposes
areas of future research. This review covers the following six
areas: (1) various structures and forms of phenolics in soils;
(2) how to extract and measure phenolics in soil samples; (3)
biodegradation of phenolics; (4) effects of phenolics on SOM
decomposition; (5) effects of environmental changes, such
as elevated CO

2
, warming, N deposition, and drought, on

phenolics and decomposition; and (6) suggestions for future
phenolics studies.

2. Structure and Form in Soils

Naturally, phenolic compounds are widely distributed
throughout the plant kingdom, constituting up to 60% of
plant dry mass [10]. Due to its loose definition (presence of at
least one aromatic ring and hydroxyl group),more than 8,000
compounds have been classified as phenolics to date [11],
encompassing simple, lowmolecular compounds to complex,

Hindawi Publishing Corporation
BioMed Research International
Volume 2015, Article ID 825098, 11 pages
http://dx.doi.org/10.1155/2015/825098

http://dx.doi.org/10.1155/2015/825098


2 BioMed Research International

Table 1: Methods to quantify phenolic compounds.

Assay Types of phenolics Description Reference

Folin-Ciocalteu assay Total phenolic acids
An assay based on electron transfer (ET) in which
oxidation of phenolics by Folin-Cioalteu reagent gives a
colored product at 750 nm

[12]

CuO oxidation-GC Lignin-derived
phenolics

A method in which oxidation of lignin by cupric oxide
yields single-ring phenol compounds (vanillyl-,
syringyl-, and p-coumaryl units), followed by gas
chromatography
Also, the acid to aldehyde ratio can be used to estimate
the state of decomposition of lignin

[13]

HPLC Individual
A separation technique in which a mixture of phenolics
produces different retention times depending on their
affinity to the stationary phase

[14]
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Figure 1: Chemical structures of several phenolics: phenol (a), the
simplest structure of phenolic compound, phenolic acid (gallic acid)
(b), and tannin (c).

highly polymerized compounds. Often, the number of
aromatic rings and chemical structure are used to classify
phenolics (Figure 1). For example, phenol, the simplest form
of phenolics, has one aromatic ring with no extra carbon and
belongs to class simple phenols. Class phenolic acids have a
basic structure of C6-C1, including gallic acid, vanillic acid,
and syringic acid. Lignin, one of the most common com-
pounds in plants, is categorized as class lignins, exhibiting
multiple combination of C6-C3 structure.

Phenolics in soils can exist as (1) a dissolved form, which
moves freely in the soil solution, (2) a sorbed form, which
reversibly binds to the soil particle or proteins, and (3) a pol-
ymerized form, consisting of humic substances (Figure 2).
As many phenolics including phenolic acids and tannins
are water soluble, they remain in solution between soil
particles [15]. Reversible sorption of phenolics by soils occurs
through hydrophobic, hydrogen, and ionic bond [8]. Humic
substances, a stable polymer in soils, are generated by a
polymerization of phenolics with other phenolics or soil
organic matter [9].

Recent studies suggest that the form of phenolics, not
their chemical structure, can influence their fate in soils [16–
19], raising a question on conventional classification of phe-
nolics into a slow, recalcitrant pool in C dynamics climate
model [20]. For example, dissolved phenolics may have

higher chance than sorbed or polymerized ones to encounter
microorganisms in soil solution, allowing them to be
processed quickly into simple, assimilable forms. In contrast,
physically and chemically protected phenolics can persist
longer than dissolved forms, providing feedbacks to SOM-
decomposing microorganisms via changing soil pH, nutrient
availability, and enzyme activities. Thus, caution is required
to investigate the role of phenolics in SOM decomposition.

3. Extraction and Quantification of Phenolics

A variety of methods of extraction and quantification of
phenolic compounds in soils have been established (Table 1).
Solvents such as water, acetone, methanol, and citrate are
widely used to extract phenolics. Blum [21] reported that
soil samples extracted by water and citrate were suitable for
estimating both free phenolic acids and sorbed phenolics.
Arditsoglou and Voutsa [22] showed that acetone has higher
extraction efficiency than methanol in aqueous samples. In
contrast, Mukhopadhyay et al. [23] revealed that a mixture
of methanol and water (6 : 4, v/v) was best to extract total
phenolics and individual phenolic acids from black cohosh.

As the amount of phenolic compounds in soils can vary,
the Folin-Ciocalteu assay is commonly used to determine the
total amount of phenolic acids [24–26].This assay is relatively
simple compared to the CuO oxidation and the HPLC
method. Thoss et al. [27] have compared 5 different methods
to measure phenolic content in various freshwater samples.
They concluded that a different pattern for each site origi-
nated from reactivity of phenolic materials and that Folin-
Ciocalteu assay is the most appropriate for measurement of
total phenolics. However, Ohno and First [28] pinpointed
the limitations of the Folin-Ciocalteu assay that it is suited
only for samples extracted by water, and interference by
organic matter, such as sugars and aromatic amines, makes it
impossible to precisely measure the amount of phenolic acids
in citrate-extracted soils. In addition, the Folin-Ciocalteu
assay was criticized for its low sensitivity [21].

Prior et al. [36] suggested correcting for nonphenolic
compounds by using gallic acid as a reference for stan-
dardization. For quantification of highly polymerized lignin,
gas chromatography (GC) followed by CuO oxidation is
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Table 2: Extracellular enzymes involved in phenolics degradation in soils.

Enzyme Microorganism Optimum condition Reference
pH Temperature

Lignin peroxidase Phanerochaete chrysosporium 2.5 [29]
Phanerochaete chrysosporium 4.2 34 [30]

Manganese peroxidase Phanerochaete chrysosporium 4.5 32 [31]
[30]

Phanerochaete sordida 4.5∼5.0 [32]

Laccase
Trametes versicolor 2.0 [29]
Basidiomycete PM1 4.5 80 [33]

Pycnoporus sanguineus 3∼5 55 [34]
Phenol oxidase Termitomyces albuminosus 2.3 [35]
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Figure 2: Various forms of phenolic compounds in soils. A dissolved form (a) where phenolics make multiple hydrogen bonds with water
molecules surrounding them. A sorbed form (b) where phenolics are absorbed in soils and may detach from them reversibly through ionic,
hydrogen, and hydrophobic bonds. A polymerized form (c) where phenolics consist of humic substances connected with other soil organic
matter.

employed [37, 38]. CuO oxidation has the potential to be a
powerful tool to estimate lignin content in soils as well as
the degree of lignin decomposition [39]. Even though GC
yields a high sensitivity, the low volatility of simple phenolic
compounds requires a derivatization step, resulting in longer
sample preparation [40]. Over recent decades, analysis of
phenolics has been conducted via high performance liquid
chromatography (HPLC) [41–44]. However, wide use of
HPLC in ecological studies has been restricted by high cost
and complicated process of operation.

4. Degradation of Phenolics

In soils, phenolics aremainly degraded by fungi (e.g., Basidio-
mycetes and Ascomycetes) and bacteria (e.g., Pseudomonas).
These microorganisms release extracellular enzymes into
soils that break down phenolic compounds (Table 2). Pheno-
lics-degrading enzymes are often named as phenol oxidase
or peroxidase, according to their electron acceptor [45].
Both enzymes cause nonspecific oxidation of phenolic com-
pounds, consuming oxygen and hydrogen peroxide as an
electron acceptor, respectively.

Environmental factors, such as soil pH, temperature,
oxygen, and substrate, can affect the degradation of pheno-
lics. Contrary to the relatively low optimal pH of purified
enzymes in laboratory conditions (Table 2), Sinsabaugh [45]
found that there is a positive relationship between phenolics-
degrading enzyme activities and soil pH across ecosystems.
Likewise, Pind et al. [24] have reported that phenol oxidase
activity increases as pH of peat soils increases. Regarding
temperature, phenol oxidase showed no clear relationship
[46–48] in the field conditions probably due to the interactive
effecs of oxygen availability at different temperatures. How-
ever, purified phenol oxidase increased its decay of L-DOPA,
a proxy of phenolics in lab conditions, at a temperatture of
5–25∘C [49]. As phenol oxidase uses oxygen as an electron
acceptor, its activity is proportional to oxygen concentration
[24]. The relationship between the activity of phenol oxidase
and phenolics concentration in natural ecosystem is not clear,
as conflicting evidence is currently present.While some stud-
ies reported a positive relationship [2, 38, 50, 51], still others
demonstrated contradictory results, reporting a negative or
inverse relationship [25, 52–54] or no relationship [55, 56].
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Figure 3: Effects of phenolics on the rate of soil organic matter decomposition.

Such diverse responses, however, should be interpreted with
care. In case of soil systems with a large amount of phenolics
such as peat matrix, higher phenol oxidase in soil results in
higher phenolic content in pore water as a product of enzyme
action on peat, resulting in a positive relationship between
phenol oxidase and phenolics. However, if correlation anal-
ysis was conducted between phenol oxidase in soils and
phenolics in soil matrix or soil extract in mineral soils such
forest soils, a negative correlation has often been reported
because here phenolics may represent an enzyme substrate
rather than a product. Another possibility is the dual func-
tions of phenol oxidase. For example, Burke and Cairney [57]
pointed out that mycorrhizal laccases can mediate both in
depolymerization and polymerization and that, without the
knowledge of redox mediators for these enzymes, predicting
the direction of phenolics processing may be difficult.

Degradation of phenolics is usually reported by several
groups to be slower than the degradation of other SOM
fractions. The litter bag experiment demonstrated that labile
compounds in litter such as carbohydrates and proteins
were preferentially decomposed over phenolic compounds
[3, 58]. As such, phenolic concentrations have been useful
in predicting the rate of litter degradation [59, 60]. Yet, as
stated above in Section 2, phenolics can decompose fast in
certain conditions. Soluble phenolics and tannins degraded
to 36∼50% of the initial content in the litter bag experiment
[61, 62]. Degradation of lignin, determined by the acid to
aldehyde ratioin CuO oxidation products (see Table 1), was
dominant over degradation of other SOM in forest soils [63].
14C-labelling revealed that 56∼68% of lignin from maize
was transformed into CO

2
during 6 months of a laboratory

incubation [64].

5. Effects of Phenolics on
Other SOM Decomposition

Effects of phenolics on SOM decomposition have been
studied directly (i.e., litter bag) or indirectly (i.e., microbial
biomass, extracellular enzyme activity, and heterotrophic res-
piration). Generally, phenolics reduced the rate of litter/SOM
decomposition [65, 66]. Moreover, phenolic acids released
by Sphagnum in peatlands suppressed bacterial and fungal
growth [67, 68]. Even low concentrations of phenolics in peat
homogenates have been noted to inhibit the activity of 𝛽-
glucosidase, phosphatase, sulphatase, chitinase, and xylosi-
dase by 21, 15, 32, 18, and 14%, respectively [69]. In addition,
dissolved organic matter containing phenolic compounds
from peat samples decreased CO

2
production in anaerobic

conditions [70]. Likewise, the rate of litter decompositionwas
shown to be inversely proportional to the phenolic content in
litter [61].

As illustrated in Figure 3, the inhibition of decomposition
by phenolics can occur via (1) formation of covalent bonds
with proteins, decreasing N mineralization and enhancing
N limitation to microorganisms [71], (2) oxidation of other
phenolics, leading to humus formation [72], (3) suppression
of microbial growth by lowering pH [73], (4) deprivation of
metal ions by their high cation-exchange capacity [74], or
(5) a formation of phenolic-enzyme complex, inactivating
decomposition activity [75]. Yet, there are several studies
beyond this simple negative relationship between phenolics
and decomposition. Fierer et al. [76] found out that low
molecular phenolic compounds and some tannins could
serve as a labile substrate, promoting microbial biomass.
Müller et al. [77] showed that lignin-derived phenolic
compounds induced cellulase production, suggesting their
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potential to enhance decomposition. Significant reduction in
SOM content was also observed after phenolics were added
[78]. In agreement with this finding, phenolic concentrations
have been reported to be positively correlated to CO

2
release

from soil [79] or litter [66].
Opposing reviews on the effect of phenolics on SOM

decomposition argue further studies on the relationship
between the forms and the roles of phenolics on decompo-
sition and clearer terminology, as a wide range of molecules
are defined as phenolics. In general, simple phenolics, such
as phenolic acids, appear to increase decomposition, while
complex phenolics decrease decomposition. Hoostal and
Bouzat [80] showed that microbial extracellular enzyme
activities were dependent on the source and composition of
phenolics, rather than the absolute quantities of phenolics.

6. Effects of Environmental
Changes on Phenolics

So far, several studies have aimed at elucidating how envi-
ronmental changes such as elevated CO

2
, warming, N depo-

sition, and drought may affect phenolic production from
plant tissues, subsequent degradation in soils, and SOM
decomposition.

Elevated CO
2
usually increases phenolic concentrations

in plants (Table 3). In field CO
2
enrichment experiments,

phenolic compounds in plant tissues, such as leaves, needles,
stems, and rhizomes, increased by 11–182% [81–84]. Elevated
CO
2
can increase carbon supply and nutrient (e.g., N)

stress in trees, resulting in decreased carbon demand. Such
change is known to accelerate the accumulation of total
nonstructural carbohydrates and the synthesis of carbon-
based secondary or structural compounds [81]. Change in the
concentration of phenolics from plant tissues may impart its
effect on downstream processes including SOM decomposi-
tion. For example, Siegenthaler et al. [58] found that elevated
CO
2
induced a production of phenolic-rich litters, resulting

in declining SOM decomposition. Effects of elevated CO
2
on

phenolic production in wetlands including peatlands have
been extensively studied because wetlands are one of the
key sources of DOC and phenolics to aquatic ecosystems.
For example, elevated CO

2
increased DOC and phenolic

leaching from wetlands [69, 85], which may decrease hydro-
lase activities [2]. However, some studies have reported a
faster degradation of phenolics at elevated CO

2
. After 559

days of litter bag incubation, lignin loss from Mongolian
oak fine roots was 13% faster in the elevated CO

2
chamber

than in the ambient chamber, which was attributed to a 10%
increase in phenol oxidase activity compared to the control
nontreated group [86]. Moreover, phenolic compounds in
an ombrotrophic bog decreased by 15.4% at elevated CO

2

compared to control [87], suggesting that elevated CO
2
may

accelerate phenolic degradation. It appears that elevated CO
2

often increases the total amount of carbon supplied to below-
ground microorganisms and may induce “priming” effects to
accelerate the decomposition of old or recalcitrant organic
matter. Norby et al. [88] studied the effects of elevated
CO
2
on litter chemistry and decomposition rates in upland

vegetation and demonstrated that elevated CO
2
does increase

lignin content in leaf litter significantly, but there is no
significant effect on decomposition rate. In summary, further
investigation is warranted on the effects of increasing pheno-
lics on decomposition because of the involvement of other
factors such as vegetation types, ecosystem types, nutrient
availability, and changes in other factors (e.g., temperature
and water availability).

Rising temperature is expected to be accompanied by
an increase in atmospheric CO

2
concentration. Few studies

have measured the effect of warming on phenolic production
and degradation, with an emphasis on whole organic matter
decomposition. Unlike the rather unidirectional influences of
elevated CO

2
, warming has various effects on the production

of phenolics (Table 3). Increases in temperature have led to
both an increase [89] and a decrease [90] in phenolic pro-
duction. Warmer conditions usually accelerate biochemical
reactions andmay result in lowering production of secondary
metabolites because plant growth would be enhanced. In
fact, Zvereva and Kozlov [91] have reported lower phenolic
contents under warming conditions than control in their
meta-analysis.However, interactive or simultaneous effects of
elevated CO

2
and warming in relation to phenolics produc-

tion have not been reported [83, 90] because two effects often
negate each other [91].

N enrichment was studied in terms of atmospheric N
deposition and fertilizer additions. Many studies suggest that
phenolic concentrations are unchanged after N enrichment
[92–94]. Extracellular enzymes, such as phenol oxidase and
peroxidase, have been widely used for estimating the rates
of phenolic degradation and SOM decomposition with N
additions. Often, N enrichment decreases phenol oxidase
[85, 95], while hydrolases are often activated. Sinsabaugh
[45] reviewed that responses of phenol oxidase to N enrich-
ment can differ by the types of ecosystem determined, as
it decreases its activity in the forest and increases it in
grassland or agricultural system. These contrasting results
may originate from the initial lignocellulose contents in
litter. In contrast, Bragazza et al. [96] have reported that N
deposition can accelerate carbon release from peat bogs by
activating phenol oxidase.

Global climate change models often predict increases
in frequency and intensity of drought. Such changes can
affect water availability in terrestrial ecosystems and water
levels in wetlands. In wetlands, the effects of drought on
nutrient cycling have drew much attention due to their close
association with water. Most studies reported that drought
increases the activity of phenol oxidase, implying stimulated
decomposition [87, 97–99]. On the other hand, reduction
in phenol oxidase activity was also found in peatland and
heathland in response to simulated drought [4, 100]. Tober-
man et al. [100] suggested that initial water content in soils
may be responsible for these contrasting responses and that a
hyperbolic relation exists between water content and phenol
oxidase.

7. Phenolics for Carbon Storage

Changes in the concentration, form, and decay rate of
phenolics in response to climate can guide to better sequester
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Table 3: Effects of environmental changes on phenolics and decomposition.

Environmental changes Phenolics
production

Phenolics
degradation Decomposition References

CO2

+/− [83]
+ [84]
× [101]
+ [102]
+ [103]
+/× [104]
× − [105]
+ − [58]
+ [82]
+ [90]
+ [81]

+ [86]
+ + [87]

Warming

− [90]
× [83]

× [106]
+/− [107]
+ [89]

− [108]

N deposition

× +/− [105]
+ − [58]

+/− [45]
×/− [94]
×/− [92]
− [93]

Drought

+ + [87]
− [109]

− [100]
×/− − [100]

+ [110]
+ [98]

+ + [99]

CO2 ×Warming
× [90]
×/− [83]

− [108]

CO2 × N deposition
− [111]
− [105]
− [58]

CO2 × Drought × [87]
Warming × N deposition

− [112]
+: stimulation, −: inhibition, and ×: no effect or interaction.

terrestrial C. Recently, Freeman et al. [7] have proposed
that enhanced carbon storage in ecosystems, particularly in
peatlands, is feasible by modifying phenolic contents which
inhibit decomposition of organic matter by a mechanism
called “enzymic latch” [113, 114].They proposed that increases
in phenolic content in peat ecosystems can be achieved either

by increased expression of phenolic inhibitors from peatland
plants or by enhancement of enzyme latch by physico-
chemical modification. Furthermore, it is widely known that
phenolic content can be enhanced by modifying pyrolysis
conditions such as temperature, pyrolysis time, substrate, and
oxygen supply for biochar preparation [115]. As such, we
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propose that addition of biochar with high phenolics content
represents a further approach to stabilize SOM in terrestrial
ecosystems by inhibiting enzyme activities [116].

8. Future Studies Suggested

Studies of the ecological significance of phenolics have been
conducted extensively since 1980, contributing significant
understanding of their production, quantification, degrada-
tion, and effect on decomposition. As a secondarymetabolite,
phenolics have a range of structures and forms, with different
reactivity. As such, application of appropriate methods for
extraction andmeasurementmust be applied according to the
aims of each study. Assays to assess the activities of phenol
oxidase and peroxidase have been developed to predict the
degree and the direction of phenolic degradation.

However, there still remains controversy over how phe-
nolics influence soil C cycling and how they are likely to
respond to anticipated global environmental changes. For
example, a larger supply of phenolics by global climate
change may result in either faster or slower decomposition
depending on thewider environmental conditions (Figure 3).
Further, we conclude that the opposing trends of the effect
of phenolics on SOM decomposition may be attributed to
an insufficiently refined definition of the term “phenolics” or
to the lack of information on redox mediators that control
extracellular enzyme activities. We, therefore, propose that
further studies are needed to understand fate of phenolics
in response to simultaneous environmental changes with far
higher resolution than in current practice. 13C labeling may
be an appropriate tool to elucidate phenolic turnover in soils.
Additionally, molecular approaches aiming at specific genes
for phenol degrading enzymes must be considered. Enhanc-
ing our knowledge about the role of phenolics following
environmental change will facilitate a better understanding
of nutrient dynamics in soils. Ultimately, such information
can also be applied to techniques for carbon sequestration
in terrestrial ecosystems by slowing down decomposition
processes.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

The authors would like to thankMinJung Kwon for reviewing
the paper.

References

[1] S. Hättenschwiler and P. M. Vitousek, “The role of polyphenols
in terrestrial ecosystem nutrient cycling,” Trends in Ecology and
Evolution, vol. 15, no. 6, pp. 238–242, 2000.

[2] C. Freeman, C. D. Evans, D. T. Monteith, B. Reynolds, and N.
Fenner, “Export of organic carbon from peat soils,” Nature, vol.
412, no. 6849, p. 785, 2001.

[3] P. Rovira and V. R. Vallejo, “Labile and recalcitrant pools of
carbon and nitrogen in organicmatter decomposing at different
depths in soil: an acid hydrolysis approach,” Geoderma, vol. 107,
no. 1-2, pp. 109–141, 2002.

[4] H. Toberman, R. Laiho, C. D. Evans et al., “Long-term drainage
for forestry inhibits extracellular phenol oxidase activity in
Finnish boreal mire peat,” European Journal of Soil Science, vol.
61, no. 6, pp. 950–957, 2010.

[5] J. P. Schimel, R. G. Cates, and R. Ruess, “The role of balsam
poplar secondary chemicals in controlling soil nutrient dynam-
ics through succession in the Alaskan taiga,” Biogeochemistry,
vol. 42, no. 1-2, pp. 221–234, 1998.

[6] T. E. C. Kraus, R. J. Zasoski, and R. A. Dahlgren, “Fertility and
pH effects on polyphenol and condensed tannin concentrations
in foliage and roots,” Plant and Soil, vol. 262, no. 1-2, pp. 95–109,
2004.

[7] C. Freeman, N. Fenner, and A. H. Shirsat, “Peatland geoengi-
neering: an alternative approach to terrestrial carbon seques-
tration,” Philosophical Transactions of the Royal Society A, vol.
370, no. 1974, pp. 4404–4421, 2012.

[8] H. M. Appel, “Phenolics in ecological interactions: the impor-
tance of oxidation,” Journal of Chemical Ecology, vol. 19, no. 7,
pp. 1521–1552, 1993.

[9] T. E. C. Kraus, R. A. Dahlgren, and R. J. Zasoski, “Tannins in
nutrient dynamics of forest ecosystems—a review,” Plant and
Soil, vol. 256, no. 1, pp. 41–66, 2003.

[10] R. G. Cates and D. F. Rhoades, “Patterns in the production
of antiherbivore chemical defenses in plant communities,”
Biochemical Systematics and Ecology, vol. 5, no. 3, pp. 185–193,
1977.

[11] L. Bravo, “Polyphenols: chemistry, dietary sources, metabolism,
and nutritional significance,” Nutrition Reviews, vol. 56, no. 11,
pp. 317–333, 1998.

[12] J. D. Box, “Investigation of the Folin-Ciocalteau phenol reagent
for the determination of polyphenolic substances in natural
waters,”Water Research, vol. 17, no. 5, pp. 511–525, 1983.

[13] J. I. Hedges and J. R. Ertel, “Characterization of lignin by gas
capillary chromatography of cupric oxide oxidation products,”
Analytical Chemistry, vol. 54, no. 2, pp. 174–178, 1982.

[14] W. Kelley, D. Coffey, and T. Mueller, “Liquid chromatographic
determination of phenolic acids in soil,” Journal of AOAC
International, vol. 77, pp. 805–809, 1994.

[15] V. M. Hebatpuria, H. A. Arafat, H. S. Rho, P. L. Bishop, N.
G. Pinto, and R. C. Buchanan, “Immobilization of phenol
in cement-based solidified/stabilized hazardous wastes using
regenerated activated carbon: leaching studies,” Journal of
Hazardous Materials, vol. 70, no. 3, pp. 117–138, 1999.

[16] M. W. I. Schmidt, M. S. Torn, S. Abiven et al., “Persistence of
soil organic matter as an ecosystem property,” Nature, vol. 478,
no. 7367, pp. 49–56, 2011.

[17] R. T. Conant, M. G. Ryan, G. I. Ågren et al., “Temperature and
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