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To rapidly evaluate the safety and efficacy of COVID-19 vaccine candidates, prioritizing vaccine trial sites
in areas with high expected disease incidence can speed endpoint accrual and shorten trial duration.
Mathematical and statistical forecast models can inform the process of site selection, integrating avail-
able data sources and facilitating comparisons across locations. We recommend the use of ensemble fore-
cast modeling – combining projections from independent modeling groups – to guide investigators
identifying suitable sites for COVID-19 vaccine efficacy trials. We describe an appropriate structure for
this process, including minimum requirements, suggested output, and a user-friendly tool for displaying
results. Importantly, we advise that this process be repeated regularly throughout the trial, to inform
decisions about enrolling new participants at existing sites with waning incidence versus adding entirely
new sites. These types of data-driven models can support the implementation of flexible efficacy trials
tailored to the outbreak setting.

� 2020 Elsevier Ltd. All rights reserved.
1. Introduction

The COVID-19 pandemic is a public health emergency, and
there is an urgent need for effective vaccines to limit morbidity
and mortality. Efforts are underway to accelerate all steps in the
vaccine development pathway [1]. Large randomized field trials
are crucial for determining the safety and efficacy of candidates
to inform regulatory decisions [2]. In these trials, many thousands
of eligible and consenting participants across multiple sites are
enrolled and individually randomized to vaccine or control. These
trials are event driven, where an expected primary endpoint is
laboratory-confirmed symptomatic disease [3], with infection
regardless of symptoms as a valuable secondary endpoint [4].
Selecting vaccine trial sites where disease incidence is highest dur-
ing the study period can accelerate the accrual of endpoints.
Mathematical and statistical models are recognized as valuable
tools for planning infectious disease clinical trials [5]. They can be
used to optimize design features such as cluster size or to examine
the validity of the trial’s statistical analysis [6]. The use of spatially
explicit forecast models to select vaccine trial sites was first
explored during the 2015–2016 Zika epidemic [7]. These forecast
models synthesize available data to make projections about which
sites might have the highest future disease incidence.

An important value of models is that they standardize projec-
tions across locations. Trends in raw reported numbers of cases
depend heavily on the sensitivity of the underlying surveillance
system. Case definitions and access to care and testing may vary
over time and space. Models that integrate many data sources,
such as reported cases, test positivity, hospitalizations and deaths,
can facilitate more meaningful comparisons across locations. Fore-
casts provide estimates along with the uncertainty associated with
those estimates to make best use of the available information.

Models can incorporate many features to capture the complex
dynamics of infectious diseases. Incidence is expected to vary
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widely over time and between locations, as a function of control
measures in place, patterns of introduction, seasonality, and other
sources of variability. Mathematical models naturally account for
prior circulation of the virus and any buildup of population-level
immunity. Areas that have already experienced substantial out-
breaks may be less suitable for inclusion, and this would be
reflected in projections. Models can explicitly capture correlation
due to movement between nearby sites or between sites and a
common hub [8]. Models can also reflect relevant population-
level features associated with expected incidence, such as density,
race/ethnicity, age distribution, and educational status.

We recommend the use of ensemble modeling, whereby multi-
ple modeling groups prepare independent projections and these
are combined to guide decision-making. Individual models can
be agent-based, compartmental, or statistical, can use different
assumptions and data sources, but are all tasked with the same
question of which sites are likely to have the highest disease inci-
dence over a moderate time horizon. Ensemble modeling has been
shown to be more robust for complex systems than specialist mod-
els and better able to capture the complete range of possible out-
comes [9]. The strength of ensemble modeling has been shown
for diseases like influenza [10], dengue [11] and Ebola [12]. Ensem-
ble modeling for COVID-19, like the COVID-19 Forecast Hub, is
similarly more robust [13].

In addition to using forecast modeling for initial site selection,
we propose that modeling be repeated at regular intervals
throughout the trial. In the context of outbreaks, trials should be
flexible to allow new sites to be added in response to evolving epi-
demiology [14]. Some sites will have lower than projected inci-
dence during the trial period. For example, local policies or
voluntary changes in behavior could effectively reduce transmis-
sion, meaning that the site is no longer a ‘‘hotspot.” The modeling
results can guide investigators deciding whether to continue to
enroll new participants from existing sites, or to enroll new sites
in emerging hotspots.

In this paper, we describe a simplified framework for the use of
ensemble modeling to guide the selection and continued evalua-
tion of sites for a vaccine efficacy trial, with a focus on the
COVID-19 pandemic.
2. Ensemble modeling for trial planning

2.1. Individual model structure

Individual modeling teams are welcome to contribute to the
consensus model. We assume that models would already be built
for general public health planning, so they would not be con-
structed only for this effort, though they may need to be modified.
Investigators can leverage existing groups or form new groups of
modelers. Participating modeling teams would be provided with
a list of all candidate sites being explored. This list of sites may
be based on previous engagement between the trial investigators
and potential research partners. For a multi-country trial, this
may include several sites per country from multiple countries.

Participating models must meet a minimum set of require-
ments. Suggested guidelines are the ability to: (i) capture all geo-
graphic areas in the candidate list of sites, (ii) disaggregate to at
least the first administrative level (e.g. state, province), though
finer levels may be preferred for certain planning activities, (iii)
project the COVID-19 symptomatic cumulative incidence, i.e. the
number of new symptomatic infections of any severity divided
by the total population size during a pre-specified period (three
months suggested), and (iv) produce a minimum of 1000 simulated
epidemics. Models must also be screened for internal consistency
and basic plausibility when compared to historical trends.
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For each site, each model must generate a probabilistic predic-
tive distribution for quantities of interest, such as the symptomatic
cumulative incidence. These are bins of 1% width centered around
whole numbers [0.5, 1.5%), [1.5, 2.5%), [2.5, 3.5%) and so on. The bin
that includes 0% is narrower [0, 0.5%).
2.2. Model aggregation

For each site, probabilistic predictive distributions are aggre-
gated across models using stacking. Fig. 1 describes a hypothetical
model stacking procedure for a target site, per Ray and Reich [9)]
For simplicity and transparency, each model is assigned an equal
weight, which is one over the number of models as done by the
COVID-19 Forecast Hub [13]. If a participating team has developed
more than one model, they must specify which model is primary
and will contribute to the aggregate. More complex weighting
schemes exist that preferentially weight models that performed
best in previous rounds after an appropriate burn-in period [9].

For each site, we can use the combined predictive distribution
to produce summary statistics. Suggested summary statistics are:
(i) median incidence value, (ii) 25th percentile incidence value,
(iii) 75th percentile incidence value, and (iv) probability incidence
value is [0, 0.5%) (probability of a very small or no outbreak).

To present this information in a way that is easy for trial inves-
tigators to explore, we recommend reporting stacked projections,
summary statistics, and basic information about the sites in an
interactive tool, like the R Shiny platform [15]. This allows the
end user to sort the table or select rows for closer examination.
In this way, they could select a subset of ‘‘best rows” and view
these together to approximate the formation of a trial. Fig. 2 is a
sample screenshot from such a program (code provided in Supple-
mental Materials).

By generating a range of possible outcomes, models can capture
the stochasticity of future transmission, including scenarios where
incidence is much lower or much higher than the median projec-
tion. Where incidence is highly variable with the potential to be
very low, it may be preferable to include a larger number of sites
to guard against the chance of accruing no efficacy data.
2.3. Site selection

The goal of ensemble modeling is to provide a simple and infor-
mative resource rather than a definitive recommendation. Investi-
gators will simultaneously consider many operational, political,
and scientific factors. To provide context, we describe several other
key considerations.

To ensure a high-quality trial, sites should have adequate capac-
ity for testing, safety monitoring, active surveillance, and high par-
ticipant retention. Nonetheless, sites with projected high incidence
but poorer capacity should not be excluded if there is a potential
role for mobile trial teams, as was used in the Ebola ring vaccina-
tion trial in Guinea [16]. Approval for the trial may be at the
national or sub-national level, with flexibility to identify the partic-
ular target population when investigators are ready to start
enrollment.

For multi-country trials, investigators must weigh including
multiple sites per country against including more countries. On
one hand, given the complexity of country-specific procedures
for approving clinical research, it may be easier to include multiple
sites per country from fewer countries overall. On the other hand,
the global community must ensure equitable access to potentially
effective vaccines. Broad representation also increases generaliz-
ability of the trial results, as it can best capture the effectiveness
of vaccine candidates in diverse settings. These include variations
in population age profile, race/ethnicities, climate, background



Fig. 1. Hypothetical model stacking procedure for a target trial site. The procedure integrates projections from three independent models. For each model, cumulative
incidence during a target period is projected and then summarized in bins of 1% width (left). Models are equally weighted and then stacked in an ensemble model projection
(right). This process is repeated for each site. Figure modeled after Ray and Reich (2018).

Fig. 2. Screenshot from an interactive tool to display ensemble model projections and associated summary statistics. The rows are sortable and can be selected or deselected
to form a hypothetical trial. Additional columns can be added to describe site features that are useful to investigators.
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presence of non-pharmaceutical interventions, and co-circulation
of other coronaviruses.

Including many different geographic locations makes trials
more robust to changes in the epidemic. While China was once
the center of the COVID-19 epidemic, several treatment trials initi-
ated there were underpowered due to waning transmission [17].
As other countries adopt more effective control strategies, inci-
dence would likely decline, but it is less likely to wane in all areas,
and new sites can also be added. Experience with Zika in the Amer-
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icas provides a useful counter-example, though, where trials were
not possible because incidence dramatically declined everywhere
[18]. If that were to occur, the ensemble modeling process would
be useful for assessing trial feasibility.

2.4. Model evaluation

Finally, the ensemble modeling process should be evaluated by
comparing model projections to subsequently observed data. An
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evaluation procedure could be conducted prior to each new round
of modeling, before investigators want to make decisions about
adding new trial sites. This process could assess how well model-
projected rankings corresponded to observed rankings of hardest
hit sites. Where there is a lot of uncertainty in which sites will have
highest incidence, as reflected in low correlation, investigators may
feel more comfortable making future decisions based on logistical
or political considerations rather than purely on model rankings.

This evaluation procedure could also be conducted formally
after the trial ends to compare model-projected and observed
cumulative incidence and observed incidence during the target
time periods. These types of reports are very useful for understand-
ing the role of modeling as a tool for real-time decision-making in
outbreaks [13,19].

3. Discussion

We describe an ensemble modeling procedure to inform site
selection for a vaccine efficacy trial planned during an ongoing epi-
demic. By prioritizing sites with highest projected disease inci-
dence, investigators can accelerate the pace of endpoint accrual.
Mathematical and statistical models synthesize the best available
evidence to guide this planning. We focus on COVID-19 as a moti-
vating example, but the general principles apply to other emerging
infectious diseases.

We present a highly simplified procedure to reduce the burden
on modeling groups to prepare results and potentially enable more
groups to participate. For example, models could, but not be
required to, explicitly account for the impact of vaccination on
transmission dynamics. The assumption is that population vaccine
coverage will be relatively low even in large trials, and that the
rank ordering of sites is similar in less complex models. This is a
recommended minimum structure, but other relevant practical
questions will likely emerge that can be explored as add-ons. For
example, the modeling results can be used to answer questions
about expected duration of the trial as a function of enrollment
rates and expected incidence. Nonetheless, it is important to
remember that projections can be very uncertain, particularly as
they depend upon rapidly changing policies and human behavior.
Thus, we focus on simple output for the purposes of prioritization,
acknowledging that other important questions may be difficult to
answer precisely.

In addition to identifying geographic locations, models could
also be used to explore targeted enrollment in sub-populations
defined by age, occupation, or other covariates. Models could also
guide the design of post-licensure observational studies for contin-
ued evaluation of vaccine effectiveness.

4. Conclusions

It is a top priority to rapidly evaluate the safety and efficacy of
candidate COVID-19 vaccines. Data-driven models can help to opti-
mize site selection and contribute to accelerating trials in a setting
where every day counts.
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