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NARRATIVE REVIEW
Artificial Intelligence and the Future of Gastroenterology and
Hepatology
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The integration of artificial intelligence (AI) into gastro-
enterology and hepatology (GI) will inevitably transform
the practice of GI in the coming decade. While the appli-
cation of AI in health care is not new, advancements are
occurring rapidly, and the future landscape of AI is begin-
ning to come into focus. From endoscopic assistance via
computer vision technology to the predictive capabilities
of the vast information contained in the electronic health
records, AI promises to optimize and expedite clinical and
procedural practice and research in GI. The extensive body
of literature already available on AI applications in gastro-
enterology may seem daunting at first; however, this review
aims to provide a breakdown of the key studies conducted
thus far and demonstrate the many potential ways this
technology may impact the field. This review will also take a
look into the future and imagine how GI can be transformed
over the coming years, as well as potential limitations and
pitfalls that must be overcome to realize this future.
Keywords: Big data, Future of healthcare, Machine learning,
Neural networks
Introduction
Abbreviations: AI, artificial intelligence; ANN, artificial neural network; BE,
Barrett’s esophagus; CNN, convolutional neural network; DNN, deep
neural network; EHR, electronic health record; SCC, squamous cell car-
cinoma; SVM, Support Vector Machine; WCE, wireless capsule
endoscopy.
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The term artificial intelligence (AI) was first intro-
duced in the 1950s and refers to the application of

computers to perform complex tasks, such as solving
problems and making nuanced decisions, that have tradi-
tionally been associated with human intelligence.1 Interest
in AI-driven health care and medicine has been exploding in
recent decades, owing largely to the vast increase in data
available since the establishment of the electronic health re-
cord (EHR). In fact, from 2008 to 2018, over 23,000 papers
concerning the application of AI in health care have been
published.2 The current emphasis of AI in medicine is a
direct response to the challenges facing health-care systems
including increasingly complex patients, higher billing and
coding requirements, and a growing population that leaves
less time for interactions between a health-care provider
and their patients than ever before. The hope is for a future
where AI-driven health care can lead to improvements
through all aspects of patient care by leveraging the vast
quantities of data currently stored in the EHR.3,4

Machine learning (ML) lies at the crux of the most
modern AI and encompasses algorithms on a wide spectrum
from “supervised” to “unsupervised” learning. These
frameworks, as described in the previous issue by Rattan
et al., allow researchers to accomplish tasks with accuracy,
speed, and precision not previously possible.5,6 The ability
to organize and analyze large amounts of clinical informa-
tion such as documentation, laboratory, and imaging data
makes ML particularly powerful. As the majority of the in-
formation included in the EHR is stored as unstructured
data, it has previously only been accessible to research via
laborious review of individual charts. By accessing these
data, ML algorithms can accomplish a wide variety of tasks
such as disease identification and outcome prediction
with accuracy that outperforms classical statistical
methodology.5

The application of AI in gastroenterology has shown
significant promise, primarily due to the strong body of ML
research involving image recognition. These algorithms
have already been applied to endoscopy with encouraging
results and have subsequently led to improved disease
detection and classification with greater accuracy than even
the most experienced endoscopists.7 However, many chal-
lenges such as identifying potential biases in algorithms,
expanding generalizability, and increasing interpretability
still exist.8 Additionally, for these new advances to truly
transform health care, widespread adoption is necessary. A
substantial degree of skepticism exists in the medical com-
munity regarding the utility of AI in clinical practice, which
will need to be addressed in the coming years.9

In this article, we highlight important studies utilizing AI
in gastroenterology and hepatology to demonstrate the
possibilities through which AI can transform clinical prac-
tice. We discuss how AI has been applied in various domains
of gastroenterology and hepatology (GI) including upper
endoscopy, colonoscopy, capsule endoscopy, pathology,
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radiology, and EHR data while also looking at potential
breakthroughs on the horizon that promise to significantly
improve patient care while alleviating the administrative
burden on health-care providers.
Computer Vision in Endoscopy
Over the past 10 years, research into the possible ap-

plications of novel ML algorithms in upper endoscopy, co-
lonoscopy, and wireless capsule endoscopy (WCE) has been
increasing exponentially. Already, major advancements have
been made in identifying early stages of diseases, deter-
mining potential treatment options, and reducing the overall
burden of endoscopists. The extensive work that has been
done in understating the ways in which ML can transform
endoscopic practice has been outlined in a number of high-
quality reviews that focus on specific endoscopic modal-
ities.7,10,11 We will highlight notable studies in ML-driven
endoscopy and the potential of this technology to revolu-
tionize clinical practice over the coming years (Figure 1).

Upper Endoscopy
In upper endoscopy, much of the ML research thus far

has focused on Barrett’s esophagus (BE), esophageal squa-
mous cell cancer (SCC), Helicobacter pylori (H. pylori)
infection, and gastric cancer.

BE is the primary risk factor in the development of
esophageal adenocarcinoma, which is associated especially
with poor survival.12 Screening for BE and early esophageal
adenocarcinoma is challenging, as evidenced by the fact that
only 1 in 10 cases of esophageal adenocarcinoma are diag-
nosed within a screening program.13 Thus, an AI-enabled
aid that can assist in the detection of neoplastic changes
in BE has been a focus of AI research and has the potential
to improve clinical outcomes.14 In 2016, a Support Vector
Machine (SVM) model was created based on endoscopy
images to identify early neoplastic changes in patients with
BE and was able to do so with a sensitivity and specificity of
0.86 and 0.87, respectively.15 An algorithm combining
multiple ML models has also been developed to detect
neoplasia from volumetric laser endomicroscopy images
and was able to detect neoplasia with a sensitivity and
specificity of 90% and 93%, respectively.16 In 2020, de
Groof et al17 developed a deep learning model based on
1704 endoscopic images of nondysplastic BE and early stage
neoplastic BE. This model was able to classify images as
either neoplasia or nondysplastic BE with 90% sensitivity
and 88% specificity. Additionally, when compared to gen-
eral endoscopists, the system identified dysplasia with
greater accuracy, 88% vs 73%.17 This model also proved
useful in identifying the optimal site for biopsy in over 92%
of cases.18 Another model was created using a convolutional
neural network (CNN) trained on 916 endoscopic images of
patients with histology-proven neoplastic BE and 919 con-
trol images from patients with nondysplastic BE. This model
was able to detect early neoplasia with a sensitivity and
specificity of 96.4% and 94.2%, respectively.19 The first true
real-time application of a deep learning model to identify
early neoplastic BE was published by Ebigbo et al20 in
2020 and deployed their previously developed CNN dur-
ing live endoscopy to accurately identify cases of
neoplastic BE with an accuracy of 89.9%, similar to that of
expert endoscopists.

Esophageal SCC is another disease in gastroenterology
where the possibilities of ML are beginning to be explored.
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In 2019, a deep neural network (DNN) was trained on 2428
endoscopy images and was able to identify esophageal SCC
with a sensitivity and specificity of 97.8% and 85.4%,
respectively. Accuracy in identification was 91.4%,
compared with 88.8% in a group of senior endoscopists and
77.2% in junior endoscopists. However, when the endo-
scopists were given access to the DNN tool to assist with
decision-making, the diagnostic ability of all the endo-
scopists improved considerably.21 A model was also created
to specifically identify dysplasia and early esophageal SCC.
This CNN-driven model was based on 6473 narrow-band
images and was able to correctly identify dysplasia and
early esophageal SCC with 98% sensitivity and 95% speci-
ficity.22 These studies demonstrated the feasibility of
deploying a ML-driven model during live endoscopy to
assist with the diagnosis of esophageal SCC.

Upper endoscopy can be beneficial in the diagnosis of
H. pylori gastritis; however, accuracy of diagnosis during
endoscopy is quite difficult with a sensitivity of 62% and
specificity of 89%.23 An early ML model from 2004 involved
a CNN trained on endoscopy images from 30 patients and
was able to predict the presence of gastric atrophy, intes-
tinal metaplasia, and H. pylori-related gastric inflammation
with a sensitivity of 85% and a specificity of 90%.24 Further
progress was made in 2017 by Shichijo et al who developed
a CNN based on over 30,000 endoscopic images that could
be employed during live endoscopy to predict the presence
of H. pylori infection. This model that was able to predict the
presence of H. pylori infection with a sensitivity of 89% and
a specificity of 87% was significantly quicker and more
accurate than experienced endoscopists.25

Gastric cancer also presents an opportunity for im-
provements in care with ML, as diagnosing early gastric
cancer is challenging, with reports of miss rates as high as
11% during upper endoscopy.26 In 2012, Kubota et al27

developed a model able to differentiate T1 through T4
gastric cancer staging with a modest accuracy of 64%. An
improved model utilized a CNN trained on 790 endoscopic
images that was able to determine depth of tumor invasion
with an area under the curve (AUC) of 0.94. This model
demonstrated a higher accuracy and specificity in deter-
mining tumor invasion than human endoscopists.28 Another
model was developed to identify early gastric cancer, in
which a CNN was trained on over 24,000 images and was
able to differentiate early gastric cancer with an accuracy of
92.5%, sensitivity of 94%, and specificity of 91%.29
Colonoscopy
The majority of ML research in colonoscopy has focused

on colorectal cancer, from improving the detection of colo-
rectal cancer during colonoscopy to ensuring adequate
bowel preparation and ultimately in improving adenoma-
detection rates. While most attention in colonoscopy-
related ML has been focused on improving adenoma-
detection rates, ensuring adequate bowel preparation is
also essential as poor prep can result in greater than 30%
adenoma miss rate.30 A reliable and reproducible method to
evaluate the effectiveness of bowel preparation has previ-
ously been developed in the Boston Bowel Preparation
Scale; however, interobserver reliability in application of the
scale has been shown to be only 0.74.31 To address this
important problem, a CNN was trained by Zhou et al32 in
2020 that applied Boston Bowel Preparation Scale to live
endoscopy with over 93% accuracy, significantly better than
human endoscopists. This is a system that, if applied in the
clinical setting, could potentially lead to decreased rate of
missed adenomas.32

Overall, adenoma miss rate during colonoscopy has been
shown to be as high as 25%, with a colorectal cancer miss
rate of approximately 5%.33,34 While there have been over
50 published studies detailing ML-driven algorithms built to
detect malignant and premalignant colorectal lesions,
essential studies in ML polyp detection demonstrate the
greatest potential for advancements in this field, especially
those that implement real-time ML-driven polyp-detection
systems.7 These models have shown tremendous promise,
for example, a CNN trained on over 8000 colonoscopy im-
ages was able identify polyps with an accuracy of 96.4%.
This model was able to improve human endoscopists in
detecting polyps, with expert reviewers able to identify over
twice as many missed polyps with model assistance.35

Wang et al36 were the first to deploy an ML-driven
polyp-detection model to assist with live endoscopy. Pa-
tients were randomized to either standard colonoscopy or
colonoscopy with a built-in CNN-based polyp-detection
system that would alert the endoscopist when a polyp
was detected. This system resulted in a 9% increase in
adenoma-detection rate and a greater number of adenomas
detected per patient.36 Recently, multiple additional live ML
assistant models have been developed which significantly
increase adenoma-detection rate, with one model increasing
detection rate by over 14% and the number of adenomas
detected per procedure increasing from 0.71 to 1.07.37–39

Another area of ongoing ML research in colonoscopy is
in the determination of ulcerative colitis severity. Severity of
inflammation is a key factor in the risk of colorectal cancer
development, so accurate detection of more severe disease
is crucial.40 Unfortunately, the determination of disease
severity remains somewhat subjective, and consistency
varies widely among endoscopists.41 To address this prob-
lem, a CNN model was trained on 16,514 endoscopic images
to distinguish moderate-to-severe ulcerative colitis from
remission based on endoscopic images. This model was able
to distinguish endoscopic remission from moderate-to-
severe disease with an area under the receiver operating
characteristic curve (AuROC) of 0.966, which is similar to
human reviewers.42 This model demonstrates the potential
for computer assistance in detecting subtle changes in
inflammation, potentially allowing for future standardiza-
tion of endoscopic description of inflammation. Another
CNN-based model trained on endoscopic images from 29
consecutive patients with ulcerative colitis (UC) was able to
identify patients with UC flares requiring treatment



Table. Future Directions for ML in Computer Vision Endoscopy

Problem ML solution

Classification of esophageal varices and
risk stratification

Agreement among endoscopists varies widely regarding size of
esophageal varices. Automated stratification and risk classification
could significantly impact practice and provide endoscopists with a
tool to more accurately define varices.62

Differentiation of ulcerative colitis vs
Crohn’s disease

Distinction between ulcerative colitis and Crohn’s disease can be
challenging endoscopically as well as histologically.63,64 Numerous
scoring tools have been created to assist endoscopists in diagnosis;
however, this problem lends itself well to ML assistance in the future.

Assessment of biliary strictures during
ERCP

The differentiation between benign and malignant biliary strictures during
ERCP is challenging even for the most advanced endoscopists, and it
is possible that ML could help identify features associated with benign
and malignant disease that could assist the endoscopist.65

Predicting bile duct cannulation
difficulty

One of the most challenging aspects of ERCP is determining the likelihood
of success in achieving bile duct cannulation, and thus presents
another opportunity for ML assistance to transform practice.65

Quality assessment of mucosal
inspection

ML could not only assist with training of endoscopists but also provide
real-time feedback regarding the percent of mucosa examined during
EGD or colonoscopy to ensure adequate examination is taking place.66

Standardized training in endoscopy ML-developed systems can likely help standardize the training and
assessment of fellows in the development of endoscopy skills.10

EGD, esophagogastroduodenoscopy; ERCP, endoscopic retrogradecholangiopancreatography.
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escalation.43 Alternatively, a DNN was trained on over
40,000 endoscopic images and was able to identify patients
with endoscopic remission with accuracy of 90.1%.44
Wireless Capsule Endoscopy
The use of WCE in gastroenterology has been

increasing since its clinical introduction in 2000 and has
transformed visualization of the small bowel.45 WCE is
the recommended first-line investigation in patients with
obscure GI bleeding but is also used to identify small
bowel tumors, inflammatory bowel disease (IBD), celiac
disease, and for surveillance of heritable polyposis syn-
dromes.46 During a single WCE, an average of 12,000
images are generated, which take at least 30 minutes on
average for an experienced gastroenterologist to read and
interpret. Thus, there has been significant research into
the automation of this process through AI.

Despite the generation of a large number of images, WCE
is currently only able to locate the source of bleeding in
approximately 60% of cases.47 An SVM model was devel-
oped in 2014 and trained on WCE images from 50 subjects
with obscure GI bleeding and 200 subjects with normal
mucosa. This model had a sensitivity of 93% and a speci-
ficity of 95% for identifying the source of bleeding.48

Another study carried out a few years later improved on
this model and was able to detect small bowel bleeding
based on WCE images with sensitivity and specificity
>99%.49 Additional models were also created using CNNs
that were able to identify mucosal erosions, ulcers, and
small bowel angioectasia with high accuracy.50,51 The suc-
cess of these models led to a study evaluating the effec-
tiveness of a CNN trained to identify small-bowel mucosal
breaks in clinical practice. This study reported that the time
to read WCE reports was reduced by as much as 75% with
no significant change in detection rate of mucosal breaks.52

In celiac disease, WCE has proven to be a useful alterna-
tive to upper endoscopy, with WCE demonstrating good
sensitivity and excellent specificity for the detection of villous
atrophy.53 Since the adoption of WCE as an acceptable means
of diagnosing celiac disease, a number of studies have eval-
uated the utility of incorporating ML to streamline and
improve the detection of disease. The first notable study was
published by Ciaccio et al54 in 2010 and was able to detect the
presence of celiac disease with 80% sensitivity and 96%
specificity using still images fromWCE. An SVMmodel trained
on WCE images from 13 control and 13 celiac patients was
able to identify celiac disease with a sensitivity of 88% and a
specificity of 87%.55 Another SVM model improved upon
these results and was able to detect disease with sensitivity
and specificity of 97% and 96%, respectively.56

WCE also plays an important role in IBD, in particular,
Crohn’s disease as it allows for assessment of the entire
small bowel. WCE is currently used to identify disease,
assist in determining disease severity, and help identify
response to therapy. In 2020, a CNN was trained on over
17,000 WCE images from 49 patients and was found to be
able to differentiate normal vs diseased mucosa in subjects
with known Crohn’s disease with an AUC of 0.99.57 Another
study attempted to decrease the time to read WCE reports
to assess disease severity in IBD and trained an ML model to
identify 100 images from the WCE video that are most likely
to contain abnormalities. They had 2 sets of endoscopists
review WCE reports and assess inflammatory activity;
however, one group only had access to the ML-identified
100 images. There was strong agreement in the degree of
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inflammation between the 2 reading groups; however, those
only reviewing the 100-image set identified by the model
were able to come to a conclusion up to 30 minutes
quicker.58 Another CNN-based algorithm was developed
which demonstrated an accuracy of 91% in classifying ul-
cers in Crohn’s disease.59
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Figure 2. Potential applications of artificial intelligence in GI
radiology.
The Future
In the coming years, ML-driven innovation in endoscopy

is likely to impact practice in numerous ways. Endoscopists’
diagnostic capabilities during procedures are likely to be
enhanced through the use of this technology, with the
computer able to assist in challenging diagnosis, such as
differentiating cancer vs adenoma in the duodenum.60 In the
near future, computer vision will serve as an augmentation
tool for endoscopists, improving accuracy and decreasing
procedural time. These new systems will also likely serve as
training tools for learners.10 This future is rapidly
approaching, with the FDA recently approving Breakthrough
Device Designation for a real-time endoscopic AI system61

(Table).
Significant changes will likely be seen in clinical practice

over the next decade as a result of these innovations, and
endoscopy is likely to be impacted more in the near term
than any other area of gastroenterology. For example,
endoscopists can expect computer vision systems to be
implemented in the near future to assist in the diagnosis of
early esophageal adenocarcinoma and polyp detection and
classification. The reading of WCE images is also likely to be
heavily impacted over the coming years, with ML algorithms
able to significantly reduce reading time and improve ac-
curacy. This will likely greatly expand the use of capsule
endoscopy.

However, there is a vital need for clinical trials that can
ascertain long-term benefits, risks, and the cost-
effectiveness of increased early disease detection.67 We
must determine whether these models are generalizable
across different populations and clinical settings. After high-
quality clinical trials take place, it is not hard to imagine a
future in which ML-driven endoscopy improves diagnostic
capability of all endoscopists, reduces the burden on over-
worked endoscopists, and also serves a vital role in the
learning process for young endoscopists.
AI and ML in GI Radiology/“Radiomics”
At the beginning of the ML revolution in medicine, the

majority of the early research focused on the automation of
radiology interpretation, including ultrasound, computed
tomography (CT), and magnetic resonance imaging (MRI).
The potential applications of ML in radiology are broad,
from decreasing radiologist burden to improving diagnostic
accuracy. In gastroenterology, ML-assisted radiology has
shown significant promise in hepatology and pancreatology
(Figure 2).
Hepatology
ML has been applied extensively to radiology in the field

of hepatology to identify and assess various conditions. Ahn
et al68 published a recent review on the use of ML in hep-
atology, specifically highlighting recent advancements in
ML-assisted radiology.

Ultrasound is often the first test those with suspected
liver disease undergo for diagnostic purposes; thus, much
attention has been focused on automating the interpretation
of hepatic ultrasound and improving diagnostic accuracy via
ML. In 2016, Gatos et al69 developed an SVM model that was
able to distinguish subjects with liver disease from controls
using ultrasound shear wave elastography with a sensitivity
of 83.3%, specificity of 89.1%, and an accuracy of 87%.
Another model was able to predict fibrosis stage in subjects
with hepatitis B using real-time elastography with an ac-
curacy of 83%.70 A recent multicenter study was published
by Wang et al71 in 2019 in which an ML model to predict
liver fibrosis using shear wave elastography 2D images was
developed. This model was able to achieve an AUC of 0.97
for cirrhosis, 0.98 for advanced fibrosis, and 0.85 for iden-
tifying significant fibrosis.71 The identification of liver le-
sions via ML-guided ultrasound has also been
demonstrated, with a DL model developed to detect and
characterize benign and focal liver lesions based on ultra-
sound images. This model had an AUC of 0.935 for identi-
fying liver lesions and 0.916 for classifying these lesions as
either benign or malignant.72

CT and MRI are also heavily used modalities in diag-
nosing and monitoring various liver diseases. Nayak et al73

developed an radial basis function kernel algorithm based
on CT images to identify cirrhosis and hepatocellular car-
cinoma (HCC). This model was able to accurately identify
cirrhosis and HCC with an accuracy of 80%.73 A model was
also built to identify hepatic lesions, including HCC,
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identified on multiphasic MRI and achieved an accuracy of
92%, a sensitivity of 92%, and specificity of 98%. Notably,
computation time was 5.6 ms per lesion, highlighting the
significant time that can be potentially saved by these
models. This group further identified exact features that its
model was utilizing to make decisions, improving inter-
pretability of these predictions and potentially allowing for
implementation into the radiologist workflow.74,75 Multiple
recent models have demonstrated that adipose tissue,
muscle mass, and bone density can be determined by
applying deep learning methods to CT images, ultimately
allowing for clinicians to identify trends in patients’ nutri-
tional status that could signify future clinical decline. These
models have been trialed in patients with liver disease and
have been shown to accurately predict future mortality.76,77
Pancreas
Diagnosis of diseases of the pancreas also relies heavily

on imaging. Limited research in ML-based radiology in dis-
eases of the pancreas has taken place; however, these few
studies have shown promise for the future of this field. In
2019, Kuwahara et al78 developed a DNN based on endo-
scopic ultrasound images to predict intraductal papillary
mucinous neoplasms, a precursor lesion of pancreatic
adenocarcinoma. This model had an accuracy, a sensitivity,
and specificity of 92.6%, 94.0%, and 95.7%, respectively, for
identifying intraductal papillary mucinous neoplasms,
which was much better than the accuracy of 56% for radi-
ologists.78 Liu et al79 trained a CNN based on CT images to
identify pancreatic cancer. They utilized 370 CT scans from
subjects with pancreatic cancer and 320 controls and found
that the developed algorithm had a sensitivity of 98%,
which was significantly higher than the 93% among expe-
rienced radiologists.79 In 2021, Janssens et al80 trained a
CNN on 469 CT scans to identify intrapancreatic fat and
pancreatic ductal adenocarcinoma and were able to identify
markers that could potentially be used to identify pancreatic
adenocarcinoma in the prediagnostic phase.

The Future
In the near future, the application of ML algorithms in

radiology will likely improve radiology workflow, improve
diagnostic accuracy, and decrease time to diagnosis. For
example, ML models that can not only analyze the current
radiology image but also interpret this image in the context
of all the previous imaging a certain patient has had and the
interval changes that have occurred can be developed.
Additionally, one could also envision a future in which ML-
driven mobile-based ultrasound is available for patient use
at home for tasks such as volume status evaluation, deter-
mination of degree of ascites, and bladder scans. ML-driven
radiology is a crucial component of a future in which indi-
vidualized medicine is at the forefront of gastroenterology.
AI and ML in GI Pathology
While there has been significant focus on the application

of ML in endoscopy, ML-driven histopathology has the po-
tential to significantly impact clinical practice. Histopathology
has a unique advantage over imaging modalities in that
models can quantify precise cellular features such as shape,
size, and color from hematoxylin- or immunohistochemistry-
stained slides that can be used to create ML models.81

Recent technological advances have made it possible to digi-
tally archive traditional glass slides at full resolution, leading
to the possibility of standardizing histopathological analysis
through the use of ML.82,83 These models have the potential to
reduce the clinical burden on pathologists and improve
diagnostic accuracy. Kobayashi et al81 recently published a
comprehensive review on the state of ML in GI pathology. We
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will review high-impact studies in this field that demonstrate
the ways in which ML can transform clinical practice
(Figure 3).
Luminal GI
In 2019, Wei et al84 developed a CNN with the goal of

creating a deep learning system that can assist pathologists
with the diagnosis of celiac disease. The CNN was trained on
hematoxylin and eosin-stained duodenal tissue and was able
to identify and differentiate between normal tissue and ce-
liac disease with an accuracy of 91% and 95%, respec-
tively.84 A similar approach was taken by Martin et al85 who
trained a CNN on 300 hematoxylin-stained slides (100
normal, 100 H. pylori, 100 reactive gastropathy) and found
the model could differentiate between the 3 with sensitivity
and specificity greater than 70%. Neural networks have also
shown promise in the classification of colorectal polyps. Wei
et al86 build a DNN that could classify colorectal polyps as
either tubular adenoma, villous adenoma, hyperplastic
polyp, and sessile serrated adenoma with an accuracy of 87%.
The authors found this rate of correct classification to be
equivalent to that of pathologist review and suggested that
this model could be deployed to assist pathologists in
improving efficiency and diagnostic accuracy in classifying
colorectal polyps.86 A recent publication by Gehrung et al87

found that pathologic diagnosis of BE via a nonendoscopic
Cytosponge-TFF3 test could be feasible with an ML-driven
process and that review of these slides by pathologists
could be decreased by 57%with a similar diagnostic accuracy.
GI Malignancy
In colorectal cancer, ML-driven histopathology has

shown the potential to impact prognosis and determine
appropriate treatment. For example, in 2019, a DNN was
found to be able to predict survival in colorectal cancer
based on only cancer histopathological images with an
hazard ratio of 1.63 (95% CI 1.14–2.33).88 Another study
found that a DL model could successfully identify micro-
satellite instability and mismatch-repair deficiency in he-
matoxylin and eosin slides obtained from colorectal tumors
with an AuROC of 0.92.89 In the evaluation and screening of
esophageal cancer, Tomita et al90 created a CNN-based
model that was able to differentiate esophageal tissue
based on histopathological slides as either normal, non-
dysplastic Barrett’s, dysplastic Barrett’s, and adenocarci-
noma with an accuracy greater than 85%. Similar
techniques have also been used for the detection of gastric
cancer, with a CNN trained on whole-slide images from
gastric biopsies able to identify gastric adenocarcinoma with
an AUC up to 0.97.91 A DL model has also been developed to
identify and distinguish between the 2 primary types of
liver cancer, hepatocellular carcinoma and chol-
angiocarcinoma. This model developed by Kiani et al92 in
2020 was trained on hematoxylin and eosin-stained whole-
slide images and was able to identify and distinguish be-
tween these 2 types of hepatic malignancies with an accu-
racy of 86%. Predicting prognosis in HCC has also been
shown to be possible via pathology-based ML, with a DL
model shown to have a c-statistic of greater than 0.75 in
predicting prognosis after a histopathological diagnosis of
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HCC, performing better than previous prediction models
based on alpha-fetoprotein level, vascular invasion, or dis-
ease stage.93
Hepatology
The current standard for diagnosis of nonalcoholic fatty

liver disease (NAFLD) and non-alcoholic steatohepatitis
(NASH) is manual histologic assessment by an expert
pathologist, a time-consuming process that results in sig-
nificant interpreter variability. Vanderbeck et al94 created a
model to assess histological features of NAFLD, with a goal
of creating a scoring system that could provide continuous
measurement of disease features. They created this model
using an SVM that was able to identify the presence of NAFLD
with 89% accuracy and was able to identify specific histo-
pathological features such as macrosteatosis, bile ducts, portal
veins, and sinusoids with high accuracy.94 Models have also
been developed to evaluate degree of fibrosis in NAFLD, such
as an SVM-based model that had an ROC of greater than 90%
for detecting normal fibrosis, bridging fibrosis, and presence
of nodules or cirrhosis.95 Another CNN model was built to
characterize disease severity and treatment response in NASH
and found a Cohen’s kappa coefficient of 0.8 for staging
NASH.96
The Future
The future of ML in transforming the practice of GI pa-

thology is incredibly promising, and we expect a number of
changes to clinical practice in the coming years. For
example, these models will lead to accurate and standard-
ized grading of disease states such as esophageal dysplasia
and NAFLD/NASH that significantly decrease intraobserver
variability. We also expect more precise interpretations of
histopathology, where previously specific components
would be estimated in broad categories. With ML, we will be
able to quantify these components with greater granularity,
for example, in defining degree of fibrosis, percent dysplastic
tissue in GI malignancy, degree of inflammation in eosino-
philic esophagitis, and many more. Similar to endoscopy,
these models will serve as a second set of eyes for patholo-
gists in reducing cognitive burden and improving standardi-
zation, while also serving as an invaluable teaching tool.
AI and ML in GI—EHR Data
Clinicians consider a vast variety of information when

making a diagnosis, including clinical history, laboratory
values, and vital signs, all of which are reviewed in the EHR.
When many clinicians think of AI in medicine, they imagine
a future in which the vast amounts of information included
in the EHR can be utilized to identify particular diseases and
predict outcomes. A significant amount of research has
already taken place in making this future a reality, and we
will highlight the advances made in HER-based ML
algorithms in the identification of disease and the prediction
of outcomes (Figure 4).
Disease Identification
ML has shown significant promise in identifying disease

utilizing data present in the EHR. For example, a clinical
decision-support system was developed in 2011 to assist in
the diagnosis of celiac disease using only patient-reported
symptoms and physical exam findings extracted from the
EHR, with a Bayesian classifier model having an AUC of 0.84
in the identification of celiac disease.97 A random forest (RF)
model was created in 2016 that was able to diagnose
colorectal cancer prior to clinical diagnosis with an AUC of
0.891 using only raw data included in the EHR.98 Another
disease-identification model was developed by Wu et al in
2019 that attempted to identify NAFLD utilizing only clinical
data. The authors created an RF model and included vari-
ables such as age, gender, vital signs, and labs and were able
to identify NAFLD with an AUC of 0.925.99 Another RF-
based model was created to identify patients with esopha-
geal varices and those with esophageal varices requiring
treatment. Screening for esophageal varices requires
endoscopy, and the authors hypothesized that a noninvasive
strategy could be appropriate in screening for varices. The
model was developed using clinical data available in the
EHR including age, gender, vital signs, labs, and reported
complications of cirrhosis and was found to have an AUC of
0.82 for identifying esophageal varices and 0.74 for identi-
fying varices requiring treatment.100
Outcome Prediction
The potential of ML-driven outcome prediction in

gastroenterology was first demonstrated in 2003 when Das
et al101 published in the Lancet a model for predicting
outcomes following lower GI bleeding. They built an artifi-
cial neural network (ANN) using clinical variables available
in the EHR at initial presentation of lower GI bleed and were
able to predict mortality, recurrent bleeding, and need for
endoscopic intervention with accuracy over 90%.101

Another ML model utilized 6 parameters extracted from
the EHR (age, baseline hemoglobin, presence of gastric ul-
cer, gastrointestinal diseases, malignancies, and infections)
and was able to predict recurrent peptic ulcer bleeding in 1
year with an AuROC of 0.775% and with 84% accuracy.102

Sato et al103 developed an ANN-based model to predict
survival in patients diagnosed with esophageal cancer who
underwent endoscopic resection with curative intent and
were able to predict 5-year survival with an AUC of 0.884.
Another ANN model was able to predict progression to se-
vere pancreatitis, organ failure, and mortality in those hos-
pitalized with pancreatitis with an AUC greater than 0.8.104

A novel risk prediction model was created by Eaton et al105

in 2020 to predict outcomes in those with primary scle-
rosing cholangitis. This model utilized 9 clinical variables
(bilirubin, albumin, alkaline phosphatase, platelets,
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aspartate aminotransferase, hemoglobin, sodium, patient
age, and number of years since primary sclerosing chol-
angitis was diagnosed) to build a gradient boosted model
that was able to predict hepatic decompensation with
c-statistic of 0.85.105

Waljee et al106 have published multiple ML studies
predicting outcomes in IBD. In 2017, this group devel-
oped an RF-based model that was able to predict future
IBD-related hospitalization with an AuROC of 0.87. The
main independent risk factors identified in this model
included age, albumin concentration, immunosuppres-
sive medication use, and platelet count.106 They next
used an RF algorithm to predict response to vedolizu-
mab among those with UC. AuROC for this algorithm
was 0.73 when including data through the first 6 weeks
of therapy, potentially giving clinicians further insight
into the individualized utility of this expensive medica-
tion.107 Finally, this group again employed an RF model
to predict response to ustekinumab in patients with
Crohn’s disease and found their model had an AuROC of
0.76.108

Significant work has also been carried out in predicting
outcomes in a variety of liver diseases. For example, one
study following up patients with early-stage cirrhosis until
liver transplant or death developed an RF model to predict
development of HCC. This model was created utilizing EHR
data and was able to predict HCC with 80.7% sensitivity and
46.8% specificity.109 A Classification and Regression Tree
model was developed to improve prognostication in acet-
aminophen overdose that incorporated demographics, labs,
medications administered, and other clinical variables
extracted from the EHR and was able to predict mortality
with an AUC of 0.79.110 Predicting survival after liver
transplant was also shown to be possible, with a recurrent
neural network developed that was able to predict 5-year
survival after liver transplantation with an AUC of 0.864.111
In 2017, Konerman et al112 developed an RF model that
utilized clinical and laboratory variables extracted from the
EHR to predict transplant-free survival in hepatitis C-related
cirrhosis with an AuROC of 0.85. Multiple studies have
developed models to predict hospital readmission among
those with cirrhosis, a source of significant morbidity and
mortality. However, the most promising model was built
using a traditional LR model that predicted readmission
with an AUC of 0.67.113 Another model utilized multiple ML
models to predict readmission and mortality in those hos-
pitalized with cirrhosis; the best model was an SVM that
achieved an AUC of 0.62.114 The limited predicted capabil-
ities of these models are likely due to the difficulties with
considering multiple data points in relation to each other
over time when building a model. However, if just
attempting to predict mortality in those with cirrhosis,
multiple models have been developed using deep learning
techniques and have been able to predict 1-year mortality
with greater accuracy than the model for end-stage liver
disease-sodium score.115,116
The Future
The overall goal when initially creating the EHR was to

improve health-care quality. As described, ML is showing
significant promise in utilizing these vast data to individualize
medicine. However, it is still very challenging to determine if
guideline-driven quality health care is being provided, espe-
cially considering situations when there are reasonable ex-
planations for deviations in standard of care. Utilizing only
structured data in the EHR, it is likely impossible to achieve
these goals. However, it is evident that these data are present
as it can be determined on individual chart review. But how
do we evaluate this data on large scales? The answer may be
in the use of natural language processing (NLP) to create
models based on unstructured data.117
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AI and ML in NLP
The current frontier in ML research is NLP. The majority

of the previously discussed ML advances in gastroenter-
ology involve structured data, or data that can easily be
stored and organized into tables. However, significant
amounts of clinical data for individual patients exist in an
unstructured format, in places such as clinical notes and
pathology and radiology reports. NLP aims to automate the
extraction of this unstructured clinical data so that it can be
used to develop clinical models.

Studies involving NLP in gastroenterology have primar-
ily been published in the last 5 years, beginning with a study
in 2016 that utilized colonoscopy reports to determine
quality of colonoscopy and adherence to proper surveillance
intervals. This NLP-based algorithm was able to report
adenoma-detection rate with 100% accuracy and determine
proper colonoscopy surveillance intervals across 13 medical
centers.118,119 Another NLP-based study attempted to
improve upon the identification and risk stratification of
patients with cirrhosis. Previous International Classification
of Diseases (ICD) code-based studies to identify cirrhosis
performed well, with a positive predictive value of 90% and
an negative predictive value of 87%.120 However, an NLP
model based on radiology reports was able to identify
cirrhosis with a positive predictive value of 92% and an
negative predictive value of 97%.121 Similar models have
been successfully built using NLP in Crohn’s disease, where
an NLP-based model was shown to improve retrospective
disease identification from 83% to 95%.122,123 NLP has also
been used to identify cases of hepatorenal syndrome, again
performing better than ICD-based identification models
with an AUC of 0.93.124 The ability of NLP in retrospective
identification of disease will greatly increase the ease and
feasibility of conducting large population-based cohort
studies.

Another type of unstructured data that is becoming
increasingly prevalent in medicine is patient messages
through the EHR. The possibilities for this type of data have
already started to be explored with NLP. For example, an
NLP-based algorithm has shown promise in detecting early
hepatic encephalopathy based on sentence and word length
in patient messages.125

NLP also has the potential to greatly reduce physician
administrative burden through the automatic generation of ICD
codes based on clinical notes, automated prior authorization
requests, and the ability to automatically generate sufficient
documentation for billing based on unstructured notes.126 This
has the potential to allow clinicians to return to a systemwhere
clinical notes are simple, readable, and oriented toward
providing important information to patient care as opposed to
a document designed to maximize billing potential. NLP also
has the potential to serve as a valuable clinician assistance tool,
automatically extracting clinical information from the chart and
presenting applicable scoring tools and clinical evidence for
treatment. This again highlights the potential for NLP to ease
physician burden while increasing evidence driven care.126
Preliminary studies have even shown promise in developing
automated chat-bots that can collect patient symptoms via
messages in the EHR and provide simple medical advice or
recognize when higher level of care is needed.127
Conclusion—Where Do We Go From
Here?

The application of AI and ML in gastroenterology is not
new; however, advancements are occurring rapidly, and the
future landscape of AI-driven gastroenterology is beginning
to come into focus. Before this future is fully realized, a few
key developments that are on the horizon need to take
place. First, the medical community needs to fully recognize
that AI-driven algorithms can and should be treated as a
medical device, and thus regulated by the FDA.128 Naturally,
there remains some hesitancy in integrating ML-based so-
lutions into clinical practice, and increased awareness and
understanding of these methods by the gastroenterology
community is a crucial next step. Next, the medical com-
munity must determine who is responsible for the accuracy
of AI-based algorithms and who holds responsible when
errors inevitably result as a consequence of these models.5

There is also an urgent need for randomized trials and
extensive external validation of developed algorithms in
diverse populations to mitigate inherent biases. Although
many of the above-described trials exhibit outstanding
performance, it is expected that the real-world performance
of these models will decrease considerably. Finally, the
pathway to developing AI solutions needs to be simplified so
that physicians without computer engineering skills can
develop models and deploy them into clinical practice.129

The practice of gastroenterology and hepatology will
significantly change over the coming years as advances in AI
and ML continue to accelerate (Figure 5). Thus, it is
important that the current state of this technology and the
future possibilities are understood so that they can be
incorporated into future practice.
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